
Citation: Mascia, C.; Moschetta, P.;

Simeoni, C. Numerical Investigation

of Some Reductions for the

Gatenby–Gawlinski Model. Axioms

2024, 13, 281. https://doi.org/

10.3390/axioms13050281

Academic Editor: Giuseppe

Viglialoro

Received: 20 February 2024

Revised: 15 April 2024

Accepted: 16 April 2024

Published: 23 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Numerical Investigation of Some Reductions for the
Gatenby–Gawlinski Model
Corrado Mascia1,*,† , Pierfrancesco Moschetta 2,† and Chiara Simeoni 3,†

1 Dipartimento di Matematica G. Castelnuovo, Sapienza Università di Roma, Piazzale Aldo Moro 2,
00185 Rome, Italy

2 Convitto Nazionale G.B. Vico, Corso Marrucino, 135, 66100 Chieti, Italy;
pierfrancescomoschetta.docente@convittogbvico.edu.it

3 Laboratoire de Mathématiques J.A. Dieudonné CNRS UMR 7351, Université Côte D’Azur, Parc Valrose,
06108 Nice Cedex 2, France; chiara.simeoni@univ-cotedazur.fr

* Correspondence: corrado.mascia@uniroma1.it; Tel.: +39-06-4991-3203
† These authors contributed equally to this work.

Abstract: Two (consecutive) reductions of the complete Gatenby–Gawlinski model for cancer in-
vasion are proposed in order to investigate the mathematical framework, mainly from a compu-
tational perspective. After a brief overview of the full model, we proceed by examining the case
of a two-equations-based and one-equation-based reduction, both obtained by means of a quasi-
steady-state assumption. We focus on invasion fronts, exploiting a numerical strategy based on a
finite volume approximation, and perform corresponding computational simulations to study the
sharpness/smoothness of the traveling waves. Then, we employ a space-averaged wave speed
estimate—referred to as the LeVeque–Yee formula—to quantitatively approach the propagation
phenomenon. Concerning the one-equation-based model, we propose a scalar degenerate reaction-
diffusion equation, which proves to be effective in order to qualitatively recover the typical trends
arising from the Gatenby–Gawlinski model. Finally, we carry out some numerical tests in a specific
case where the analytical solution is available.

Keywords: Warburg effect; acid-mediated tumor invasion; reaction-diffusion systems; traveling
fronts; wave speed estimate; finite volume method; data analysis

MSC: 35K57; 35Q92; 35C07; 65M06; 65M08; 92C37

1. Introduction

The contribution of mathematical modeling as an effective investigation tool in the
biomedical field is becoming more and more relevant to the present time. Cancer research
undoubtedly provides several interesting research paths, whose mathematical exploration
is currently taking place on the back of promising results [1]. In this scenario, the so-called
Warburg effect [2,3] plays a significant role within the phenomenological framework, which
is worth carefully examining in order to accomplish a better understanding of the dynamics
that tumor growth is ruled by. In the 1920s, Otto Warburg [2] experimentally determined
that cancerous cells essentially rely on the glycolytic metabolism, regardless of oxygen
availability. As a matter of fact, oxygen turns out to be the principal resource to allow
normal cells to perform glucose metabolism, due to the best yield of adenosine triphosphate
(ATP) production using oxidative phosphorylation. On the other hand, tumor cells appear
to lean more towards glycolysis, leading to lactic acid fermentation. This is crucial for the
so-termed acid-mediated invasion hypothesis [4–10], whose key point consists in assuming
that acidification induced by lactic acid sets up a toxic microenvironment for normal cells
and favors cancer cells spreading.
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From a mathematical point of view, all these qualitative statements are properly framed
by the Gatenby–Gawlinski reaction-diffusion model [11], the investigation of which has
been carried out following both numerical and analytical approaches [11–15]. Essentially,
the model describes tumor cell proliferation at the expense of local healthy tissue, utilizing
the framework of species evolution and assuming that carcinogenesis has already occurred.
The focal point is the interaction involving cancerous and healthy species at the tumor–host
interface, through lactic acid mediation.

The main purpose of this article concerns achieving a better understanding of the
mathematical features the model is characterized by, specifically employing a suitable
hypothesis for building some model reductions, following from what was previously
introduced in [15] for the one-dimensional case. By means of numerical simulations, the
traveling waves phenomenon is analyzed with an emphasis on the qualitative structure of
the fronts.

The contents of this paper are organized as follows: In Section 2, a brief overview
on the general form of the Gatenby–Gawlinsky model is provided, along with the two-
equations reduction previously proposed in [15]. Afterwards, an investigation of the
fronts is carried out by means of numerical simulations and a sensitivity analysis with
respect to some system parameters is also performed, considering as unknown the wave
speed of the front. For this goal, a suitable space-averaged wave speed approximation is
taken into account [16]. Section 3 is aimed at building a one-equation-based reduction,
theoretically framed in the degenerate reaction-diffusion equations field [17–22]. The de-
generate diffusion arising from the model reduction is almost everywhere differentiable
in [0, 1] so that the sharpness of the fronts is to be checked by means of numerical simula-
tions, due to the requirement for more regularity needed by the corresponding analytical
results [17,18,20,21]. Moreover, numerical simulations are performed in order to qualita-
tively retrieve the dynamics represented by the Gatenby–Gawlinski model and several
tests are carried out involving the related exact solution when its availability is ensured.
Finally, in Section 4, we discuss the conclusions of the manuscript and provide perspectives
on future research.

