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Abstract: In this paper, we establish some new results on the existence of positive solutions for a
singular tempered sub-diffusion fractional equation involving a changing-sign perturbation and a
lower-order sub-diffusion term of the unknown function. By employing multiple transformations,
we transform the changing-sign singular perturbation problem to a positive problem, then establish
some sufficient conditions for the existence of positive solutions of the problem. The asymptotic
properties of solutions are also derived. In deriving the results, we only require that the singular
perturbation term satisfies the Carathéodory condition, which means that the disturbance influence
is significant and may even achieve negative infinity near some time singular points.
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1. Introduction

Fractional calculus is an important tool to describe the anomalous diffusion phenom-
ena in Brownian motion where a large number of particles transmit at different speeds.
In particular, the anomalous transmission includes the superlinear and sublinear growth for
the mean squared displacement with time, which produces the anomalous super-diffusion
and sub-diffusion phenomenon. Super-diffusion usually involves a fractional diffusion
term which possesses a globally nonlocal transport characteristic, i.e., the flux of a scalar
relies on the global spatial distribution of the scalar rather than its local spatial gradi-
ents, whereas sub-diffusion can be modeled through a time fractional derivative which
possesses a non-locally temporal transport property [1]. In other words, the tempered
fractional Brownian motion exhibits semi-long range dependence, which falls off like a
power law in moderate time but then eventually becomes short-range dependent at long
time scales. The non-locally temporal transport property can be described by a tempered
fractional derivative operator R

0 Dt
γ,λx(t), which is actually an exponential optimization of

the Riemann–Liouville fractional derivative R
0 DtDtDt

γ, i.e., we have the following mathemati-
cal relation:

R
0 Dt

γ,λu(t) = e−λtR
0 DtDtDt

γ(eλtu(t)), (1)

where γ, λ > 0 are constants, R
0 DxDxDx

γ represents the standard Riemann–Liouville fractional
derivative defined by

R
0 DxDxDx

γu(x) =
dn

dxn

(
In−γu(x)

)
=

1
Γ(n − γ)

(
d

dx

)n ∫ x

0
(x − y)n−γ−1u(y)dy,
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and
Iγu(x) =

1
Γ(γ)

∫ x

0
(x − y)γ−1u(y)dy

is the Riemann–Liouville fractional integral operator. For more details of the definitions
and applications, we refer the reader to [2–6].

From a mathematical point of view, an anomalous diffusion process is the continuous
limit of a random walk in a time continuum governed by a power-law probability second
moment divergent distribution. However the moments divergent of Lévy processes in
bounded domains or with finite time perform the exponential rule rather than the power-
law [1]. Thus, the most effective strategy is to multiply an exponential factor in the
fractional diffusion term to transform it as a tempered-stable Lévy processes, and then
the corresponding continuous limit results in a tempered diffusion fractional model with
convergent moments in space [7] or in both space and time [8]. This extension provides
a time domain stochastic process model for the famous Davenport spectrum of wind
speed [9,10] for designing electric power generation facilities and for studying geophysics
problems [11] and finance problems [12]. In recent work [13], Mali et al. developed
some theories of tempered fractional calculus, and some properties and applications were
also given. Ortigueira and Bengochea [14] introduced the bilateral tempered fractional
derivatives to unify the one-sided tempered fractional calculus, the classic, substantial and
shifted fractional operators for studying variance gamma processes [15,16] and turbulence
model in Statistical Physics [17] and the Regular Lévy Processes of exponential type [18].
Recently, Zhang et al. [19] employed the method of upper and lower solutions to derive
some new results for a p-Laplacian singular tempered fractional equation

R
0 Dx

γ,λ
(

φp

(
R
0 Dx

σ,λu(x)
))

= f (x, u(x)),

u(0) = 0, R
0 Dx

σ,λu(0) = 0, u(1) =
∫ 1

0
e−λ(1−x)u(x)dx,

(2)

with 0 < γ ≤ 1, 1 < σ ≤ 2, and the nonlinearity f is decreasing in the second variable.
By using the properties of superquadratic and subquadratic functions, Saker et al. [20]
established some new refinement multidimensional dynamic inequalities of Hardy’s type
on time scales. In [21], Zakarya et al. provided novel generalizations by considering the
generalized conformable fractional integrals for reverse Copson’s type inequalities on time
scales. For some other applications of fractional calculus, the reader is referred to [22–36].

This paper deals with the following sub-diffusion model with a changing-sign
perturbation. − R

0 Dx
γ,λu(x) = f

(
x, eλxu(x), R

0 Dx
σ,λu(x)

)
− g
(

x, R
0 Dx

σ,λu(x)
)

,

R
0 Dx

σ,λu(0) = 0, R
0 Dx

σ,λu(1) = 0,
(3)

where 1 < γ ≤ 2, 0 < σ < 1 and γ − σ > 1, u(x) is particle jump density function, eλxu(x)
represents an exponential decay, and R

0 Dx
γ,λu(x), R

0 Dx
σ,λu(x) are anomalous sub-diffusion

terms which are tempered time fractional derivative operators. The main nonlinearity
f : [0, 1] × [0,+∞) × (−∞,+∞) → [0,+∞) is continuous, and g : [0, 1] × R → R is a
changing-sign perturbation, which satisfies the Crathèodory condition. The above condition
implies that g can be singular at some zero measure set of [0, 1], i.e., g may have infinite
many singular points with respect to the time variables, and further, it leads to the global
nonlinearity which may tend toward negative infinity.

A changing-sign differential equation with the nonlinear term f (x, u) ≥ −M, M > 0
originated from the study of the chemical reactor theory [37], which is also called the
semipositone problem in the literature. Recently, Denk and Topal [38] considered a second-
order semipositone m-point BVP on time scales, and by employing the fixed point theorem,
it has been proven that the semipositone m-point BVP has triple positive solutions. In [39],
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by constructing a special cone and combining the properties on time scales, the authors
dealt with a third-order semipositone equation on time scales, and the existence of positive
solutions was obtained provided that the nonlinear term f can be changing sign. However,
there are no results for sub-diffusion model with a changing-sign perturbation even for the
perturbation which is only a time-variable function without a lower-order sub-diffusion
term. This is mainly because many nonlinear analysis theories and methods, such as the
spaces theories [40–44], smooth theories [45–47], operator method [48,49], the method of
moving sphere [50], critical point theories [51–54] and iterative techniques [55–57], have
not been used to solve the sub-diffusion model when the main nonlinear term f and the
changing-sign perturbation g all involve a lower-order tempered fractional sub-diffusion
term. In the present paper, by using the spaces theories, regularity theories, operator
theories and the technique of moving plane, we firstly transform the changing-sign sub-
diffusion model to a positive problem and then derive sufficient conditions on the existence
of positive solutions of the changing-sign sub-diffusion model (3) based on the fixed-point
theorem in the cone. The new contributions in this paper include the following aspects:

(i) The existence of positive solutions for a sub-diffusion model with a changing-sign
perturbation is derived under the cases in which the main nonlinearity f is superlinear
or sublinear.

