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Abstract: This paper deals with a discrete-time observer-based state feedback control design by
taking into consideration bounded parameter uncertainty, actuator faults, and stochastic noise in
an inner control loop which is extended in a cascaded manner by outer PI- and P-control loops for
velocity and position regulation. The aim of the corresponding subdivision of the quadrotor model is
the treatment of the control design in a systematic manner. In the inner loop, linear matrix inequality
techniques are employed for the placement of poles into a desired area within the complex z-plane. A
robustification of the design towards noise is achieved by optimizing both control and observer gains
simultaneously guaranteeing stability in a predefined bounded state domain. This procedure helps
to reduce the sensitivity of the inner control loop towards changes induced by the outer one. Finally,
a model-based optimization process is employed to tune the parameters of the outer P/PI controllers.
To allow for the validation of accurate trajectory tracking, a comparison of the novel approach with
the use of a standard extended Kalman filter-based linear-quadratic regulator synthesis is presented
to demonstrate the superiority of the new design.

Keywords: robust control; linear matrix inequalities; interval methods; extended Kalman filter;
linear-quadratic regulator design; proportional–integral controller

MSC: 93B52; 93C73; 93D09; 93B35

1. Introduction

The use of quadrotors has become remarkable nowadays [1–3], because of their capa-
bility to fly in both small indoor areas and rough outdoor environments which, for example,
helps to perform rescue missions in case of disasters or for agricultural monitoring.

Since quadrotors are characterized by under-actuated dynamics [4] and their models
show nonlinear coupling between the different degrees of freedom, the literature presents
nonlinear control approaches that deal with such models with parameter uncertainties
as in [5–7], where in the latest, the authors have used an adaptive barrier function to
ensure fast convergence in the presence of uncertainties in the model. From the nonlinear
control theory, the authors in [8] have considered an attitude representation given by
Modified Rodrigues Parameters (MRPs) exploited by a passivity-based scheme to stabilize
the attitude dynamics that is combined with a differential flatness-based approach for the
position dynamics to linearize the system via feedforward control.

The robustification against disturbances has also been studied in the literature [9].
In addition, the authors of [10] have proposed a backstepping method interfaced with
sliding mode control for position and attitude control in the presence of external distur-
bances, while the estimation of controller parameters was assured by using adaptive laws.
In addition, the upper limits of the attitude perturbations were estimated with the same
approach. For the same purpose, the authors in [11] have considered a nonlinear Propor-
tional Integral Derivative (PID) controller where its parameters have been tuned using a
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Genetic Algorithm to minimize a multi-objective output performance index. Compared to
the Linear PID, the attitude loop has shown better robustness against measurement noise
and disturbance in contrast to the position loop.

Another challenge that has been tackled in the literature is dealing with actuator faults,
as in [12], where the authors have combined model predictive control and reinforcement
learning to detect and compensate faults of a quadrotor during trajectory tracking. The same
objective has been treated with the help of linear control theory in [13–15], where the authors
exploited the linear matrix inequalities (LMIs) tool to solve H∞ problems for different purposes
such as fault diagnosis or state estimation, while the authors in [16] have exploited a Kalman
filter to propose a fault detection and diagnosis scheme to detect and isolate actuator faults in
presence of external disturbances. In contrast to this, the authors of the reference [17] have ex-
ploited an extended Kalman filter. In [18,19], the authors have exploited a zonotopic unknown
input observer and the zonotopic extended Kalman filter for state estimation, respectively.

The state estimation is required if there is no possibility to measure a physical quantity.
The estimate then serves as a substitute for non-measured signals, and it is then used by
the control law as in [20] where the authors have addressed the trajectory tracking problem
using saturated proportional–derivative (PD) control laws and disturbance compensation,
in addition to an observer-based attitude tracking control that has been established in a
separate design phase. The same procedure has been exploited in [21], where the authors
have used the solution of a type of generalized Sylvester equation to parameterize a full-
order observer-based controller for a quasi-linear system. Moreover, the authors have
demonstrated the validity of the separation theorem since they have considered perfectly
known time-varying parameters and state values.