2. Two-Equations-Based Model Reduction

A natural approach for reducing some evolution equation (when it is too complicated)
with the aim of providing a rigorous analytic basis for a simpler model is based on the
so-called quasi-steady-state assumption (QSSA).

Starting from chemical kinetic modeling—specifically, from Michaelis–Menten enzyme
kinetics—the QSSA has now become a cornerstone. In general, the approach is based on
two consecutive steps:

1. finding the time-scales that are pertinent to the model (usually, this should be deter-
mined by looking at the size of the parameters);

2. substituting a sub-group of the evolution equations with the corresponding equilib-
rium relation.

Next, we apply the method to the above model to move from a model with three vari-
ables to a corresponding one reduced to two variables. Later, we will iterate the same
procedure to pass from a 2 × 2 system to a scalar reaction-diffusion equation. The key role
played by the model parameters in finding a reliable reduction is made clear.

2.1. Derivation and Previous Achievements

The original Gatenby–Gawlinski model [11] is composed of three equations (two PDEs
plus one ODE) that are chosen to be non-dimensional, so that we obtain the system
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∂u
∂t

= u(1 − u)− duw

∂v
∂t

= rv(1 − v) + D
∂

∂x

[
(1 − u)

∂v
∂x

]
∂w
∂t

= c(v − w) +
∂2w
∂x2 ,

(1)

where the interval [−1, 1] is the one-dimensional domain, with t ≥ 0, while u, v, and w
are the unknown scaled functions, which stand for the healthy tissue density, the tumor
tissue density, and the extracellular lactic acid concentration in excess, respectively (see [14]
for a generalized version). The densities u and v follow logistic growth with normalized
carrying capacities, d is a death rate proportional to w, which relates to reproducing
healthy cell degradation brought on by lactic acid, while r is a growth rate. With regard
to the second equation, it is important to note the structure of the degenerate diffusion
term, in which D is the diffusion constant for cancerous cells when the healthy tissue has
already been degraded; however, when the local healthy cells concentration is equal to its
normalized ceiling, the tumor cannot spread out as a consequence of a defense process of
confinement [11,20]. Finally, the parameter c plays the role of both a growth rate for acid
production (proportional to v) and a physiological reabsorption rate. For the boundary
conditions, the homogeneous Neumann problem is set out.

With respect to the dynamics provided by (1), essentially, the results can be condensed
through two different kinds of behaviors [11,14,15], both being framed within the propa-
gating fronts theory. The first, which happens in the regime d < 1, is called heterogeneous
invasion because of the coexistence of tumor and healthy tissues behind the wave front; if,
instead, d > 1, we face a more aggressive invasion, so-called homogeneous invasion, due to
the complete destruction of the healthy tissue by the cancerous cells wave front. In this
last regime, we identify the presence of a tumor–host hypocellular interstitial gap, namely, a
separation zone between the healthy and cancer cell densities.

Information about the wave speed is an object of analysis as well, showing that, consis-
tent with its more aggressive nature, homogeneous invasion turns out to happen faster than
heterogeneous invasion. Nevertheless, the existence of invasion fronts for the Gatenby–
Gawlinski reaction-diffusion model is supported mainly by numerical experiments (among
others, see [14,15]), while to our knowledge, rigorous mathematical results are still lacking
(see [13] for a partial result based on a singular perturbation approach).

As far as the possibility of relying on a simplified version of the model (1) is concerned,
we take advantage of what has been proposed in [15] and afterwards try to go further. The
assumption allowing a two-equations-based reduction is w = v, which leads to

∂u
∂t

= u(1 − u)− duv

∂v
∂t

= rv(1 − v) + D
∂

∂x

[
(1 − u)

∂v
∂x

]
.

(2)

The hypothesis w = v is justified considering the limit as the parameter c in the third
equation of the complete model (1) approaches infinity.

With regards to the qualitative aspect, the simplified model accomplishes the pur-
pose of correctly reproducing both the heterogeneous and homogeneous configurations,
although the gap formation is no longer observable. Indeed, in order to detect this phe-
nomenon, it is necessary to exploit independent evolution for the lactic acid concentration.

Let us stress that (2) fits into the more general reaction-diffusion system in two variables
∂u
∂t

= F(u, v)

∂v
∂t

= G(u, v) +
∂

∂x

[
H(u, v)

∂v
∂x

]
.

(3)

with the choice
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F(u, v) = u(1 − u − dv) , G(u, v) = rv(1 − v) , H(u, v) = D(1 − u) .