(ii) Only the Carathéodory condition is required for the singular perturbation, which
makes the disturbance influence to be significant so that the whole nonlinearity may
tend to achieve negative infinity near some time singular points in [0, 1].

(iii) The main nonlinear term f and the negative perturbation g all involve a lower-order
tempered fractional sub-diffusion term of unknown functions.

(iv) The singular perturbation g is allowed to have infinitely many singular points in [0, 1].
(v) The asymptotic properties of positive solutions are studied.

This work is structured as follows. In Section 2, we firstly construct our work space
and study the unique positive solution for a tempered linear fractional equation, and then
transform the changing-sign sub-diffusion model to a positive problem by the moving plane
technique. In Section 3, some sufficient conditions on the existence of positive solutions
for the changing-sign sub-diffusion model (3) are derived for the case in which the main
nonlinear term f is superlinear or sublinear. Some examples are given to illustrate our
main results in Section 4.

2. Preliminaries and Lemmas

Let E = C([0, 1];R) be the work space of this paper. Clearly, E is a Banach space which
possesses the norm

||z|| = max
x∈[0,1]

|z(x)|.

Define

P = {z ∈ E : z(x) ≥ xγ−σ−1(1 − x)e−λx||z||},

then P is a cone of E.

Definition 1. We say the map (x, z) 7→ g(x, z) in [0, 1]×R satisfies the Crathéodory condition if

(i) x 7→ g(x, z) is Lebesgue measurable for every z ∈ R;
(ii) z 7→ g(x, z) is continuous for a.e. x ∈ [0, 1];
(iii) for a.e. x ∈ [0, 1] and any z ∈ R, there exists a function h̄ ∈ L1[0, 1] such that

|g(x, z)| < h̄(x).

Remark 1. From (ii) and (iii) of Definition 1, g(x, z) can be singular or undefined at some zero
measure set of [0, 1]. For example,
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g(x, z) =
e−z + 2

∏n
i=1 |x − ai|

1
2
<

4

∏n
i=1 |x − ai|

1
2

, x ∈ [0, 1], z ∈ [0,+∞), 0 < ai < 1, i = 1, 2, 3..., m.

Clearly, g(x, z) is singular and tends to infinity at a zero measure set {a1, a2, a3...., am} ⊂
[0, 1]. This indicates that the disturbance influence of the singular perturbation term is significant
and achieves negative infinity near the singular points {a1, a2, a3...., am}.

Remark 2. In singular points, the loss of continuity of the function will make the corresponding
operator lose compactness, which may cause many theories of nonlinear functional analysis falling
out of use. In order to overcome this difficulty, we introduce the Crathéodory condition to govern the
contribution of the singular perturbation term which makes the corresponding nonlinear operator
well-defined under this condition.

Now, we list the assumptions used in the rest of the paper.

(G1) g : [0, 1]×R → R satisfies the Crathèodory condition, and we denote

µ =
1

Γ(γ − σ)

∫ 1

0
h̄(y)dy.

(G2) f ∈ C([0, 1]× [0,+∞)× (−∞,+∞), [0,+∞)).
(G3) There exists a subinterval [a, b] ⊂ (0, 1) such that

lim
u+v→+∞

min
x∈[a,b]

f (x, u, v)
u + v

= +∞.

(G4)

lim
|u+v|→∞

max
x∈[0,1]

f (x, u, v)
|u + v| = 0.

The following lemmas are necessary.

Lemma 1 ([19]). Let γ > σ > 0 and z(x) ∈ C[0, 1] ∩ L1[0, 1]. Then,

(i)
IσR

0 DxDxDx
σz(x) = z(x) + c1xσ−1 + c2xσ−2 + · · ·+ cmxσ−m, (4)

where ci ∈ R, i = 1, 2, 3, ..., m, (m = [σ] + 1), [σ] denotes the greatest integer part of the
number σ;

(ii)
Iγ Iσz(x) = Iγ+σz(x), R

0 DxDxDx
σ Iγz(x) = Iγ−σz(x), R

0 DxDxDx
σ Iσz(x) = z(x).

Lemma 2 ([3,19]). If 1 < γ − σ ≤ 2, then the linear singular tempered fractional equation{
− R

0 Dx
γ−σ,λℓ(x) = h̄(x),

ℓ(0) = 0, ℓ(1) = 0,
(5)

has a unique positive solution ℓ(x) with the form

ℓ(x) =
∫ 1

0
G(x, y)h̄(y)dy, (6)
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where

G(x, y) =


xγ−σ−1(1 − y)γ−σ−1 − (x − y)γ−σ−1

Γ(γ − σ)
e−λxeλy, 0 ≤ y ≤ x ≤ 1;

xγ−σ−1(1 − y)γ−σ−1

Γ(γ − σ)
e−λxeλy, 0 ≤ x ≤ y ≤ 1

(7)

is the Green function of (5).

Proof. Since 1 < γ − σ ≤ 2, it follows from (1) and (4) that

eλxℓ(x) = − 1
Γ(γ − σ)

∫ x

0
(x − y)γ−σ−1eλy h̄(y)dy + b1xγ−σ−1 + b2xγ−σ−2, x ∈ [0, 1].

Noticing that ℓ(0) = 0 and ℓ(1) = 0, one gets b2 = 0 and

b1 =
1

Γ(γ − σ)

∫ 1

0
(1 − y)γ−σ−1eλy h̄(y)dy.

So

ℓ(x) =
1

Γ(γ − σ)

[∫ 1

0
(1 − y)γ−σ−1e−λxeλy h̄(y)dyxγ−σ−1 −

∫ x

0
(x − y)γ−σ−1e−λxeλy h̄(y)dy

]
=

1
Γ(γ − σ)

∫ x

0

[
xγ−σ−1(1 − y)γ−σ−1 − (x − y)γ−σ−1

]
e−λxeλy h̄(y)dy

+
1

Γ(γ − σ)

∫ 1

x
xγ−σ−1(1 − y)γ−σ−1e−λxeλy h̄(y)dyxγ−σ−1

=
∫ 1

0
G(x, y)h̄(y)dy, x ∈ [0, 1].

Remark 3. In this paper, the boundary conditions of Equation (3) are Dirichlet type, of course, and
the boundary conditions of the equation can also be changed to other types of boundary conditions;
however, this change affects only the form of the Green function and does not affect the entire proof
process. So the boundary conditions are critical but not essential.