Although several papers have been published that tackle the design of controllers and
observers separately, little attention has been paid to a joint design if the modeled systems
are nonlinear or depend on uncertain parameters. To the best of the authors’ knowledge,
an example of such kind of research can be found in [22] where the authors have considered
time delays and input disturbances in their design phase. In [23,24], the authors have
exploited the LMI framework in order to simultaneously design a controller and observer
that guarantee stability and robust performance despite the occurrence of actuator faults,
model uncertainty, nonlinearities, and measurement noise and that only require the tuning
of two parameters. This joint design of control and observer gains is justified by the
illustrating example given in the 2nd section in [24]. It illustrates the fact that the separation
principle of control and observer design no longer holds for linear systems with bounded
parameter uncertainty. This is equally true for the case of nonlinear systems. To keep
the control design as simple as possible, we investigate the following design procedure
in the current article: The control architecture is divided into two parts so that a robust
LMI-based approach is employed for the inner loop, whilst optimized proportional and
proportional–integral controllers are used for the cascaded outer loops. Hence, the purpose
is to evaluate the time-domain performance of the mutual impact between the cascaded
control loops while enhancing flight accuracy despite measurement noise and external
disturbances such as wind or component wear. Moreover, it is shown that the proposed
design procedure clearly outperforms the control accuracy achievable by a standard tuning
approach for this type of control structure, both in the unperturbed case and in a setting in
which large actuator disturbances act on the closed-loop system dynamics.

This paper is organized as follows. In Section 2, the quadrotor model is introduced.
In Section 3, the control methods and the parametrization of the state trajectories are
described. In Section 4, simulation results are presented. Finally, the paper is concluded in
Section 5 with a discussion of the obtained results and an outlook on future work.

2. Quadrotor Modeling

To be able to derive the nonlinear dynamic equations of the quadrotor, the rotation
from earth’s inertial frame (e1I, e2I, e3I) to the body fixed-frame (e1B, e2B, e3B) is considered as
described in Figure 1 with the use of the ZYX convention [25].
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Figure 1. Earth frame and body-fixed frame of the quadrotor.

According to [26], the Newton–Euler formalism is employed which is less complex and
less difficult to compute compared to the Euler–Lagrangian approach [27]. For modeling
and control purposes, the general dynamic model of a quadrotor is subdivided into two
parts. The first one is the attitude sub-model represented by

ϕ̇ = ϕ̇

ϕ̈ = θ̇ψ̇
Iy−Iz

Ix
− JR

Ix
θ̇ωd + l

Ix
τϕ

θ̇ = θ̇

θ̈ = ϕ̇ψ̇ Iz−Ix
Iy

+ JR
Iy

ϕ̇ωd + l
Iy

τθ

ψ̇ = ψ̇

ψ̈ = ϕ̇θ̇
Ix−Iy

Iz
+ l

Iz
τψ,

(1)

and the second is the velocity sub-model represented by
ẍ = (cos ϕ sin θ cos ψ + sin ϕ sin ψ) · Ft

m
ÿ = (cos ϕ sin θ sin ψ − sin ϕ cos ψ) · Ft

m
z̈ = (cos ϕ cos θ) · Ft

m − g,
(2)

with aT = (ϕ, θ, ψ) denoting, respectively, the roll, pitch, and yaw angles. The position of
the quadrotor in the earth-fixed coordinate frame is described by the vector pT = (x, y, z)
denoting, respectively, the longitudinal, lateral, and vertical axes. The parameter JR is the
rotor inertia, while Ix, Iy, and Iz are the diagonal entries of the quadrotor’s inertia matrix.
The parameter l is the length of the lever, while m and g are, respectively, the mass and the
Earth’s gravity.

The total thrust Ft = F1 + F2 + F3 + F4 is the sum of the thrusts of each of the rotors,
where (τϕ, τθ , τψ) represent, respectively, the roll, pitch, and yaw torques, all depending on
the rotor speeds Ωi, i ∈ {1, . . . , 4}, according to

Ft = b(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)
τϕ = b(Ω2

2 − Ω2
4)

τθ = b(Ω2
1 − Ω2

3)
τψ = d(Ω2

1 + Ω2
3 − Ω2

2 − Ω2
4).

