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Abstract: Let µ be a self-similar measure with compact support K. The Hausdorff dimension of
K is α. The Cauchy transform of µ is denoted by F(z). For 0 < β < 1, we define the function
F[β], which compares with the fractional derivative of F of order β. Let Φ(z) = F(1/z), |z| < 1. In
this paper, we prove that Φ[β] belongs to Ap for 0 < p < 1/(β + 1), and (Φ′)[β] belongs to Ap for
1 ≤ p < 1/β ≤ 1/(2 − α), where Ap is the Bergman space. At the same time, we give a value
distribution property of F, which is similar to the big Picard theorem.
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1. Introduction

The notion of fractals was proposed by Mandelbrot in the 1970s [1]. Soon, the im-
portance of fractals was recognized in many areas of science. In mathematics, a new area
called fractal geometry developed quickly on the basis of geometric measure theory, har-
monic analysis, dynamical systems and so on. For the aspects of harmonic analysis, the
Fourier transform of fractal measures has been investigated by Strichartz [2–6]. For the
complex case, more consideration has been given to the Cauchy transform of self-similar
measures. The Cauchy transform of a measure in the complex plane C plays an important
role in geometric measure theory [7–10]. The study of this transform can be traced back
to that of the Cauchy-type integral, which is fundamental in the study of boundary-value
problems for analytic functions. Let µ be a self-similar measure with compact support
K. The Cauchy transform of µ is defined by F(z) =

∫
K(z − ω)−1dµ(ω). In [10], Stricharz

et al. studied the Cauchy transform of a self-similar measure µ with compact support K.
From numerical data and computer graphics, they considered the Hölder continuity and
analyticity of F(z) intuitively. In [11–15], Dong and Lau intensively studied the geometric
and analytic properties of F. The precise growth rates of the Laurent coefficients of such F
were obtained, and the asymptotic behavior of the coefficients was also discussed in [11].
The geometric properties of F away from K, such as univalence, starlikeness and convexity,
were investigated in [14]. Since F is analytic at zero, F has a Taylor expression near zero.
The asymptotic behavior of the Taylor coefficients of F was studied in [16,17].

An iterated function system (IFS) consists of a family of contraction mappings, which
can represent many fractals that are made up of small images of themselves. For an IFS
{Sj}m

j=1 on X ⊂ Rn, in [18], it is proven that there exists a unique non-empty compact set K
that satisfies K = ∪m

j=1Sj(K). K is called the attractor of the IFS. In this paper, we focus on
the following IFS:
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Sj(z) = ε j +
1
2
(z − ε j), (1)

where ε j = e2jπi/3, j = 0, 1, 2. The attractor of the IFS in (1) is denoted by K, i.e., the unique
compact set satisfying K = ∪2

j=0Sj(K). Then, K ⊂ {z : |z| ≤ 1}, and K is the Sierpinski
gasket (Figure 1). The Cauchy transform F(z) of the self-similar measure associated with
the IFS was studied by Stricharz et al. in [10]. They proposed several conjectures of F, and
these conjectures were partly resolved in [12,13,15]. The Hardy space properties of F were
investigated in [19]. In this paper, we consider the Bergman space and multiplier properties
of F[β], which compares with the fractional derivative of F of order β, and prove a value
distribution property of F.
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Figure 1. Sierpinski gasket.

2. Preliminaries

In this section, some necessary notations and results are given first. The IFS in (1)
satisfies the open-set condition: there exists an open set U such that ∪N

j=1Sj(U) ⊂ U, and
Si(U) ∩ Sj(U) = ∅ if i ̸= j. The Hausdorff dimension of the attractor K of this IFS is
α = log 3/ log 2. Hutchinson [20] has proven that there exists a unique probability measure
µ with compact support K such that