Lemma 3 ([22]). If 1 < γ ≤ 2, 0 < σ < 1 satisfying γ − σ > 1, for Green function G(x, y), we
have the following properties:

(1) For any (x, y) ∈ [0, 1]× [0, 1], G(x, y) is a non-negative and continuous function;
(2) For any (x, y) ∈ [0, 1]× [0, 1],

xγ−σ−1(1 − x)e−λx(1 − y)γ−σ−1yeλy

Γ(γ − σ)
≤ G(x, y) ≤ xγ−σ−1(1 − x)e−λx

Γ(γ − σ)
or
(
(1 − y)γ−σ−1yeλy

Γ(γ − σ)

)
. (8)

Lemma 4. Let ℓ(x) be the solution for the linear problem (5), then we have the following estimate

0 ≤ ℓ(x) ≤ µxγ−σ−1(1 − x)e−λx, x ∈ [0, 1]. (9)

Proof. In view of (6) and (8), we have

ℓ(x) =
∫ 1

0
G(x, y)h̄(y)dy ≤ xγ−σ−1(1 − x)e−λx

Γ(γ − σ)

∫ 1

0
h̄(y)dy = µxγ−σ−1(1 − x)e−λx, x ∈ [0, 1].
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Now, we make the transformation

u(x) = e−λx Iσ(eλxv(x)), v(x) ∈ C[0, 1],

and consider the Dirichlet BVP of the following mixed integro-differential tempered frac-
tional equation {

− R
0 Dx

γ−σ,λv(x) = f (x, Iσ(eλxv(x)), v(x))− g(x, v(x)),

v(0) = 0, v(1) = 0.
(10)

Lemma 5. Equations (3) and (10) are equivalent. Moreover, if v is a positive solution of Equation (10),
then u(x) = e−λx Iσ(eλxv(x)) is a positive solution of Equation (3).

Proof. Firstly, substitute u(x) = e−λx Iσ(eλxv(x)) into (3). By using (1) and Lemma 1,
one has

R
0 Dx

γ,λu(x)) = e−λxR
0 DxDxDx

γ(eλxu(x))

= e−λx dn

dxn In−γ(eλxu(x))

= e−λx dn

dxn In−γ(Iσ(eλxv(x)))

= e−λx dn

dxn In−γ+σ(eλxv(x)))

= e−λxR
0 DxDxDx

γ−σ(eλxv(x)))

= R
0 Dx

γ−σ,λv(x),

(11)

and
R
0 Dx

σ,λu(x)) = e−λxR
0 DxDxDx

σ(eλxu(x))

= e−λxR
0 DxDxDx

σ(Iσ(eλxv(x)))

= v(x).

(12)

Thus, (11) and (12) yield that

−R
0 Dx

γ−σ,λv(x) = f (x, Iσ(eλxv(x)), v(x))− g(x, v(x)), (13)

and
v(0) = R

0 Dx
σ,λu(0) = 0, v(1) = R

0 Dx
σ,λu(1) = 0. (14)

Thus, (13) and (14) indicate that Equation (3) is transformed into (10).

Contrarily, if v ∈ C([0, 1], [0,+∞)) is a positive solution of Equation (10), from
Lemma 1 and (1), one has

−R
0 Dx

γ,λu(x))− = e−λxR
0 DxDxDx

γ(eλxu(x))

= −e−λx dn

dxn In−γ(eλxu(x))

= −e−λx dn

dxn In−γ Iσ(eλxv(x))

= e−λx dn

dxn In−γ+σ(eλxv(x))

= −e−λxR
0 DxDxDx

γ−σ(eλxv(x))

= −R
0 Dx

γ−σ,λv(x)

= f (x, Iσ(eλxv(x)), v(x))− g(x, v(x))

= f (x, eλxu(x), R
0 Dx

σ,λu(x))− g
(

x, R
0 Dx

σ,λu(x)
)

, 0 < x < 1.
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Since

R
0 Dx

σ,λu(x) = e−λxR
0 DxDxDx

σ(eλxu(x)) = e−λxR
0 DxDxDx

σ Iσ(eλxv(x)) = v(x),

one gets
R
0 Dx

σ,λu(0) = 0, R
0 Dx

σ,λu(1) = 0.

Noting that v ∈ C([0, 1], [0,+∞)) and the monotonicity of Iσ, one obtains

Iσ(eλxv(x)) ∈ C([0, 1], [0,+∞)).

Hence, u(x) = e−λx Iσ(eλxv(x)) is a positive solution of Equation (3).

Now, define a positive piecewise function of Λ ∈ C[0, 1] by

[Λ(x)]∗ =

{
Λ(x), Λ(x) ≥ 0,

0, Λ(x) < 0,

and make a translation transformation

v(x) = z(x)− ℓ(x).

We next focus on the modified problem of Equation (10){
− R

0 Dx
γ−σ,λz(x) = f (x, Iσ(eλx[z(x)− ℓ(x)]∗), [z(x)− ℓ(x)]∗)− g(x, [z(x)− ℓ(x)]∗) + h̄(x),

z(0) = 0, z(1) = 0.
(15)

Lemma 6. Let z be a solution for the modified problem (15) satisfying z(x) ≥ ℓ(x), x ∈ [0, 1]. Then

(i) z − ℓ is a positive solution of Equation (10);
(ii) u(x) = e−λx Iσ(eλx(z(x)− ℓ(x))) is a positive solution of the Equation (3).

Proof. Firstly, let z be a positive solution for the modified problem (15) with z(x) ≥ ℓ(x),
x ∈ [0, 1], then in view of the definition of [Λ(x)]∗ and (15), one has{

− R
0 Dx

γ−σ,λz(x) = f (x, Iσ(eλx(z(x)− ℓ(x))), z(x)− ℓ(x))− g(x, z(x)− ℓ(x)) + h̄(x),

z(0) = 0, z(1) = 0.
(16)

Letting v = z − ℓ, and noting that

ℓ(0) = 0, ℓ(1) = 0, z(0) = 0, z(1) = 0,

we have
v(0) = 0, v(1) = 0,

and also have

R
0 Dx

γ−σ,λv(x) = R
0 Dx

γ−σ,λz(x)− R
0 Dx

γ−σ,λℓ(x) = R
0 Dx

γ−σ,λz(x) + h̄(x),

which implies that
R
0 Dx

γ−σ,λz(x) = R
0 Dx

γ−σ,λv(x)− h̄(x). (17)

Substituting (17) into (16), one has{
− R

0 Dx
γ−σ,λv(x) = f (x, Iσ(eλxv(x)), v(x))− g(x, v(x)),

v(0) = 0, v(1) = 0,
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which indicate that v = z − ℓ solves Equation (10). As z(x) ≥ ℓ(x), v = z − ℓ is positive.
By Lemma 5, we know that u(x) = e−λx Iσ(eλx(z(x)− ℓ(x))) is a positive solution of the
Equation (3).