A model for melanoma cells invading human skin with the structure (3) was proposed
in [23] (see also [24,25])

F(u, v) = −γ u v , G(u, v) = v(1 − u − v) H(u, v) = 1 − u

for some γ > 0.
In (3), the dynamics of the variable u are driven by a simple ordinary differential

equation (thus, being hyperbolic); however, the dynamics of v are parabolic, with possible
degeneracy at the states where the function H—required to be non-negative to accomplish
well-posedness—vanishes.

We note that the Keller–Segel chemotaxis system does not fit into the same class
because of the presence of a cross-diffusion term in the equation for the bacteria v attracted
by the gradient of the variable u, representing some form of nourishment (see [26,27] for a
recent review, see [28]).

2.2. The Numerical Algorithm

With regard to the numerical strategy, we refer to the explanation provided in [15].
For the sake of convenience, we provide the reader with the key points underlying the
system discretization.

We employ a cell-centered finite volume approximation for the spatial discretiza-
tion (see [29], for example) and proceed by considering a non-uniform grid. Thus, let
Zi = [xi− 1

2
, xi+ 1

2
) be the finite volume centered at xi =

1
2
(
xi− 1

2
+ xi+ 1

2

)
, for i = 1, 2, . . . , N,

where N is a fixed number of vertices on the one-dimensional grid. Let us assume that
∆xi = |xi+ 1

2
− xi− 1

2
| is the spatial grid size, from which |xi − xi−1| = 1

2
(
∆xi−1 + ∆xi

)
is the

length for an interfacial interval (see Figure 1).

Figure 1. Piecewise constant reconstruction on non-uniform mesh.

The finite volume integral version for the healthy cell density in (2) leads to

1
∆xi

∫
Zi

∂u
∂t

dx =
1

∆xi

∫
Zi

u(1 − u) dx − d
∆xi

∫
Zi

u v dx ,

which, by exploiting the standard notation ui(t) ≃
1

∆xi

∫
Zi

u(x, t) dx, becomes

dui
dt

= ui(1 − ui)− d uivi . (4)

The equation for the tumor cell density in (2) reads as

1
∆xi

∫
Zi

∂v
∂t

dx =
r

∆xi

∫
Zi

v(1 − v) dx +
D

∆xi

∫
Zi

∂

∂x

[
(1 − u)

∂v
∂x

]
dx ,

where the finite volume integral average of the diffusion term is to be properly approached,
as follows:
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D
∆xi

[(
1 − u(xi+ 1

2
, t)

) ∂v
∂x

(xi+ 1
2
, t)−

(
1 − u(xi− 1

2
, t)

) ∂v
∂x

(xi− 1
2
, t)

]
≃ 2D

∆xi

[
(1 − ui)∆xi + (1 − ui+1)∆xi+1

∆xi + ∆xi+1
· vi+1 − vi

∆xi + ∆xi+1

− (1 − ui−1)∆xi−1 + (1 − ui)∆xi
∆xi−1 + ∆xi

· vi − vi−1

∆xi−1 + ∆xi

]
,

(5)

where the approximations for the interfacial quantities are realized by means of weighted
averages whose weights are the size of the adjacent finite volumes; thus, ∆xi/∆xi+1 and
∆xi−1/∆xi are employed at the interfaces xi+ 1

2
and xi− 1

2
, respectively. The first-order

derivatives of v are discretized through an upwind formula which relies on the function
evaluations at the neighboring vertices.

From now on, we simply impose that the quantity ∆xi is constant, so that ∆xi = ∆x
for all i = 1, 2, . . . , N. That is why, from (5), the semi-discrete version for the equation of
cancerous cell density reads as

dvi
dt

= r vi(1 − vi) +
D
∆x

[
(1 − ui) + (1 − ui+1)

2
· vi+1 − vi

∆x

− (1 − ui−1) + (1 − ui)

2
· vi − vi−1

∆x

]
,

which can be rearranged to obtain

dvi
dt

= r vi(1 − vi) +
D

2∆x2

[
2(1 − ui)(vi+1 − 2 vi + vi−1)

− (vi+1 − vi)(ui+1 − ui)− (vi − vi−1)(ui − ui−1)
]
.

(6)

As already pointed out in [15], we stress that the approximation (6) produces a discrete
Laplace operator and extra terms consisting of products of upwind discretizations, arising
from the degenerate diffusion in the second equation of (2). It is important to note that the
finite volume strategy allows to split the diffusion by autonomously choosing the first- and
second-order contributions, while, as in the case of finite difference schemes [30], a central
discretization for the first-order terms would be required, so causing a less stable scheme.

Finally, for the time discretization of (4) and (6), we adopt a semi-implicit strategy
considering a fixed time step ∆t . Thus, ∆t = |tn+1 − tn|, for n = 0, 1, . . .. The reaction terms
are treated explicitly, while the differential terms on the right-hand sides are approximated
implicitly, as follows:

un+1
i = un

i + ∆t
[
un

i (1 − un
i )− d un

i vn
i
]

vn+1
i = vn

i + r∆t vn
i (1 − vn

i ) +
D
2

∆t
∆x2

[
2(1 − un+1

i )(vn+1
i+1 − 2 vn+1

i + vn+1
i−1 )

− (vn+1
i+1 − vn+1

i )(un+1
i+1 − un+1

i )− (vn+1
i − vn+1

i−1 )(u
n+1
i − un+1

i−1 )

] (7)

and Neumann-type boundary conditions un
1 = un

2 and vn
1 = vn

2 , for n = 1, 2, . . .
are implemented.