µ =
1
3

2

∑
j=0

µ ◦ S−1
j , (2)

and µ is the restriction of the normalized α-dimensional Hausdorff measure on K.
Theorem 2.1 in [10] proves that the measure µ is α-uniform, i.e., µ(E) ≤ Cdiam(E)α

for E ⊂ C, where C is an absolute positive constant. Notice that µ is a Hausdorff measure.
Therefore, it behaves nicely under translations and dilations: for E ⊂ C, z0 ∈ C, 0 < t < ∞,
there exist µ(E + z0) = µ(E) and µ(tE) = tαµ(E) [18]. The Cauchy transform of µ is

F(z) =
∫

K

dµ(w)

z − ω
. (3)

Let Tj = eπi(SjK − 1), j = 0, 1, 2. And let

A0 =
⋃

n∈Z
2n(T1 ∪ T2).

This is called the “Sierpinski cones” (Figure 2). For ℓ = 1, · · · , 5, let Aℓ = eℓπi/3 A0. We
define auxiliary functions Gℓ(z) by

Gℓ(z) = z2−α
∫

Aℓ

dµ(ω)

ω(z − ω)
,
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where zα is the principal branch. It is easily seen that Gℓ(2z) = Gℓ(z) by the basic property
of the Hausdorff measure.

o A0

Figure 2. Sierpinski cones.

In [11], it is proven that F is analytic in C \K, with F(∞) = 0, and three-fold symmetric,
with F(e2πi/3z) = e−2πi/3F(z), and

F(
1
z
) = z +

∞

∑
n=1

a3n+1z3n+1, |z| < 1,

where a3n+1 =
∫

K ω3ndµ(ω). A function f analytic in D has the Taylor series expansion
f (z) = ∑∞

n=0 anzn. The concept of the fractional derivative of f can be described in different
ways. For 0 < β < 1, Hadamard defined the fractional derivative of f of order β by

f (β)(z) = z−β
∞

∑
n=0

Γ(n + 1)
Γ(n + 1 − β)

anzn, |z| < 1,

where Γ denotes the gamma function. Hardy and Littlewood [21] described some properties
of f (β)(z). MacGregor et al. [22] defined the function f [β](z) by

f [β](z) =
∞

∑
n=0

Γ(n + 1 + β)

Γ(n + 1)
anzn, |z| < 1.

As shown in [22], it is known that the sequences

Γ(n + 1 + β)

Γ(n + 1)
and

Γ(n + 1)
Γ(n + 1 − β)

have asymptotic expansions nβ ∑∞
k=0 ck/nk, with c0 ̸= 0. Therefore, certain properties of

f [β] are equivalent to those of f (β).
Let g(z) = ∑∞

n=0 bnzn be an analytic function in D. It is well known that the Hadamard
product of f and g is defined by ( f ∗ g)(z) = ∑∞

n=0 anbnzn. Noting that

1
(1 − z)β

=
∞

∑
n=0

Γ(n + β)

Γ(n + 1)Γ(β)
zn, |z| < 1,

one can find that f [β] is the Hadamard product of f with the function

φ(z) =
Γ(β + 1)
(1 − z)β+1 , z ∈ D.

MacGregor et al. considered the boundary limits of f [β] and the limits of f [β] of composi-
tions. See [22–24].
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3. Fractional Derivatives of F(z)

Let Φ(z) = F( 1
z ). Thus, Φ(z) is analytic in D. In this section, we will study the

Bergman space property of Φ[β](z). For a function f analytic in the unit disk D, the integral
means are defined by

Mp(r, f ) =
( 1

2π

∫ 2π

0
| f (reiθ)|pdθ

)1/p
, 0 < p < ∞.

It is well known that the Hardy space [25] Hp consists of analytic functions f in D such that

∥ f ∥Hp =
( 1

2π

∫ 2π

0
| f (eiθ)|pdθ

)1/p
= sup

0≤r<1
Mp(r, f ) < ∞, 0 < p < ∞.