Now, define an operator T in E

(Tz)(x) =
∫ 1

0
G(x, y)

(
f (y, Iσ(eλx[z(y)− ℓ(y)]∗), [z(y)− ℓ(y)]∗)− g(y, [z(y)− ℓ(y)]∗) + h̄(y)

)
dy. (18)

By Lemma 6, we only need to seek for the fixed points z of the operator T which
satisfies z(x) ≥ ℓ(x), x ∈ [0, 1].

Lemma 7. Assume (G1) and (G2) are satisfied. Then the operator T : P → P is completely
continuous.

Proof. For any fixed z ∈ P, one has ||z|| ≤ M for some constant M > 0, and thus

0 ≤ [z(y)− ℓ(y)]∗ ≤ z(y) ≤ ||u|| ≤ M,

0 ≤ Iσ(eλy[z(y)− ℓ(y)]∗) =
∫ x

0

(x − y)σ−1eλy[z(y)− ℓ(y)]∗

Γ(σ)
dy ≤ Meλ

Γ(σ)
.

(19)

It follows from (G1) and (G2) that T is continuous on [0, 1]. Thus, in view of (19) and
the continuity of f in [0, 1]× [0, Meλ

Γ(σ) ]× [0, M], we have

||Tz|| = max
x∈[0,1]

∫ 1

0
G(x, y)

(
f (y, Iσ(eλx[z(y)− ℓ(y)]∗), [z(y)− ℓ(y)]∗)− g(y, [z(y)− ℓ(y)]∗) + h̄(y)

)
dy

≤
∫ 1

0

(1 − y)γ−σ−1yeλy

Γ(γ − σ)

(
f (y, Iσ(eλx[z(y)− ℓ(y)]∗), [z(y)− ℓ(y)]∗)− g(y, [z(y)− ℓ(y)]∗) + h̄(y)

)
dy

≤
∫ 1

0

(1 − y)γ−σ−1yeλy

Γ(γ − σ)
f (y, Iσ(eλx[z(y)− ℓ(y)]∗), [z(y)− ℓ(y)]∗) + 2h̄(y)dy

≤ eλ

Γ(γ − σ)

(
ℵ+ 2

∫ 1

0
h̄(y)dy

)
< +∞,

(20)

where
ℵ = max

(x,u,v)∈[0,1]×[0, Meλ

Γ(σ) ]×[0,M]

f (x, u, v).

Thus, T : P → E is well defined.
Furthermore, it follows from (8) and (20) that

(Tz)(x) ≥
∫ 1

0

(1 − y)γ−σ−1yeλy

Γ(γ − σ)

(
f (y, Iσ(eλx[z(y)− ℓ(y)]∗), [z(y)− ℓ(y)]∗)− g(y, [z(y)− ℓ(y)]∗) + h̄(y)

)
dy

× xγ−σ−1(1 − x)e−λx ≥ ||Tz||xγ−σ−1(1 − x)e−λx,

which implies that T(P) ⊂ P.
On the other hand, by using the standard arguments and combining Ascoli–Arzela

theorem, T : P → P is continuous. Consequently, T(P) ⊂ P is completely continuous.

Lemma 8 ([58]). Suppose P is a cone of a real Banach space E, the bounded open subsets Ω1, Ω2
of E satisfy θ ∈ Ω1, Ω1 ⊂ Ω2. Let T : P ∩ (Ω2 \ Ω1) → P be a completely continuous operator
such that either

(1) ∥Tz∥ ≤ ∥z∥, z ∈ P ∩ ∂Ω1 and ∥Tz∥ ≥ ∥z∥, z ∈ P ∩ ∂Ω2, or
(2) ∥Tz∥ ≥ ∥z∥, z ∈ P ∩ ∂Ω1 and ∥Tz∥ ≤ ∥z∥, z ∈ P ∩ ∂Ω2.

Then, T has a fixed point in P ∩ (Ω2 \ Ω1).
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3. Main Results

In this section, we firstly define a constant

κ =

(
1

Γ(γ − σ)
+ µ

)
eλ (21)

and then give a new result on the existence of positive solutions for Equation (3) under
the case where the main nonlinearity f is superlinear. In addition, in order to ensure the
existence of positive solutions for the sub-diffusion model with changing-sign perturbation,
we shall also introduce a local control condition (G5) to serve our purpose.

(G5) Let µ and κ be defined by (G1) and (21), respectively. There exists a constant
r > max{2κ, 2µ} such that for any (x, u, v) ∈ [0, 1]× [0, r]× [0, reλ

Γ(σ) ],

f (x, u, v) ≤ r − 2κ

κ
. (22)

Theorem 1. Suppose that (G1), (G2), (G3) and (G5) are satisfied. Then the singular sub-diffusion
model involving the changing-sign perturbation (3) has at least one positive solution u(x). Moreover,
there exists a constant K > 0 such that

u(x) ≥ Ke−λxxγ−1
[

1 − γ − σ

γ
x
]

, x ∈ [0, 1].

Proof. Firstly, based on Lemma 6, it is sufficient to prove that there exists z(x) ∈ C[0, 1] with
z(x) ≥ ℓ(x) which solves the integro-differential tempered fractional Equation (15). To do
this, we only need to prove that T has one fixed point z(x) in P with z(x) ≥ ℓ(x), x ∈ [0, 1].

In fact, in view of Lemma 7, T : P → P is completely continuous. Now suppose
Ω1 = {z ∈ E : ||z|| < r}, and ∂Ω1 = {z ∈ E : ||z|| = r}. For any z ∈ P ∩ ∂Ω1, by the
definition of [Λ(x)]∗, one has

[z(y)− ℓ(y)]∗ ≤ z(y)− ℓ(y) ≤ ||z|| = r,

Iσ(eλx[z(y)− ℓ(y)]∗) =
1

Γ(σ)

∫ x

0
(x − y)σ−1eλy[z(y)− ℓ(y)]∗dy ≤ reλ

Γ(σ)
.