2.3. Simulation Results

In continuity with [15], we perform simulations aimed at better characterizing the
solutions produced by (2). First of all, we want to figure out if the corresponding traveling
waves exhibit a sharp-type or front-type trend. Technically, taking as the main guideline the
traveling waves problem defined by the following one-dimensional, degenerate, reaction-
diffusion equation:

∂v
∂t

= g(v) +
∂

∂x

[
h(v)

∂v
∂x

]
with (x, t) ∈ R×R+, (8)
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where g = g(v) is such that g(0) = g(1) = 0 and positive in between (in short, of logistic
type), h = h(v) is such that h′(0) ̸= 0; then, the definition of sharpness, according to [20],
reads as follows:

Definition 1 (sharp-type front). If there exist a value of the wave speed s, let us call it s∗, and a
value of ξ, let it be ξ∗ ∈ (−∞,+∞], such that ϕ(x − s∗t) = ϕ(ξ), satisfying

1. g(ϕ) + s∗ϕ′ + h′(ϕ)[ϕ′]2 + h(ϕ)ϕ′′ = 0 ∀ξ ∈ (−∞, ξ∗),
2. ϕ(−∞) = 1, ϕ(ξ∗) = 0 and ϕ′ < 0 ∀ξ ∈ (−∞, ξ∗),
3. ϕ′(ξ∗) = −s∗/h′(0) and ϕ(ξ) = 0 ∀ξ ∈ (ξ∗,+∞],

where the superscript is meant to denote differentiation with respect to ξ; then, the function
v(x, t) = ϕ(x − s∗t) is called a traveling wave solution of sharp-type for (8).

We point out that the other possibility allowed happens when the function v(x, t) turns
out to be a traveling wave of front-type, whose typical smoother trend means that this front
is known as a smooth-type wave as well. The former statement about the smoothness of the
front-type traveling waves is easily understandable when thinking about the implications
framed by Definition 1. As a consequence, a sharp-type wave attains the equilibrium
located at 0 in a finite time ξ∗, with negative slope ϕ′(ξ∗) = −s∗/h′(0) [17], thus resulting
in a discontinuous derivative in ξ∗, since the left derivative tends to ϕ′(ξ∗−) ̸= 0, while
the right derivative tends to ϕ′(ξ∗+) = 0 [20]. By contrast, a smooth-type front exhibits a
continuous derivative in ξ∗. This last observation provides us with a useful tool in order to
quickly, qualitatively detect the distinctive trend for a given traveling wave, especially when
the dynamics are ruled by more complex configurations with respect to (8), as happens for
a system of equations. With regards to the scalar case, in which the problem (8) is framed,
theoretical results [17,18,20,21] are available for ensuring the existence and uniqueness of
sharp/smooth-type traveling waves, provided that some hypotheses about the regularity
of the v-dependent functions g and h are satisfied; other results are achieved in [19] for a
specific choice of h and in [22] if g is a generalization of the Nagumo equation.

With respect to the strictly theoretical framework (8), we consider this in the next
section, when the one-equation reduction for the Gatenby–Gawlinski model is introduced.
First, instead, we focus on the sharpness for (2), without neglecting observations concern-
ing (1) too.

The first step, consists in evaluating the traveling fronts arising from the full model:
in this regard, we take as a sample (see Figure 2) the results related to the homogeneous
invasion considered in [15], but initialized with the Riemann problem whose states are
suitable stationary points [14] of the full model. The parameters used for the experiment
are listed in Table 1. Moreover, T is the final time instant, while the spatio-temporal
mesh is realized by fixing ∆x = 0.005 and ∆t = 0.005. With regard to the numerical
algorithm, we exploit the strategy previously described considering the equation for the
lactic acid concentration.

Table 1. Numerical default values for the parameters in the complete model case.

d r D T

12.5 1 4 · 10−5 20

Now, in order to obtain information about the shape of the fronts, we show a zoom-in
for both the healthy cell density, shown in Figure 3a, and the tumor cell density, shown in
Figure 3b, plotted at equally spaced time instants. This qualitative analysis clearly proves
the traveling waves to be smooth-type for the complete Gatenby–Gawlinski model. We
have omitted to report data concerning the lactic acid concentration, due to the similarity
with the evolution of the cancerous cell density.

Let us proceed by focusing on the two-equations-based model (2). Before going ahead
with the numerical simulations, it is useful to make a further simplification, allowing to
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normalize the coefficient D for the second equation (it should be noted that the resulting
spatial window is wider). This goal is accomplished by imposing the following rescaling:

√
D

∂

∂x
=

∂

∂y
, (9)

by which, by renaming the variable y to x, it is possible to obtain a two-parameters-
dependent reduction that reads as

∂u
∂t

= u(1 − u)− duv

∂v
∂t

= rv(1 − v) +
∂

∂x

[
(1 − u)

∂v
∂x

]
.