(3)

Additionally, the variable ωd = Ω1 + Ω3 − Ω2 − Ω4 is considered during the
parametrization of the inner loop as a fictitious stochastic disturbance. However, when
optimizing the outer control loops, and when performing the system simulation, the de-
pendence of ωd on the speeds of the four rotors is accounted for by the relation
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ωd =
ι2 + ι4 − ι1 − ι3

2
√

bd


ι2 =

√
dFt − bτψ + 2dτϕ

ι4 =
√

dFt − bτψ − 2dτϕ

ι1 =
√

bτψ + dFt + 2dτθ

ι3 =
√

bτψ + dFt − 2dτθ ,

(4)

with the constants b and d being, respectively, the thrust factor and the drag factor.

3. Quadrotor Control System

To design the control system for the quadrotor, two main control loops have been
constructed as cascaded outer and inner loops, as shown in Figure 2. The two outer ones
encompass the position and velocity control loops that ensure the fulfillment of the position
tracking mission, whilst the inner-most is responsible for attitude tracking.

Figure 2. Structure of the linear observer-based state feedback controller.

Remark 1. This structure ensures that the outer position and velocity control loops do not neg-
atively impact the overall system stability as long as the quadrotor is operated with reference
trajectories that lead to system states that are compatible with the state constraints resulting from the
polytopic uncertainty model derived in Section 3.1. If this property is satisfied, the combination of
the underlying LMI-based state feedback in the inner loop with the P/PI outer feedback loops ensures
asymptotic stability of the overall control system. This statement is equally true for a nominal
system behavior without actuator faults and for scenarios in which actuator faults are present as
long as the latter do not lead to a loss of controllability.

3.1. Parametrization of the Attitude Control Loop Using an LMI-Based Method

To guarantee robust performance despite actuator faults, model uncertainty, nonlin-
earities, and measurement noise, the authors of [23] have employed a novel iterative LMI
approach to design a discrete-time observer-based state-feedback controller in the presence
of both bounded parameter uncertainty and stochastic noise.

Reformulating (1) as a discrete-time quasi-linear state-space representation yields{
xk+1 = A(xk)xk + B · (uk + dk) + Gp(xk)ωd,k
yk = Cxk + Gyvk,

(5)

where the explicit Euler method with a sampling time Ts = 1 ms is used in this paper. More-
over, the state vector is xk = [ϕk, ϕ̇k, θk, θ̇k, ψk, ψ̇k]

T ∈ Rn which is assumed to be bounded by
a priori known intervals, which are compatible with the reference trajectory to be tracked.
The input vector of the inner loop is denoted by uk = [τϕ, τθ , τψ]T ∈ Rm. Additionally,
yk = [ϕ, θ, ψ]T ∈ Rp and dk = [dτϕ , dτθ

, dτψ ]
T ∈ Rm are, respectively, the output vector

and actuator fault vector acting additively on uk. Finally, A is the state-dependent system
matrix, B is the input matrix, Gp is the disturbance input matrix, coupling the process noise
with the system dynamics, and C is the output matrix. A standard normally distributed
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random output noise vk is taken into consideration with its standard deviation specified by
the matrix Gy.

In a practical application, the actuator faults could manifest themselves in different
manners like a blocking, saturation, or efficiency loss of the physical actuators. Hence,
a discrete-time integrator actuator fault model is taken into account to be able to estimate
such faults d̂k, while these estimates are used for the compensation.

The occurrence of actuator faults influences the total thrust and the deviation is
represented with dFt . This deviation is transmitted to the attitude dynamics through ωd.
This deviation is neither estimated nor compensated in the closed inner loop. However,
the influence of such faults is assumed to be sufficiently small due to its multiplication with
the small drag factor.

Compared to what has been addressed in [28,29], the variable ωd,k is taken into
consideration in the algorithm of the proposed iterative LMI-based controller design as a
fictitious (random) disturbance instead of an alternative compensation of its influence in
the control law formula that would be possible in a least-squares sense.