(23)

Consequently, by using (G1), (G5), (23), (8) and (22), we have

||Tz|| = max
x∈[0,1]

∫ 1

0
G(x, y)

(
f (y, Iσ(eλx[z(y)− ℓ(y)]∗), [z(y)− ℓ(y)]∗)− g(y, [z(y)− ℓ(y)]∗) + h̄(y)

)
dy

≤
∫ 1

0

(1 − y)γ−σ−1yeλy

Γ(γ − σ)

(
f (y, Iσ(eλx[z(y)− ℓ(y)]∗), [z(y)− ℓ(y)]∗) + 2h̄(y)

)
dy

≤
∫ 1

0

(1 − y)γ−σ−1yeλy

Γ(γ − σ)

(
r − 2κ

κ
+ 2h̄(y)

)
dy

≤
∫ 1

0

reλ

κΓ(γ − σ)
(1 + h̄(y))dy

=
reλ

κ

(
1

Γ(γ − σ)
+ µ

)
= r = ||z||.

So, for any z ∈ P ∩ ∂Ω1, we have ||Tz|| ≤ ||z||.
Next, take

ρ = 2Γ(γ − σ)
{

aγ−σ−1eλ(a−b)(1 − b)γ−σa
}−1

, (24)
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then for any x ∈ [a, b], by (G3), there exists a constant N > r such that

f (x, u, v) > ρ(u + v), (25)

for any u + v > ( aσ

Γ(σ+1) + 1)N. Choose

R >
2Neλb

aγ−σ−1(1 − b)
+ r.

Noticing that [a, b] ⊂ (0, 1), one has

R >
2Neλb

aγ−σ−1(1 − b)
+ r >

2Neλb

aγ−σ−1(1 − b)
> N > r > 2µ.

Now, assume that Ω2 = {z ∈ E | ||z|| < R} and ∂Ω2 = {z ∈ E | ||z|| = R}. In the
following, we prove ||Tz|| ≥ ||z||, for z ∈ P ∩ ∂Ω2.

In fact, for any z ∈ P ∩ ∂Ω2, x ∈ [a, b], one has

z(x)− ℓ(x) ≥ z(x)− µxγ−σ−1(1 − x)e−λx ≥ z(x)− µz(x)
||z|| = (1 − µ

R
)z(x)

≥ 1
2

z(x) ≥ 1
2

Rxγ−σ−1(1 − x)e−λx ≥ 1
2

Raγ−σ−1(1 − b)e−λb ≥ N > 0.
(26)

Iσ(eλx(z(x)− ℓ(x))) =
1

Γ(σ)

∫ x

0
(x − y)σ−1eλy(z(y)− ℓ(y))dy

≥ N
Γ(σ)

∫ x

0
(x − y)σ−1dy =

N
Γ(σ + 1)

xσ ≥ N
Γ(σ + 1)

aσ.
(27)

Thus, for any x ∈ [a, b], by (26) and (27), one has

Iσ(eλx(z(x)− ℓ(x))) + z(x)− ℓ(x) ≥
(

aσ

Γ(σ + 1)
+ 1
)

N. (28)

Hence, by employing (25) and (28), we obtain

||Tz|| = max
t∈[0,1]T

| (Tz)(x)] |

= max
x∈[0,1]

∫ 1

0
G(x, y)

(
f (y, Iσ(eλx[z(y)− ℓ(y)]∗), [z(y)− ℓ(y)]∗)− g(y, [z(y)− ℓ(y)]∗) + h̄(y)

)
dy

≥ max
x∈[0,1]

∫ b

a
G(x, y)

(
f (y, Iσ(eλx[z(y)− ℓ(y)]∗), [z(y)− ℓ(y)]∗)

)
dy

≥ max
x∈[0,1]

∫ b

a
G(x, y)ρ

(
Iσ(eλx[z(y)− ℓ(y)]∗) + [z(y)− ℓ(y)]∗

)
dy

≥ max
x∈[0,1]

∫ b

a
G(x, y)ρ[z(y)− ℓ(y)]∗dy

≥ max
x∈[0,1]

∫ b

a
G(x, y)

ρR
2

× aγ−σ−1(1 − b)e−λbdy

≥ ρR
2

× aγ−σ−1(1 − b)e−λb max
x∈[0,1]

∫ b

a

xγ−σ−1(1 − x)e−λx(1 − y)γ−σ−1yeλy

Γ(γ − σ)
dy

≥ ρR
2Γ(γ − σ)

× aγ−σ−1eλ(a−b)(1 − b)γ−σa = R

= ||z||,
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that is, ||Tz|| ≥ ||z||, z ∈ P ∩ ∂Ω2. Thus, according to Lemma 8, T has a fixed point
z ∈ P ∩ (Ω2 \ Ω1) satisfying

2µ ≤ r ≤ ||z|| ≤ R.

Finally, we verify z(x) ≥ ℓ(x), x ∈ [0, 1]. In fact,

z(x)− ℓ(x) ≥ z(x)− µxγ−σ−1(1 − x)e−λx ≥ z(x)− µz(x)
||z|| ≥ 1

2
z(x)

≥ 1
2
||z||xγ−σ−1(1 − x)e−λx ≥ µxγ−σ−1(1 − x)e−λx > 0, x ∈ (0, 1).

(29)

Consequently, by Lemma 6, the singular tempered fractional Equation (3) has at least
one positive solution u(x)

u(x) = e−λx Iσ(eλx(z(x)− ℓ(x))).

Moreover, the positive solution u(x) possesses an asymptotic property

u(x) = e−λx Iσ(eλx(z(x)− ℓ(x))) ≥ e−λx

Γ(σ)

∫ x

0
(x − y)σ−1eλy(z(y)− ℓ(y))dy

≥ µe−λx

Γ(σ)

∫ x

0
(x − y)σ−1yγ−σ−1(1 − y)dy ≥ µe−λx

Γ(σ)

[
xγ−1 Γ(σ)Γ(γ − σ)

Γ(γ)
− xγ Γ(σ)Γ(γ − σ + 1)

Γ(γ + 1)

]
=

Γ(γ − σ)µe−λxxγ−1

Γ(γ)

[
1 − γ − σ

γ
x
]
= Ke−λxxγ−1

[
1 − γ − σ

γ
x
]

,

(30)

where

K =
Γ(γ − σ)µ

Γ(γ)
.

For the sublinear case for nonlinearity f , the following existence result has been
derived.

Theorem 2. Suppose that (G1), (G2) and (G4) hold. Moreover (G6) holds, that is:
There exist [a, b] ⊂ (0, 1) such that for any (x, u, v) ∈ [a, b]× [µaγ−σ−1(1 − b)e−λb, 2µ]×

[ µΓ(γ−σ)
Γ(γ) (1 − b)aγ−1, 2µeλ

Γ(σ) ], we have

f (x, u, v) ≥ 2µΓ(γ − σ)

aγ−σ(1 − b)γ−σ(b − a)
.