(10)

Afterwards, it is helpful to compute the stationary points for (10), namely, (2), and to
check the related stability, so that the final outcome looks like

• E0 = (0, 0), absence of species, unstable;
• E1 = (1, 0), healthy state, unstable;
• E2 = (0, 1), homogeneous state, stable if d > 1 and unstable if d < 1;
• E3 = (1 − d, 1), heterogeneous state, stable if d < 1 and unstable if d > 1.

Figure 2. Simulation results in the full model case (1) for the homogeneous invasion: u healthy
cells (red), v tumor cells (blue), w lactic acid concentration (black). The parameters are listed in
Table 1.
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(b)

Figure 3. Front evolution zoom-in for the healthy cell density (a) and the tumor cell density (b).
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To introduce competition among the two equilibria, we focus on the Riemann problem
whose states are E =

(
(1 − d)+, 1

)
at the left and E1 = (1, 0) at the right and perform the

corresponding numerical experiments (see Figure 4a for the heterogeneous invasion, with
d = 0.5, and Figure 4b for the homogeneous invasion, with d = 2).

(a) (b)

Figure 4. Riemann problem for the heterogeneous case (a) and the homogeneous case (b). In both
cases, u healthy cells (red), v tumor cells (blue). Parameters are listed in Table 2.

It is important to note that the structure of the state E is a consequence of the d-dependent
stability for the equilibria E2 and E3, so that the resulting state E proves itself to be stable
for every choice of eligible d. Being E1 unstable, the propagating front arising from the
resulting Riemann data travels towards the right-hand side. In Table 2, all the parameters
employed to carry out the numerical simulations are shown.

Table 2. Numerical default values for the parameters involved in the simplified model.

d r ∆x ∆t T

{1/2, 2} 1 5 · 10−3 5 · 10−3 20

The results produced by numerically investigating system (10) are depicted in Figure 5a
for the heterogeneous invasion and Figure 5b for the homogeneous invasion. We note that the
two-parameters reduction correctly captures the trends expected in both cases studied. By
making a comparison with the analogous plots obtained in [15], we point out that we have
employed a smaller ∆t and defined a wider spatial window to frame the front evolution, since
the waves are traveling faster as a consequence of the rescaling (9). These two changes explain
the small differences concerning the steepness and the graphical display of the fronts, being
the ones reported in Figure 5, less steep and better depicted graphically. Regardless of these
points, the typical trends characterizing cancer invasions in the Gatenby–Gawlinski model,
are definitely qualitatively preserved by the simulation results.

(a) (b)

Figure 5. Numerical solutions for the heterogeneous case (a) and the homogeneous case (b). In both
cases, u healthy cells (red), v tumor cells (blue). Parameters are listed in Table 2.
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Next, let us focus on the shape of the traveling waves. Figure 6a,b exhibit the front
evolution for the tumor cell density in both the invasion configurations, while in Figure 7a,b,
the corresponding plots for the healthy cell density are displayed.

-4 -2 0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

(a)

-4 -2 0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

(b)

Figure 6. Front evolution zoom-in for the tumor cell density in the heterogeneous case (a) and the
homogeneous case (b).
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0.6

0.8

1

(b)

Figure 7. Front evolution zoom-in for the healthy cell density in the heterogeneous case (a) and the
homogeneous case (b).

We conclude this section by performing a sensitivity analysis with respect to the
parameters r and d. In order to accomplish this purpose, we consider as unknown the
wave speed s, whose numerical approximation is provided by invoking the space-averaged
estimate proposed in [16], already successfully exploited in the Gatenby–Gawlinski model
field in [15], to which we refer for the detailed derivation. The final discretized version,
providing the approximation for a function v over a uniform spatial mesh at time tn, is
the following:

sn =
∆x

[ϕ]∆t

N

∑
i=1

(
vn

i − vn+1
i

)
, (11)

where [ϕ] := ϕ+ − ϕ−, being ϕ+ and ϕ− the stationary states of v(x, t). We stress that the
estimate (11) is independent of the dynamics of the solutions produced by (10).

In Figure 8a, the r-dependence is shown, taking as a sample the homogeneous invasion
(the heterogeneous case exhibits the same qualitative trend). Specifically, for each r value,
the corresponding asymptotic wave speed is reported, numerically approximated by means
of (11). The curve so defined is monotone increasing, which is not surprising considering
that r is a growth rate for the tumor cell density, so resulting in a faster invasion process.
Likewise, focusing on the d-dependence, depicted in Figure 8b, it follows that cancerous
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invasion is facilitated as d increases, this parameter being a death rate for healthy cells due
to interactions with cancerous cells. As a matter of fact, the profile for the wave speed trend
is again monotone increasing.