For the sake of state and disturbance estimation, consider a linear time-invariant full-
state observer that is designed on the basis of the discrete-time state-space representation[

x̂k+1
d̂k+1

]
︸ ︷︷ ︸

ẑk+1

=

[
Ã B̃

0(m,n) I(m,m)

]
︸ ︷︷ ︸

Ãe

·
[

x̂k
d̂k

]
︸︷︷ ︸

ẑk

+

[
B̃

0(m,m)

]
︸ ︷︷ ︸

B̃e

·uk +

[
Hi
Hf

]
︸ ︷︷ ︸

He

·
[
C 0(p,m)

]
︸ ︷︷ ︸

Ce

· (zk − ẑk)︸ ︷︷ ︸
ek

, (6)

where Ã and B̃ are the nominal system matrices evaluated in the hovering state.
This observer provides the required information to realize the inner control loop with

the estimated vector ẑk in the form

uk =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0


︸ ︷︷ ︸

M

·xd,k −
[
K I(m,m)

]︸ ︷︷ ︸
Ke

·ẑk, (7)

where the matrix M replaces a pre-filter which could be used as an alternative to the follow-
ing outer loop optimization to reduce tracking errors during transient phases. The vector
xd,k = [ϕ̃d,k, 0, θ̃d,k, 0, ψ̃d,k, 0]T is determined in Section 3.4 by an approximation around the
hovering state (assuming sufficiently small angles in roll, pitch, and yaw).

Considering the estimation error model ek+1 and combining it with the discrete-
time model of the observer-based inner control loop leads to the augmented state-
space representation

[
zk+1
ek+1

]
︸ ︷︷ ︸

wk+1

=


A(xk)− B · K B B · K 0(n,m)

0(m,n) ξ · I(m,m) 0(m,n) 0(m,m)

A31 (B̃ − B) A33 B̃
0(m,n) I(m,m) −HfC I(m,m)


︸ ︷︷ ︸

A(xk)

·
[

zk
ek

]
︸︷︷︸

wk

+


Gp 0(n,p)

0(m,1) 0(m,p)
Gp −Hi · Gy

0(m,1) −Hf · Gy


︸ ︷︷ ︸

G(xk)

·
[

ωd,k
vk

]
,

(8)

with A31 = A(xk)− Ã − (B − B̃)K, A33 = Ã − HiC + (B − B̃)K. This augmented system
model takes into consideration both process and output noise, where the latter was not
explicitly considered in the previous work [23].
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Thereafter, a selection of interval bounds for the states included in A(xk) and G(xk)
forms the basis for building a polytopic domain with nv extremal vertices that are involved
in an optimization task that exploits the Lyapunov stability method as described in [23],
generalized by both a placement of poles into the desired regions and a robustification
against noise. Therefore, the design algorithm starts by choosing a radius r and a center
α of a circle in the z-plane corresponding to the desired closed-loop eigenvalue domain.
The design provides the controller gain K and the observer gain He that are optimized jointly.
Thus, the stabilization of the nonlinear system in a predefined operating range is ensured.
The computation effort of this algorithm is not critical from a real-time perspective since it is
executed offline.

3.2. Extended Kalman Filter-Based Linear Quadratic Regulator Design

An alternative control method to parametrize the inner loop is to employ an extended
Kalman filter (EKF) to estimate the states and actuator faults, so that this information can
be used by the linear quadratic regulator (LQR).

As shown in the paper [23], additive Gaussian process noise is considered in Equation (5)
as well as in the integrator disturbance model employed for actuator fault detection charac-
terized by their corresponding mean values (being zero) and their covariance matrices.

The EKF approach consists of two parts, where all computations are performed online.
In the prediction step, the expected value and the covariance of the states and actuator faults
are propagated up to the point in time where the next measurement data become available.
Then, the innovation step is employed to update the expected value and covariance.

The mean values and covariance matrices are estimated recursively by an alternating
sequence of prediction and innovation steps. These estimates are fed back using the same
structure of the control law as shown in Equation (7). Note that the controller gain is
computed by a minimization of an integral quadratic cost function for which the weighting
matrices are the available tuning factors.

This method does not provide a guaranteed proof of stability for nonlinear systems
since the computation of the controller and observer gains are made separately, and the
separation principle of control and observer design is no longer valid in this case.

Note that the use of an online gain scheduling [30] or solutions on the basis of state-
dependent Riccati equations could be used to enhance the reliability of this approach [31];
however, it comes with the price of a significantly higher implementation and computa-
tional effort than the proposed methodology presented in the previous section.