H∞ is the class of bounded analytic functions in D. For the theory of Hardy spaces,
see [24]. The Bergman space [26] Ap consists of all functions f analytic in D for which the
normalized area integral

∫
D | f (z)|pdA(z) is finite, where dA(z) = 1

π dxdy. The norm of a
function f ∈ Ap is defined by

∥ f ∥Ap =
{ ∫

D
| f (z)|pdA(z)

}1/p
, 0 < p < ∞.

Hp and Ap have many similar properties, and they have the inclusion Hp ⊂ A2p for
0 < p < ∞. In some respects, functions in the Bergman space behave better. See [26,27].
For recent developments in Bergman spaces, the reader can consult [28–32] and refer-
ences therein.

Theorem 1. For 0 < p < 1/(β + 1), Φ[β] ∈ Ap.

Proof. Firstly, we will show that the Hadamard product of f and g has another inte-
gral form,

( f ∗ g)(reiθ) =
1

2π

∫ 2π

0
f (
√

reit)g(
√

rei(θ−t))dt, (4)

where f and g are analytic in D. In fact,

1
2π

∫ 2π

0
f (
√

reit)g(
√

rei(θ−t))dt

=
1

2π

∫ 2π

0

( ∞

∑
n=0

anrn/2eint
)( ∞

∑
n=0

bnrn/2ein(θ−t)
)

dt

=
∞

∑
n=0

1
2π

∫ 2π

0

( n

∑
k=0

akbn−krn/2ei(n−k)θei(2k−n)t
)

dt

=
∞

∑
n=0

anbnzn.

In terms of integral means, Φ[β] ∈ Ap is equivalent to
∫ 1

0 {Mp(r, Φ[β])}prdr < ∞. Indeed,

π∥Φ[β]∥p
Ap =

∫ 2π

0

∫ 1

0
|Φ[β](reiθ)|prdrdθ = 2π

∫ 1

0
{Mp(r, Φ[β])}prdr.

Next, we will prove that the integral
∫ 1

0 {Mp(r, F[β])}prdr is finite. From Theorem 2.1 in [10],
we see that F(z) is bounded on C. Using (4), for r < 1, we obtain
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|Φ[β](reiθ)| =
∣∣∣ 1
2π

∫ 2π

0

Φ(
√

reit)

Γ(β + 1)(1 −
√

rei(θ−t))β+1
dt
∣∣∣

≤ C
∫ 2π

0

dt
|eit −

√
reiθ |β+1

= C
∫ 2π

0

dt
(1 + r − 2

√
r cos(t − θ))(β+1)/2

≤ C′

(1 −
√

r)β+1 ,

where C and C′ are positive constants. Hence,

∫ 1

0
{Mp(r, Φ[β])}prdr =

1
2π

∫ 1

0

( ∫ 2π

0
|Φ[β](reiθ)|pdθ

)
rdr ≤ Cp

∫ 1

0

r3dr
(1 − r)p(β+1)

.

The last integral is convergent for 0 < p < 1/(β + 1). The result follows.

Theorem 2. For 1 ≤ p < 1/β ≤ 1/(2 − α), (Φ′)[β](z) ∈ Ap.

Proof. By (4) and the Hölder inequality, one can have

Mp(r, f ∗ g) = Mp(
√

r, f )M1(
√

r, g), p ≥ 1.

It follows that ∫ 1

0

{
Mp(r, (Φ′)[β])

}p
rdr

=
∫ 1

0

{
Mp(r, Φ′ ∗ φ)

}p
rdr

≤
∫ 1

0
{Mp(

√
r, Φ′)}p{M1(

√
r, φ)}prdr. (5)

Next, we will consider Mp(
√

r, Φ′). We denote positive constants by C, C1, C2, · · · . For
fixed z ∈ C \ K, let d = dist(z, K) and En = {w ∈ K : 2nd ≤| w − z |< 2n+1d}, n ≥ 0. Since
µ is α-uniform, there exists a positive constant C1 such that µ(En) ≤ C1(2n+2d)α. Thus,

|F′(z)| ≤
∞

∑
n=0

∫
En

dµ(w)

|z − w|2
≤

∞

∑
n=0

∫
En

dµ(w)