0 5 10 15

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) r-parameter sensitivity
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(b) d-parameter sensitivity

Figure 8. Graph of s(·, d) as a function of the parameter r ∈ [0, 15], with ∆r = 0.1, for the homogeneous
invasion when d = 2 (a) and graph of s(·, r) as a function of the parameter d ∈ [0, 15], with ∆d = 0.1
and r = 1 (b).

Emphasis should be given to the mesh dependence upon space discretization. Indeed,
computing the propagation speed with the LeVeque–Yee formula (11) using different values
of ∆x gives different values. In Figure 9, the dependency in the plane (∆x, s) is shown with
a remarkable concave behavior for small ∆x.

In view of the rigorous results in [31], further exploration is needed to gain a better
understanding of the traveling wave existence of the corresponding semi-discrete and fully
discrete schemes.

Figure 9. Dependency of the speed on space discretization represented in the (∆x, s)-plane for the
Riemann problem with data d = 2, r = 1, ∆t = 10−3, T = 20.

3. One-Equation-Based Model Reduction

Next, we iterate the reduction procedure described at the beginning of Section 2 to
pass from a system in two unknowns to the scalar reaction-diffusion Equation (8). If h
is strictly positive, the diffusion is said to be non-degenerate; otherwise, the diffusion is
degenerate where h is zero. The problem (8) with h negative is, in general, ill-posed and it
will not be considered in this paper.



Axioms 2024, 13, 281 11 of 17

A rigorous statement for the existence of propagating fronts in the case of non-
degenerate diffusion goes as follows: let the function g have two zeros, 0 and 1 to fix
ideas, positive in between, in short of logistic type, Then, Equation (8) supports invasive
fronts v(x, t) = ϕ(x − ct) satisfying the asymptotic conditions ϕ(−∞) = 1 and ϕ(+∞) = 0
if, and only if, s ≥ s∗, for some critical speed s∗. Moreover, the solution to the initial value
problem with Heaviside-like data, characterized by a sharp jump from 0 to 1, converges in
an appropriate sense to the front connecting 0 and 1 and moving at a critical speed s∗.

In the degenerate case, the situation is a bit more intricate even in terms of statement
since one has to distinguish between smooth and sharp fronts, as previously discussed.

3.1. Derivation from the Two-Equations Model

With the aim of obtaining a one-equation reduction for the Gatenby–Gawlinski model,
we start from the simplified model (10) and assume the stationarity for the healthy tissue
density equation, leading to u(1 − u − dv) = 0. Finally, we impose that

u = ψ(v) := (1 − dv)+. (12)

As a consequence, the tumor cells equation turns out to show the following structure:

∂v
∂t

= rv(1 − v) +
∂

∂x

[
h(v)

∂v
∂x

]
, (13)

where the degenerate diffusion term is a piecewise linear function defined as

h(v) := (F ◦ ψ)(v) = 1 − (1 − dv)+ =

{
dv if v ∈ [0, 1/d)
1 if v ∈ [1/d, 1].

(14)

Our reduction (13) is a degenerate reaction-diffusion equation as in (8) and the diffu-
sion h is almost everywhere differentiable, due to the discontinuity located in v = 1/d for
the derivative. The existence and uniqueness results for traveling waves of sharp/smooth-
type available in [17] require at least the pointwise differentiability in [0, 1], so that, strictly
concerning the theoretical point of view, it is not possible to state the sharpness/smoothness
of the fronts for Equation (13). As a matter of fact, we keep relying on the numerical as-
sessment in this paper, although the possibility of employing a smooth approximation
for bypassing the discontinuous point of h′, so that enough regularity [17,20] might be
ensured, would not seem to jeopardize a theoretical prediction of existence and uniqueness
for the fronts in the case of (14) as well.

We point out that the reduction (13) might be easily rearranged to become a one-
parameter-dependent equation by means of rescaling ∂/∂t = r∂/∂τ. However, taking
advantage of the constraint r = 1 employed for carrying out the simulations, it is possible
to keep relying on (13) and to obtain a one-parameter dependence anyway.

3.2. The Numerical Algorithm

On the basis of what has already been described in Section 2, we invoke the same
cell-centered finite volume approximation for the spatial discretization of (13) and take
care to consider the corresponding versions the piecewise linear diffusion (14) leads to.
Specifically, we have

∂v
∂t

= v(1 − v) + d
∂

∂x

(
v

∂v
∂x

)
if v ∈ [0, 1/d), (15)

∂v
∂t

= v(1 − v) +
∂2v
∂x2 if v ∈ [1/d, 1]. (16)

Equation (15) can be rewritten to obtain

1
∆xi

∫
Zi

∂v
∂t

dx =
1

∆xi

∫
Zi

v(1 − v) dx +
d

∆xi

∫
Zi

∂

∂x

(
v

∂v
∂x

)
dx,
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where the finite volume integral average for the diffusion is dealt with exactly as in the
two-equations-based reduction, so that

v(xi+ 1
2
, t)

∂v
∂x

(xi+ 1
2
, t)− v(xi− 1

2
, t)

∂v
∂x

(xi− 1
2
, t)

≃ 2
[

vi∆xi + vi+1∆xi+1

∆xi + ∆xi+1
· vi+1 − vi

∆xi + ∆xi+1
− vi−1∆xi−1 + vi∆xi

∆xi−1 + ∆xi
· vi − vi−1

∆xi−1 + ∆xi

]
.