3.3. Velocity and Position Control Systems

The velocity control loop provides set-point information for the output (i.e., the an-
gles) of the inner-most sub-model which themselves are the inputs of the velocity sub-
model according to Equation (2). For the implementation of the velocity controller, the
expressions (2) are approximated around the operating point (hovering state) by using
small angle approximations of the trigonometric functions, i.e., cos(γ) ≈ 1, sin(γ) ≈ γ,
where γ denotes either the roll, pitch, or yaw angles. In addition, the yaw angle is set to
zero since it is not necessary to achieve the desired velocity profile. Finally, this leads to the
virtual controls 

ũ1 = ¨̃x = θ̃ · F̃t
m

ũ2 = ¨̃y = −ϕ̃ · F̃t
m

ũ3 = ¨̃z = F̃t
m − g,

(9)

which can then be used to determine the set-points
F̃t,k = m · (ũ3,k + g)
ϕ̃d,k =

−ũ2,k
(ũ3,k+g)

θ̃d,k =
ũ1,k

(ũ3,k+g)
ψ̃d = 0,

(10)



Axioms 2024, 13, 285 7 of 17

as described in [26].
In the equations above, the virtual controls ũ1,ũ2, and ũ3 are calculated by using the

proportional control laws 
ũ1,k = kp1(ẋd,k − ẋk)
ũ2,k = kp1(ẏd,k − ẏk)
ũ3,k = kp1(żd,k − żk),

(11)

where the subscript “d” refers to the corresponding desired signals.
The outer-most position control loop makes use of the discrete-time PI controllers

ẋd,k = kp2(xd,k − xk) + ki2To((xd,k − xk) + (xd,k−1 − xk−1))
ẏd,k = kp2(yd,k − yk) + ki2To((yd,k − yk) + (yd,k−1 − yk−1))
żd,k = kp2(zd,k − zk) + ki2To((zd,k − zk) + (zd,k−1 − zk−1)),

(12)

which are implemented with the help of a forward Euler discretization with To as the
sampling time.

Since the quadrotor is considered to be symmetric, the desired dynamics for each
Cartesian position coordinate are assumed to be the same. This justifies the use of identical
control parameters for each of the coordinates in (11) and (12), where the actual values are
obtained numerically by minimizing the square cost function

J =
∑Tf

k=0(∥ep,k∥2
2 + κ∥ea,k∥2

2 + β∥uq,k∥2
2)

Tf · Nv
. (13)

Here, the constant Tf is the index of the final simulation time. The variable Nv is the
number of all components of the vectors. The total input is uq,k = [Ft,k, uk]

T. The variables
κ and β are strictly positive weighting coefficients chosen equal to one in this study;
ep,k = pd,k − pk is the position error and ea,k = ad,k − ak is the attitude error.

The fminsearch() function in Matlab [32] is used in this article to obtain suitable
P/PI parameters by an iterative simulation in Simulink. Using the Nelder–Mead sim-
plex algorithm, it returns a local minimizer of the cost function J near the initial values
of kp1,kp2, and ki2 which are typically predetermined by a few iterations in an trial-and-
error approach. Note that this optimization is firstly used for a fault-free system model.
In such cases, the minimization reduces the deviation between the actual system behav-
ior and the desired reference trajectories. In addition, it is possible to include certain
fault scenarios in the simulation model used for this model-based optimization. Then,
the outcome is a selection of the P/PI gains that does not only enhance the nominal
system behavior but equally reduces the sensitivity of the closed-loop dynamics against
actuator faults.

Note that a further penalty could be added within the summation of the cost function (13)
in cases in which the state bounds included in (8) are violated due to inappropriate P/PI
parameters. For instance, the angular velocities

∆Jk =
3

∑
l=1


γ∥ȧk,l − ȧl∥2 for ȧk,l > ȧl

0 for ȧl ≤ ȧk,l ≤ ȧl
γ∥ȧk,l − ȧl∥2 for ȧk,l < ȧl,

(14)

could be penalized by choosing a higher value of the corresponding weighting coefficient γ at
all times outside the bounds from which the polytopic model of the LMI-based synthesis was
derived. The index l means the components of the angular velocities vector. The algorithm in
Figure 3 shows the procedure, and it is described using Nassi–Shneiderman diagram.
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Predefine state constraints
Solve LMIs of inner loop

Initialize fminsearch() with predetermined values of
P/PI parameters

Simulation of the closed loop according to Figure 2

Compute the cost function (13)

Violation of constraints ?
Yes No

Penality Equation (14)
added

—

fminsearch() adapts P/PI parameters

Cost function J arrives at a local minimum
Apply the fixed P/PI parameters

Figure 3. Optimization algorithm for P/PI parameters.