Then, the singular sub-diffusion model with a changing-sign perturbation (3) has at least one
positive solution u(x). Moreover, there exists a constant K > 0 such that

u(x) ≥ Ke−λxxγ−1
[

1 − γ − σ

γ
x
]

, x ∈ [0, 1].

Proof. Firstly, Lemma 7 still implies that T(P) ⊂ P is completely continuous.
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Take Ω3 = {z ∈ K : ||z|| < 2µ} and ∂Ω3 = {z ∈ K : ||z|| = 2µ}. Then, for any
z ∈ P ∩ ∂Ω3 and t ∈ [0, 1], we have

0 < µxγ−σ−1(1 − x)e−λx ≤ 1
2
||z||xγ−σ−1(1 − x)e−λx ≤ 1

2
z(x)

= z(x)− µz(x)
||z|| ≤ z(x)− µxγ−σ−1(1 − x)e−λx

≤ z(x)− ℓ(x)

≤ z(x) ≤ ||z|| = 2µ.

(31)

and

0 <
µΓ(γ − σ)

Γ(γ)
(1 − x)xγ−1 ≤

∫ x

0

(x − y)σ−1µyγ−σ−1(1 − y)
Γ(σ)

dy

≤
∫ x

0

(x − y)σ−1eλy[z(y)− ℓ(y)]∗

Γ(σ)
dy

= Iσ(eλy[z(y)− ℓ(y)]∗) ≤ 2µeλ

Γ(σ)
.

(32)

Thus, by (31) and (32), for any z ∈ P ∩ ∂Ω3 and x ∈ [a, b], one has

µaγ−σ−1(1 − b)e−λb ≤ z(x)− ℓ(x) ≤ 2µ, (33)

and
µΓ(γ − σ)

Γ(γ)
(1 − b)aγ−1 ≤ Iσ(eλy[z(y)− ℓ(y)]∗) ≤ 2µeλ

Γ(σ)
. (34)

Consequently, for any z ∈ P ∩ ∂Ω3, by (33), (34) and (G6), one has

||Tz|| ≥ max
x∈[0,1]T

| (Tz)(x)] |

= max
x∈[0,1]

∫ 1

0
G(x, y)

(
f (y, Iσ(eλx[z(y)− ℓ(y)]∗), [z(y)− ℓ(y)]∗)− g(y, [z(y)− ℓ(y)]∗) + h̄(y)

)
dy

≥
∫ b

a
G(a, y) f (y, Iσ(eλx[z(y)− ℓ(y)]∗), [z(y)− ℓ(y)]∗)dy

≥ 2µΓ(γ − σ)

aγ−σ(1 − b)γ−σ(b − a)

∫ b

a
G(a, y)dy

≥ 2µΓ(γ − σ)

aγ−σ(1 − b)γ−σ(b − a)

∫ b

a

aγ−σ−1(1 − a)e−λa(1 − y)γ−σ−1yeλy

Γ(γ − σ)
dy

≥ 2µ = ||z||,

i.e., ||Tz|| ≥ ||z|| for any z ∈ P ∩ ∂Ω3.
Next, take ε > 0 sufficiently small with

ε

(
eλ

Γ(σ)
+ 1
) ∫ 1

0

(1 − y)γ−σ−1yeλy

Γ(γ − σ)
dy < 1.

For the above ε and for any x ∈ [0, 1], by (G4), there exists N > 2µ > 0 such that

f (x, u, v) ≤ ε|u + v|, if |u + v| > N. (35)

Thus, (35) implies that if
∣∣Iσ(eλx[z(y)− ℓ(y)]∗)

∣∣+ |[z(y)− ℓ(y)]∗| > N holds, then
we have

f (y,Iσ(eλx[z(y)− ℓ(y)]∗), [z(y)− ℓ(y)]∗)dy

≤
∣∣∣Iσ(eλx[z(y)− ℓ(y)]∗) + [z(y)− ℓ(y)]∗

∣∣∣ε.
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It follows from (31) and (32) that

f (y,Iσ(eλx[z(y)− ℓ(y)]∗), [z(y)− ℓ(y)]∗)dy ≤
(

eλ

Γ(σ)
+ 1
)
||z||ε.

Take

R∗ =
κ
∫ 1

0

(1 − y)γ−σ−1yeλy

Γ(γ − σ)
(1 + h̄(y))dy + 2

∫ 1

0

(1 − y)γ−σ−1yeλy

Γ(γ − σ)
h̄(y)dy

1 − ε
(

eλ

Γ(σ) + 1
) ∫ 1

0

(1 − y)γ−σ−1yeλy

Γ(γ − σ)
dy

+ N,

where
κ = max

x∈[0,1]
|u+v|≤N

f (x, u, v) + 2.

Then, R∗ > N > 2µ.

Assume Ω4 = {z ∈ P : ||z|| < R∗} and ∂Ω4 = {z ∈ P : ||z|| = R∗}. Then, for any
z ∈ P ∩ ∂Ω4, one has

||Tu|| = max
x∈[0,1]

∫ 1

0
G(x, y)

(
f (y, Iσ(eλx[z(y)− ℓ(y)]∗), [z(y)− ℓ(y)]∗)− g(y, [z(y)− ℓ(y)]∗) + h̄(y)

)
dy

≤
∫ 1

0

(1 − y)γ−σ−1yeλy

Γ(γ − σ)

(
f (y, Iσ(eλx[z(y)− ℓ(y)]∗), [z(y)− ℓ(y)]∗) + 2h̄(y)

)
dy

≤

 max
x∈[0,1]

|u+v|≤N

f (x, u, v) + 2

 ∫ 1

0

(1 − y)γ−σ−1yeλy

Γ(γ − σ)
(1 + h̄(y))dy

+
∫ 1

0

(1 − y)γ−σ−1yeλy

Γ(γ − σ)
[ε

(
eλ

Γ(σ)
+ 1
)
||z||+ 2h̄(y)]dy

≤ κ
∫ 1

0

(1 − y)γ−σ−1yeλy

Γ(γ − σ)
(1 + h̄(y))dy + 2

∫ 1

0

(1 − y)γ−σ−1yeλy

Γ(γ − σ)
h̄(y)dy

+ ε

(
eλ

Γ(σ)
+ 1
) ∫ 1

0

(1 − y)γ−σ−1yeλy

Γ(γ − σ)
dyR∗ < R∗ = ||z||,

that is
||Tz|| ≤ ||z||, z ∈ P ∩ ∂Ω4.

Therefore, Lemma 8 ensures that T has one fixed point z ∈ P ∩ (Ω4 \ Ω3) satisfying

2µ ≤ ||z|| ≤ R∗.