Now, if the quantity ∆xi = ∆x is constant, we obtain the semi-discrete version

dvi
dt

= vi(1 − vi) +
d

2∆x2

[
(vi + vi+1)(vi+1 − vi)− (vi−1 + vi)(vi − vi−1)

]
,

which leads to dvi
dt

= vi(1 − vi) +
d

2∆x2

(
v2

i−1 − 2v2
i + v2

i+1
)

. (17)

Following the same path, for equation (16) in the case of non-uniform mesh, we have

dvi
dt

= vi(1 − vi) +
2

∆xi

[
vi+1 − vi

∆xi + ∆xi+1
− vi − vi−1

∆xi−1 + ∆xi

]
,

while setting ∆xi = ∆x as a constant value,

dvi
dt

= vi(1 − vi) +
vi+1 − 2vi + vi−1

∆x2 . (18)

For the time discretization of (17) and (18), we simply employ an explicit strategy, where
∆t is the fixed time step, so that the final numerical scheme reads as

vn+1
i = vn

i + ∆t vn
i (1 − vn

i ) + K(vn
i−1, vn

i , vn
i+1, ∆t/∆x2, d) , (19)

where

K(p, q, r, α, d) :=

{
1
2 dα(p2 − 2q2 + r2) if q ∈ [0, 1/d)
α(p − 2 q + r) if q ∈ [1/d, 1].

It is noticeable that the function K exhibits a jump discontinuity located at q = 1/d.

3.3. Simulation Results

We take advantage of the numerical scheme in (19) and perform numerical simulations
in order to validate our one-equation-based reduction (13) for the Gatenby–Gawlinski
model. As regards the initial profile, we consider the Riemann problem whose states are
PL = 1 at the left and PR = 0 at the right; all the parameters employed are listed in Table 3.

Table 3. Numerical default values for the parameters involved in the reduction (13).

d ∆x ∆t T

{1/2, 2} 5 · 10−2 10−3 20

The results are depicted in Figure 10a,b for the heterogeneous and homogeneous
invasion, respectively, by means of the front evolution representation. The cancerous cell
density is plotted at equally spaced time instants, and, in both the cases, the corresponding
traveling waves turn out to be of sharp-type.

For ensuring the effectiveness of the one-equation-based reduction (13), it is important
to establish if trends related to tumor invasions are correctly caught. In this respect,
Figure 10, as well as providing information about the sharpness of the fronts, certifies that
the cancerous cells front moves forward faster in the homogeneous invasion. Specifically,
adopting the space-averaged estimate (11), we obtain s ≈ 0.499958 for the heterogeneous
case and s ≈ 0.968813 for the homogeneous case; these two values are the asymptotic
wave speeds of the tumor front. Figure 11 shows the discrete wave speed approximation
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computed as a function of time (d = 0.5 is taken as a sample) and allows us to appreciate
the convergence towards the corresponding asymptotic threshold.

-25 -20 -15 -10 -5 0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

(a)

-25 -20 -15 -10 -5 0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

(b)

Figure 10. Front evolution for the tumor cell density in the heterogeneous case (a) and the homoge-
neous case (b). The parameters used are listed in Table 3.
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Figure 11. Space-averaged propagation speed approximations as a function of time for the heteroge-
neous invasion. The parameters used are listed in Table 3.

Finally, as further evidence of the reliability of (13), we can obtain information about
the healthy cell density too by simply relying on (12). The related graphs are depicted
in Figure 12a and Figure 12b, respectively. The plots are realized by simultaneously
reporting numerical approximations for the cancerous cell densities, along with the induced
healthy cell densities defined by means of (12). The results qualitatively line up with the
corresponding ones achieved for the two-equations-based reduction in Section 2, so that
the characteristic trends of the Gatenby–Gawlinski model are globally retrieved.

With regard to the model described by (13), it is useful to note that, at least for the
heterogeneous invasion, namely, when d < 1, the diffusion term turns out to be identically
h(v) = dv. In order to easily check this statement, recalling the definition of h in (14), it
follows that v is always in [0, 1/d) if d < 1, being 1/d > 1 and bearing in mind the constraint
v ≤ 1. Due to this fact, the one-equation-based model in this specific case becomes
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∂v
∂t

= v(1 − v) + d
∂

∂x

(
v

∂v
∂x

)
. (20)

For degenerate reaction-diffusion equations such as (20), it is possible to obtain an
analytical solution [32,33]. In this context, we simply impose that v is a propagating
front of the form v(x, t) = ϕ(x − st), s being the associated wave speed, and, after some
conventional operations, the exact solution reads as

v(x, t) =

1 − exp
(

x − st√
2d

)
if x ≤ st,

0 if x > st,
(21)

where s =
√

d/2. Assuming the previous choice d = 0.5, it follows that s = 0.5, which is a
threshold very close to our numerical estimate s ≈ 0.499958. For the sake of completeness,
we provide a graphical check as well, the plot being depicted in Figure 13. We have chosen
to exploit a refined spatio-temporal mesh, namely, ∆x = 0.01 and ∆t = 0.0001, compared to
the parameters listed in Table 3, with the aim of achieving a very effective graphical result.
The resulting trajectories are very close and the wave speed approximation is good too,
being s ≈ 0.499983.