3.4. Trajectory Planning

In order to specify smooth position responses, and to avoid a specification of unrealistic
steps as the desired output signals, a trajectory planning procedure is used. It is based on a
product of time-dependent Bernstein polynomials of degree nb

bi,j =

(
nb
j

)(
t − ti−1
ti − ti−1

)j( ti − t
ti − ti−1

)nb−j

, j ∈ {1, . . . , nb}, (15)

defined on each time interval t ∈ [ti−1; ti] (i ∈ {1, 2, 3, 4, 5, 6}), with

bi,s(t) = [bi,0 bi,j . . . bi,nb
]T, s ∈ {x, y, z}, (16)

and a vector of constant coefficients

gi,s = [gi,0 gi,j . . . gi,nb
], s ∈ {x, y, z}. (17)

According to [33], the coefficients (17) are chosen so that the time derivatives of the
desired state trajectories 

xd,i(t) = gi,x · bi,x(t)
yd,i(t) = gi,y · bi,y(t)
zd,i(t) = gi,z · bi,z(t)

(18)

are at least three times continuously differentiable at the points ti. In this way, smooth
point-to-point trajectories can be specified, while the choice of ti allows for a limitation of
the desired velocities and accelerations.

As a second type of desired trajectory used in the following section, ∞-shaped curves
are employed. They are represented in the form of the lemniscate of Bernoulli, where the
parametric equation is given by

xd,i(t) = na · cos(t−ti−1)

1+sin2(t−ti−1)

yd,i(t) = na · sin(t−ti−1) cos(t−ti−1)

1+sin2(t−ti−1)

zd,i = const.,

(19)

with na as the half-width of the lemniscate.
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3.5. Structural Comparison of the Performance with Nonlinear Methods from the Literature

To evaluate the fundamental properties of the developed approach, it is compared
to other nonlinear methods from the literature as collected in Table 1. As a general non-
linear alternative, an observer-based adaptive sliding mode control approach has been
selected. The advantage of the proposed methodology can be found in the simplicity of its
implementation on the target system (i.e., it keeps a standard linear state feedback in the
underlying control loop with an optimally tuned P/PI feedback in the external loops). It
should be pointed out that we do not claim at this point to outperform arbitrary nonlinear
control procedures in the tracking capability with this linear feedback strategy. In contrast,
we would like to emphasize that the robustified design of a linear control approach is
significantly more efficient than applying state-of-the-art design principles such as a linear
quadratic regulator design in combination with extended Kalman filters. It has to be noted
further that our implementation is even less demanding from an online computational
point of view than the aforementioned alternative due to the fact that both control and
observer gains can be kept constant for the entire trajectory.

Table 1. Table of qualitative comparison.

Methods LMI-Based Approach EKF-Based LQR Observer-Based Adaptive
Sliding Mode Control [6]

Guaranteed proof of stability
of the observer

yes, within a
predetermined interval

yes, in the close vicinity of
operating point

yes, but with nominal
parameter values

Guaranteed proof of stability
of the control loops

yes, within
predetermined interval

yes, in the close vicinity of the
linearization point

yes, but only for an accurate
state estimation

Guaranteed proof of joint
stability of observer

and control
yes no no

Robustness against noise
(by design) high low chattering may occur for large

variable-structure gains

Required model accuracy medium high high

Required online
computational effort low medium

high if the sampling frequency
needs to be large to cope with
the variable-structure control

Required offline
computational effort medium low medium

4. Simulation Results

In this section, numerical simulation results using Matlab/Simulink, with ODE1 as
the solver and a step size of 1 ms which is set for Ts also, are presented. The inner loop is
running at 1 khz, and the outer loops are running at To = 0.01 s. The parameter values
used for the model are shown in Table 2.

Table 2. Parameter values of the quadrotor model from [34].