22nd2

≤
∞

∑
n=0

C1(2n+2d)α

22nd2 ≤ 4αC1dα−2
∞

∑
n=0

2(α−2)n

= C2dα−2. (6)

Notice that Φ(z) is analytic in C \ K, and Φ′(eiθ) is well defined for θ /∈ {ε j}2
j=0. The

symmetry of µ and K with respect to the real axis gives

∫ π

−π
|Φ′(eiθ)|pdθ = 3

∫ π/3

−π/3
|Φ′(eiθ)|pdθ = 6

∫ 0

−π/3
|Φ′(eiθ)|pdθ.

Using (6), for −π/3 < θ < 0, geometric considerations show that

|Φ′(eiθ)| ≤ C2dist(e−iθ , K)
α−2 ≤ C3|θ|α−2.
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Hence, for 0 < p < 1/(2 − α), we obtain

∫ π

−π
|Φ′(eiθ)|pdθ ≤ C4

∫ π/3

0
θp(α−2)dθ < +∞.

It follows that

∥Φ′∥Hp = sup
0≤r<1

Mp(r, Φ′) < ∞, 0 < p < 1/(2 − α). (7)

With (5) and (7), we obtain∫ 1

0

{
Mp(r, (Φ′)[β])

}p
rdr

≤ ∥Φ′∥Hp

∫ 1

0
Mp

1 (r, φ)rdr

= ∥Φ′∥Hp

∫ 1

0

{ 1
2π

∫ 2π

0

dθ

Γ(β + 1)|1 −
√

reiθ |β+1

}p
rdr (8)

for 1 ≤ p < 1/(2 − α). Since∫ 2π

0
|1 −

√
reiθ |−(β+1)dθ = O

(
(1 −

√
r)−β

)
, r −→ 1,

by (8), we have ∫ 1

0

{
Mp(r, (Φ′)[β])

}p
rdr ≤ C

∫ 1

0

rdr
(1 −

√
r)pβ

.

From the above inequality, it is easy to see that (Φ′)[β](z) ∈ Ap for 1 ≤ p < 1/β ≤
1/(2 − α). The proof is complete.

Below, let us end this section with a multiplier property of Φ[β](z). We denote the set
of complex-valued Borel measures on T = {z : |z| = 1} by Λ. For each λ > 0, let Fλ denote
the family of functions h having the property that there exists a measure µ ∈ Λ such that

h(z) =
∫
T

dµ(ζ)

(1 − ζz)λ
, |z| < 1, (9)

where the logarithm takes the principal branch. For h ∈ Fλ, let

∥h∥Fλ
= inf{∥µ∥ : µ ∈ Λ such that (9) holds},

where ∥µ∥ denotes the total variation in the measure µ. With this norm, Fλ is a Banach
space. Macgregor introduced the spaces Fλ in [33,34]. Several properties of functions in
Fλ were derived in [35,36]. A multiplier of Fλ is an analytic function υ(z) in D such that
υ(z)h(z) ∈ Fλ for all h ∈ Fλ. The family of all such multipliers is denoted by Mλ. For
υ ∈ Mλ, let

∥υ∥Mλ
= sup{∥υh∥Fλ

: h ∈ Fλ, ∥h∥Fλ
≤ 1}.

With this norm, Mλ is a Banach space. The family Mλ has been studied in [35–37], including
the following theorem.

Theorem 3 ([36]). Let f (z) = ∑∞
n=0 anzn for |z| < 1. If ∑∞

n=0 n1−λ|an| < ∞ for 0 < λ < 1,
then f ∈ Mλ.