Finally, by analogy with what has been shown in [15], in order to numerically appre-
ciate the transition occurring from the complete Gatenby–Gawlinski model towards the
two-equations-based reduction by increasing the parameter c in (1), we propose a similar
analysis regarding the one-equation-based model. Indeed, recalling the assumption (12)
exploited in (10) for justifying the model simplification, it is possible to study the transition
occurring between the two-equations-based and one-equation-based model by defining
the ϵ-dependent time derivative of the function u. We obtain

ϵ
∂u
∂t

= u(1 − u)− duv

∂v
∂t

= v(1 − v) +
∂

∂x

[
(1 − u)

∂v
∂x

]
.

(22)

At this stage, we can easily infer that, taking the limit as the parameter ϵ approaches
zero in the first equation of (22), that this perfectly matches, from a theoretical point of view,
the idea behind the hypothesis (12), which automatically leads to (13).

(a) (b)

Figure 12. Numerical approximation of the tumor cells (blue) along with the corresponding healthy
cells profile (red), recovered by means of (12), for both the heterogeneous case (a) and the homoge-
neous case (b). The parameters used are listed in Table 3.
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Figure 13. Exact solution and corresponding tumor density numerical approximation for the one-
equation-based model in the case of heterogeneous invasion. The spacial and time steps are ∆x = 10−2

and ∆t = 10−4, respectively.

Now, we want to catch the transition, either employing the wave speed numerical esti-
mate (11), which is the approach proposed in [15], or taking advantage of the solution (21).
As a matter of fact, considering the heterogeneous invasion context, we can rely on the
exact solution for the one-equation-based model and exploit it to verify the transition from
the two-equations reduction.

Figure 14a exhibits the wave speed numerical approximations achieved by assuming
decreasing ϵ values in (22) in the case of the tumor cells front. The resulting trend correctly
reports a convergence towards the asymptotic threshold s = 0.5, which is the analytical
prediction for (20). Moreover, the exact solution (21) allows us to graphically recognize the
transition towards (20) by means of a convergence check. Figure 14b reports the tumor
density numerical approximation provided by (22) as a function of some ϵ values taken as
a sample. It is possible to detect a progressive alignment with the analytical solution (21).
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(a) Convergence of the wave speeds estimates
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ǫ = 0.01

Exact solution

(b) Convergence of the tumor density solution

Figure 14. Wave speeds estimates (blue circles) for v(x, t) in (22) if ϵ ∈ [0.01, 1] along with the wave
speed analytical value (red line) provided by (21) (a) and convergence of the tumor density numerical
approximation from (22), as a function of specific ϵ values, towards the exact solution (21) (b). The
parameters used are listed in Table 3.



Axioms 2024, 13, 281 16 of 17

4. Conclusions

In this paper, we have investigated the Gatenby–Gawlinski model for tumor invasion
taking advantage of some useful system simplifications. In continuity with the study
carried out in [15], we have extended the available results for the two-equations-based
reduction, specifically analyzing the sharpness/smoothness of the fronts by means of
numerical simulations based on a finite volume approximation.

A sensitivity analysis with respect to the system parameters r and d in (10) has been
provided as well, by using as unknown the wave speed, whose numerical approximation
is achieved through a space-averaged estimate [15,16].

Subsequently, we have proposed a further system simplification leading to a one-
equation-based reduction, framed within the degenerate reaction-diffusion equations
field. Several results are available in the literature about the existence and uniqueness of
sharp/smooth-type fronts for such a mathematical problem [17,18,20,21], but as regards our
case (13), due to the almost everywhere differentiability in [0, 1] of the degenerate diffusion,
relying on numerical checks is required in order to establish the fronts shape. The evidence
is that the traveling wave arising from our one-equation reduction proves itself to be of
the sharp-type. We have shown the reduction to qualitatively catch the typical dynamics
of the Gatenby–Gawlinski model and, in the specific case of heterogeneous invasion, we
have provided the corresponding analytical solution as well, exploiting its availability to
verify the simulation results effectiveness. Finally, we have studied the transition from the
two-equations-based reduction towards the one-equation-based simplification by defining
the ϵ-dependent time derivative of the healthy cell density u, as in (22).

With regard to the necessity to lean on numerical assessments about the sharpness de-
tection in the one-equation reduction case, arising from the requirement for a more regular
degenerate diffusion in terms of the available theoretical results [17,20], the possibility of
employing a smoother approximation to bypass the almost everywhere differentiability of
the diffusion seems to represent very promising ground. In this way, enough regularity
would be ensured to prove the existence and uniqueness results for the traveling fronts.
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