We assert that z(x) ≥ ℓ(x), x ∈ [0, 1]. In fact, by (9) and z ∈ P, one gets

z(x)− ℓ(x) ≥ z(x)− µxγ−σ−1(1 − x)e−λx ≥ z(x)− µz(x)
||z|| ≥ 1

2
z(x)

≥ µxγ−σ−1(1 − x)e−λx > 0, x ∈ (0, 1).
(36)

Thus, Lemma 6 guarantees that u(x) = e−λx Iσ(eλx(z(x)− ℓ(x))) is a positive solution
of the singular sub-diffusion model with a changing-sign perturbation (3). Moreover,
similar to (30), there is a constant K > 0 such that

u(x) ≥ Ke−λxxγ−1
[

1 − γ − σ

γ
x
]

.
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4. Examples

Let
γ =

3
2

, σ =
1
2

, λ = 2,

we give four examples for the cases in which the main nonlinear term f is superlinear or
sublinear and the negative perturbation g may tend to negative infinity.

Example 1. Consider the singular superlinear sub-diffusion model with a changing-sign perturbation
− R

0 Dx
3
2 ,2u(x) = 2.1641 × 10−7

(
e2xu(x) + R

0 Dx
1
2 ,2u(x)

)2
x

1
2 (1 − x)

1
2 − 1

( 1
2 − x)

2
3

e

(
R
0 Dx

1
2 ,2u(x)

)2

+ 1

 ,

R
0 Dx

1
2 ,2u(0) = 0, R

0 Dx
1
2 ,2u(1) = 0.

(37)

Conclusion. The singular superlinear sub-diffusion model with a changing-sign perturba-
tion (37) has at least one positive solution u(x) with the following asymptotic property

u(x) ≥ 5.3736e−2xx
1
2

(
1 − 2

3
x
)

, x ∈ [0, 1].

Proof. Denote

f (x, u, v) = 2.1641 × 10−7(u + v)2x
1
2 (1 − x)

1
2 , g(x, v) =

1

( 1
2 − x)

2
3 (ev2 + 1)

.

It is clear that f : [0, 1] × [0,+∞) × (−∞,+∞) → [0,+∞) is continuous, and g :
[0, 1]×R → R satisfies the Crathèodory condition with

h̄(x) =
1

( 1
2 − x)

2
3

and

µ =
1

Γ(γ − σ)

∫ 1

0
h̄(y)dy =

∫ 1

0

1

( 1
2 − y)

2
3

dy = 6 × (
1
2
)

1
3 = 4.7622.

Thus, (G1)–(G3) are satisfied.
Now, we verify the condition (G5). Firstly, we have

κ =

(
1

Γ(γ − σ)
+ µ

)
eλ = (1 + µ)e2 = 43.5772.

Take r = 90 > max{85.1544, 9.5244} = 85.1544. Then, for any (x, u, v) ∈ [0, 1] ×
[0, r]× [0, reλ

Γ(σ) ] = [0, 1]× [0, 90]× [0, 375.1941], we have

f (x, u, v) = 2.1641 × 10−7(u + v)2x
1
2 (1 − x)

1
2 ≤ 2.1641 × 10−7

(
90 +

90e2

Γ( 1
2 )

)2

= 0.01

≤ r − 2κ

κ
=

90 − 85.1544
42.5772

= 0.1138,

i.e., (G5) is satisfied. Next, as

K =
Γ(γ − σ)µ

Γ(γ)
=

4.7622
Γ( 3

2 )
= 5.3736,
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one has

u(x) ≥ 5.3736e−2xx
1
2

(
1 − 2

3
x
)

, x ∈ [0, 1].

By Theorem 1, the singular superlinear sub-diffusion model involving the changing-
sign perturbation (37) has at least one positive solution u(x) satisfying

u(x) ≥ 5.3736e−2xx
1
2

(
1 − 2

3
x
)

, x ∈ [0, 1].

Example 2. Consider the sublinear sub-diffusion model with a changing-sign perturbation
− R

0 Dx
3
2 ,2u(x) = 3000

(
e2xu(x) + R

0 Dx
1
2 ,2u(x)

) 1
2 x

1
2 (1 − x)

1
2 − 1

( 1
2 − x)

2
3

e

(
R
0 Dt

1
2 ,2u(x)

)2

+ 1

 ,

R
0 Dx

1
2 ,2u(0) = 0, R

0 Dx
1
2 ,2u(1) = 0.

(38)

Conclusion. the sublinear sub-diffusion model involving the changing-sign perturbation
(38) has at least one positive solution u(x) satisfying

u(x) ≥ 5.3736e−2xx
1
2

(
1 − 2

3
x
)

, x ∈ [0, 1].

Proof. Denote

f (x, u, v) = 3000(u + v)
1
2 x

1
2 (1 − x)

1
2 , g(x, v) =

1

( 1
2 − x)

2
3 (ev2 + 1)

.

It is clear that f : [0, 1] × [0,+∞) × (−∞,+∞) → [0,+∞) is continuous, and g :
[0, 1]×R → R satisfies the Crathèodory condition with

h̄(x) =
1

( 1
2 − x)

2
3

and

µ =
1

Γ(γ − σ)

∫ 1

0
h̄(y)dy =

∫ 1

0

1

( 1
2 − y)

2
3

dy = 6 ×
(

1
2

) 1
3
= 4.7622.

Thus, (G1), (G2) and (G4) are satisfied.
Now, we verify the condition (G6). Take a compact interval [ 1

4 , 3
4 ] ⊂ (0, 1), then for any

(x, u, v) ∈ [a, b]× [µaγ−σ−1(1 − b)e−λb, 2µ]× [ µΓ(γ−σ)
Γ(γ) (1− b)aγ−1, 2µeλ

Γ(σ) ] = [ 1
4 , 3

4 ]× [4.7622×

( 1
4 )e

− 3
2 , 2 × 4.7622] × [ 4.7622

Γ( 3
2 )

( 1
4 )

3
2 , 2×4.7622e2

Γ( 1
2 )

] = [ 1
4 , 3

4 ] × [0.2657, 9.5244] × [0.6717, 39.7055],

we have

f (x, u, v) ≥ 3000 × (0.2657 + 0.6717)
1
2 × 1

4
= 703.05 ≥ 2µΓ(γ − σ)

aγ−σ(1 − b)γ−σ(b − a)
=

2 × 4.7622
1

64
= 609.5616.

Thus, (G6) holds.
In addition, we still have

K =
Γ(γ − σ)µ

Γ(γ)
=

4.7622
Γ( 3

2 )
= 5.3736.
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Consequently,

u(x) ≥ 5.3736e−2xx
1
2

(
1 − 2

3
x
)

, x ∈ [0, 1].