Theorem 4. For 0 < λ < 1, if β + λ > 2 − α, then Φ[β] ∈ Mλ.
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Proof. Note that Φ(z) = z + ∑∞
n=1 a3n+1z3n+1 and

Φ[β](z) =
∞

∑
n=0

Γ(n + 1 + β)

Γ(n + 1)
anzn.

From [38] (p. 79), the inequality

1
(n + 1)1−s ≤ Γ(n + 1 + β)

Γ(n + 1)
≤ 1

n1−s , 0 ≤ s ≤ 1,

holds. And according to [11] (Theorem 1.2), for n ≥ 1, there exists a positive constant C
such that nα|an| ≤ C. Then,

n1−λ
∣∣∣Γ(n + 1 + β)

Γ(n + 1)
an

∣∣∣ ≤ C(n + 1)βn1−λ

nα
=

C(n + 1)β

nα+λ−1 .

The series ∑∞
n=1(n + 1)β/nα+λ−1 is convergent for β + λ > 2 − α. The result follows from

Theorem 3.

4. A Value Distribution Property

The big Picard theorem shows that if z0 ∈ C is an isolated essential singularity of an
analytic function f , then for any neighborhood of z0, f assumes every complex number
infinitely many times, with, at most, one exception. The Picard theorem can be easily
derived from Nevanlinna’s second main theorem, which is an important result in value
distribution theory. For more about value distribution theory and its application, see [39,40].
For k ∈ N+ and 1 ≤ m ≤ 2k − 1, let

zk,m =
m
2k ε1 + (1 − m

2k )ε2 = −1
2
+

m − 2k−1

2k

√
3i.

In this section, we will prove a similar result for F around the non-analytic points zk,m. For
0 < θ ≤ π/2, let Ω(θ) = {z : | arg z − π| < θ}. We need the following lemma.

Lemma 1 ([15]). For any zk,m, there exists a function G = G1 + G5 such that

F(z + zk,m) = F(zk,m) + G(z)zα−1 + zPk,m(z), 0 < arg z < 2π,

where G is continuous on C \ {0} and analytic in Ω(π/2), and for 0 ≤ arg z < 2π, G(2z) =
G(z); Pk,m is bounded continuous on C and analytic in Ω(π/2) ∪ {z : |z| < 3/2k+1}.

For 0 < ϵ < 1/6 and δ > 0, we write

Aδ(ϵ) = {z : | arg z| < (
1
6
− ϵ)π, 0 < |z| < δ}

and
A∗

δ(ϵ) = {z : | arg z| ≤ (
1
6
− ϵ)π, 0 < |z| < δ}.

We define the function

Fzk,m(z) :=
F(z + zk,m)− F(zk,m)

zα−1 ,

where zα is the principal branch.

Theorem 5. For each ω ∈ G(A∞(ϵ)) and any δ > 0, there exist infinitely many z ∈ Aδ(ϵ) such
that Fzk,m(z) = ω. Moreover,

G(A∗
∞(ϵ)) =

⋂
δ>0

Fzk,m(Aδ(ϵ)). (10)
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Proof. To begin with, we prove that for each ω0 ∈ G(A∞(ϵ)), the function Fzk,m(z)− ω0
has at least one zero inside Aδ(ϵ) for any δ > 0.

Let z0 ∈ A∞(ϵ) satisfy G(z0) = ω0. By the uniqueness theorem, for some ρ > 0, there
exists a disk Dρ(z0) = {z : |z − z0| ≤ ρ} ⊂ Aδ(ϵ) such that

min
z∈∂Dρ(z0)

|G(z)− ω0| = τ > 0. (11)

For all z ∈ Dρ(z0), we choose a positive constant R satisfying |z| < R. By Lemma 1, there
exists δ1 ∈ (0, δ) such that

|Fzk,m(z)− G(z)| = |z2−αPk,m(z)| <
τ

2
, ∀ z ∈ Aδ1(ϵ). (12)

For δ1 > 0, there exists a positive integer N such that 2−N R < δ1. Let

DN := 2−N Dρ(z0) ⊂ Aδ(ϵ).

Then,
min

z∈∂Dρ(z0)
|G(z)− ω0| = min

z∈∂D1
|G(2Nz)− ω0|.

Due to G(2z) = G(z) for 0 ≤ arg z < 2π, from (11) and (12), we conclude that

|(Fzk,m(z)− ω0)− (G(z)− ω0)| <
τ

2
< |G(2Nz)− ω0| = |G(z)− ω0|, z ∈ DN .

By Rouche’s theorem, the functions Fzk,m(z)− ω0 and G(z)− ω0 have the same number of
zeros inside DN . Noting that G(2−Nz0)− ω0 = G(z0)− ω0 = 0 and 2−Nz0 ∈ DN , we find
that Fzk,m(z)− ω0 has at least one zero inside DN ⊂ Aδ(ϵ). Since δ is arbitrary, this implies
that the function Fzk,m(z)− ω0 must have an infinite number of zeros inside Aδ(ϵ).

The above shows that G(A∞(ϵ)) ⊆ Fzk,m(Aδ(ϵ)) for any δ > 0 and 0 < ϵ < 1/6.
The continuity of G(z) implies that G(A∗

∞(ϵ)) ⊆ Fzk,m(Aδ(ϵ)). Then, one side of the set
inclusion in (10) follows. Next, we will prove the reverse inclusion. The multiplicative
periodicity of G(z) yields the following:

G(A∗
∞(ϵ)) = G({z : | arg z| ≤ (

1
6
− ϵ)π, 1 ≤ |z| ≤ 2}).

Then, G(A∗
∞(ϵ)) is a compact set by continuity. From Lemma 1, for | arg z| < π, there exists

an absolute constant C > 0 such that

|Fzk,m(z)− G(z)| ≤ C|z|2−α. (13)

For arbitrary σ > 0, we choose δ > 0 satisfying Cδ2−α < σ. If z ∈ Aδ(ϵ), then Fzk,m(z) ∈
G(A∗

∞(ϵ))σ by (13), where G(A∗
∞(ϵ))σ is the σ—parallel body of G(A∗

∞(ϵ)). It follows that

Fzk,m(Aδ(ϵ)) ⊆ G(A∗
∞(ϵ))σ for all 0 < δ < (σC−1)

1
2−α . (14)

Since G(A∗
∞(ϵ))σ is a compact set, using (14), we find that⋂

δ>0

Fzk,m(Aδ(ϵ)) ⊆ G(A∗
∞(ϵ))σ, σ > 0.

It is easy to see that ⋂
δ>0

Fzk,m(Aδ(ϵ)) ⊆
⋂

σ>0
G(A∗

∞(ϵ))σ = G(A∗
∞(ϵ)).

The proof is complete.
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Remark 1. If we let

Aδ(ϵ) = {z : (
1
2
+ ϵ)π < arg z < (

3
2
− ϵ)π, 0 < |z| < δ}

and
A∗

δ(ϵ) = {z : (
1
2
+ ϵ)π ≤ arg z ≤ (

3
2
− ϵ)π, 0 < |z| < δ},

the analogous argument to the above yields the same results for the dyadic points zk,m.

5. Conclusions

In this article, we focus on the Cauchy transform of the self-similar measure on the
Sierpinski gasket. We prove that Φ[β] and (Φ′)[β] belong to some Bergman space, where Φ[β]

compares with the fractional derivative of the function Φ of order β. In addition, we give a
value distribution property of F. One can further investigate other analytic properties, such
as coefficient estimates, univalence, etc. This topic intersects fractal geometry and geometric
function theory. Different from the Cauchy transform of a common measure, the Cauchy
transform of a self-similar measure has much more fractal behavior. As is shown in [10]
through computer graphics, the image of such a transform is chaotic but regular near the
Sierpinski gasket. This is different from the properties in classical analytic function theory
and make it possible to construct some unexpected counter examples during one’s research.
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