Then, by Theorem 2, the sublinear sub-diffusion model involving the changing-sign
perturbation (38) has at least one positive solution u(x) satisfying

u(x) ≥ 5.3736e−2xx
1
2

(
1 − 2

3
x
)

, x ∈ [0, 1].

Example 3. Consider the singular superlinear sub-diffusion model with a changing-sign perturbation
− R

0 Dx
3
2 ,2u(x) = f

(
x, eλxu(x), R

0 Dx
σ,λu(x)

)
− 1

3x
1
2

,

R
0 Dx

1
2 ,2u(0) = 0, R

0 Dx
1
2 ,2u(1) = 0,

(39)

where

f (x, u, v) =


(u + v)

1
2

1527.89
, (x, u, v) ∈ [0, 1]× [0, 25]× [0, 208.4462]

(u + v)2

5.4497 × 106 , x ∈ [0, 1], u > 25, v > 208.4462.

(40)

Conclusion. The singular superlinear sub-diffusion model with a changing-sign perturba-
tion (39) has at least one positive solution u(x) with the following asymptotic property

u(x) ≥ 0.7523e−2xx
1
2

(
1 − 2

3
x
)

, x ∈ [0, 1].

Proof. Let f (x, u, v) be as defined in (40) and

g(x, v) =
1

3x
1
2

.

Then, f : [0, 1]× [0,+∞)× (−∞,+∞) → [0,+∞) is continuous, and g : [0, 1]×R →
R satisfies the Crathèodory condition with

h̄(x) =
1

3x
1
2

and

µ =
1

Γ(γ − σ)

∫ 1

0
h̄(y)dy =

∫ 1

0

1

3y
1
2

dy =
2
3

.

Thus, (G1), (G2) and (G3) are satisfied.
Now, we verify the condition (G5). Firstly, we have

κ =

(
1

Γ(γ − σ)
+ µ

)
eλ = (1 + µ)e2 = 12.3153.

Choose r = 25 > max{24.6306, 4
3} = 24.6306. Then, for any (x, u, v) ∈ [0, 1]× [0, r]×

[0, reλ

Γ(σ) ] = [0, 1]× [0, 25]× [0, 208.4462], we have

f (x, u, v) =
(u + v)

1
2

1527.89
≤ 0.01 ≤ r − 2κ

κ
=

25 − 24.6306
12.3153

= 0.03,



Axioms 2024, 13, 264 17 of 20

which implies that (G5) holds.
Next, as

K =
Γ(γ − σ)µ

Γ(γ)
=

2
3

Γ( 3
2 )

= 0.7523,

one has

u(x) ≥ 0.7523e−2xx
1
2

(
1 − 2

3
x
)

, x ∈ [0, 1].

By Theorem 1, the singular superlinear sub-diffusion model involving the changing-
sign perturbation (39) has at least one positive solution u(x) satisfying

u(x) ≥ 0.7523e−2xx
1
2

(
1 − 2

3
x
)

, x ∈ [0, 1].

Example 4. Consider the singular sub-linear sub-diffusion model with a changing-sign perturbation
− R

0 Dx
3
2 ,2u(x) = 3000e

− 1
eλxu(x)+R

0 Dxσ,λu(x) − 1

(1 − x)
2
3

,

R
0 Dx

1
2 ,2u(0) = 0, R

0 Dx
1
2 ,2u(1) = 0.

(41)

Conclusion. The singular sublinear sub-diffusion model with a changing-sign perturbation
(41) has at least one positive solution u(x) with the following asymptotic property

u(x) ≥ 3.3852e−2xx
1
2

(
1 − 2

3
x
)

, x ∈ [0, 1].

Proof. Let
f (x, u, v) = 3000e−

1
u+v , g(x, v) =

1

(1 − x)
2
3

.

Then, f : [0, 1]× [0,+∞)× (−∞,+∞) → [0,+∞) is continuous, and g : [0, 1]×R →
R satisfies the Crathèodory condition with

h̄(x) =
1

(1 − x)
2
3

and

µ =
1

Γ(γ − σ)

∫ 1

0
h̄(y)dy =

∫ 1

0

1

(1 − y)
2
3

dy = 3.

Thus, (G1), (G2) and (G4) are satisfied.
Now, we verify the condition (G6). Take a compact interval [ 1

4 , 3
4 ] ⊂ (0, 1), then

for any (x, u, v) ∈ [a, b]× [µaγ−σ−1(1 − b)e−λb, 2µ]× [ µΓ(γ−σ)
Γ(γ) (1 − b)aγ−1, 2µeλ

Γ(σ) ] = [ 1
4 , 3

4 ]×

[ 3
4 e−

3
2 , 6]× [ 3

Γ( 3
2 )
( 1

4 )
3
2 , 6e2

Γ( 1
2 )
] = [ 1

4 , 3
4 ]× [0.1673, 6]× [0.4232, 25.0121], we have

f (x, u, v) = 3000e−
1

u+v ≥ 3000 × 0.1839 = 551.7 ≥ 2µΓ(γ − σ)

aγ−σ(1 − b)γ−σ(b − a)
=

6
1

64
= 384.

Thus, (G6) holds.
In addition, we still have

K =
Γ(γ − σ)µ

Γ(γ)
=

3
Γ( 3

2 )
= 3.3852.
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Consequently,

u(x) ≥ 3.3852e−2xx
1
2

(
1 − 2

3
x
)

, x ∈ [0, 1].

Then, by Theorem 2, the sublinear sub-diffusion model involving the changing-sign
perturbation (41) has at least one positive solution u(x) satisfying

u(x) ≥ 3.3852e−2xx
1
2

(
1 − 2

3
x
)

, x ∈ [0, 1].

5. Conclusions

In anomalous diffusion, the mean square variance sometimes grows faster to create a
super-diffusion and sometimes spreads slower to form sub-diffusion than in the Gaussian
process. The anomalous sub-diffusion in Brownian motion can be modeled by tempered
fractional diffusion equation. This paper focused on a singular tempered sub-diffusion
fractional equation involving a changing-sign perturbation and lower-order sub-diffusion
term of unknown functions. By employing multiple transformations, the changing-sign
singular perturbation problem was converted to a positive problem, and then some suffi-
cient conditions for the existence of positive solutions of the problem and the asymptotic
properties of solution were derived by employing the fixed-point theorem. In particular,
the singular perturbation term only satisfies the Carathéodory condition, which makes the
disturbance influence to be significant and even achieve the negative infinity near some
time singular points. Thus, our main results can be applied to handle some changing-sign
anomalous sub-diffusion models. However the problem for the case where changing-sign
perturbation does not satisfy the Carathéodory condition still remains an open problem for
further research. In future work, we will continue to focus on the existence of solutions for
other types of changing-sign problems.
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