Parameter Value Unit

l 0.2 m
JR 3.36·10−5 kg·m2

Ix = Iy 4.85·10−3 kg·m2

Iz 8.81·10−3 kg·m2

m 0.5 kg
g 9.81 m/s2

d 1.12·10−7 kg/m2

b 2.92·10−6 kg/m
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Consider firstly a surveillance mission, where the scenario is to take off vertically,
go slowly horizontally, and then vertically land. After 22 s, an actuator fault occurs,
which leads at the same time to deviations in the yaw torque τψ of −13 Nm, −10 Nm in
the roll torque τθ , and −6 N in the total thrust Ft. Those values were chosen to reflect
severe faults in this simulation analysis to validate the control procedure for worst-case
operating conditions.

To configure the trajectory planning, the degree parameter in Equation (15) is chosen
as nb = 9. So, in the time intervals [1, 10] s, [10, 35] s, and [35, 65] s, the first five vector
entries in Equation (17) are chosen equal to the desired initial Cartesian coordinates, and the
last five entries are set to the desired final Cartesian coordinates.

Different optimizations of the outer-loop controller parameters are carried out with
respect to the control method used in the inner loop. The weighting parameter in the
first simulation is γ = 0. For the LMI-based simulation, the parameters of the PI position
controller are obtained as kp2 = 10.9001 for the proportional gain, and ki2 = 4.1586 for
the integral gain while the value of the P velocity controller is obtained as kp1 = 18.7167.
For the EKF-based LQR simulation, the values of the PI position controller are obtained
with kp2 = 3.5987 for the proportional gain and ki2 = 1.3123 for the integral gain, while
the value of the P velocity controller is obtained as kp1 = 3.4475. The values of the P/PI
for the LMI-based method were obtained while testing large initial values for fminsearch()
compared to those obtained for the EKF-LQR method, where if far from the initial values,
the responses diverge.

The inner-most state feedback is parametrized by using the same values as used
in [23], except for the bounds of the angular velocities, specified in rad/s, θ̇ ∈ [−12π; 12π],
ϕ̇ ∈ [−12π; 12π], ψ̇ ∈ [−12π; 12π]. For the variance of the Gaussian output noise vd,
the value π

9 10−4 was chosen for all three components, with the matrix Gy = 0.01 · I(p,p) in
the synthesis phase.

Figure 4 shows the attitude responses. It can be seen that the curves return to a
steady state quickly with both methods. In the LMI-based response, throughout 0.065 s,
the yaw angular velocity violates the polytopic model bounds used to represent the state
dependencies in Equation (5). The inputs applied to the quadrotor model are shown
in Figure 5.
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Figure 4. Angular velocity curves; EKF-based LQR method (top); LMI-based method (bottom).
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Figure 5. Input signals applied on the model: EKF-based LQR method (top); LMI-based
method (bottom).

Since the stability condition established in the LMI framework may be conserva-
tive, the eigenvalues of the matrix A(xk) at the times t = (0, 22, 22.07, 22.08, 22.09, 22.10,
22.11, 22.12, 22.13) s are checked to be inside the unit circle. By taking the input of the inner-
loop, which corresponds the output of the prefilter and the output of the attitude model
which are the angles in Figure 2, a linearized model of the inner observer-based control
loop is obtained with the help of Matlab’s linearize() function. The resulting eigenvalues of
the discretized inner control loop are shown in Figure 6, where all eigenvalues are inside
the unit circle of the complex z-plane

Although this analysis is still not a strict stability proof due to the time variance of the
linearized model, it serves as an indicator for the reliability of the obtained result even in
the worst case.
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Figure 6. Eigenvalue locations (the blue asterisk) of the matrix A(xk) for operating states outside the
predefined interval of the yaw angular velocity.
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Figure 7 shows the curves of the Cartesian position, where the influence of the actuator
faults significantly appears when using the EKF-based method in the inner loop, which
leads to huge deviations for the longitudinal and lateral coordinates from the desired
trajectories. This behavior is removed in the case of the LMI-based method. The behavior
of the simulated quadrotor system in 3 dimensions is shown in Figure 8.

0

20

40

x y z x
d

y
d

z
d

0 10 20 30 40 50 60 70 80

0

20

40

Figure 7. Cartesian position curves: EKF-based LQR method (top); LMI-based method (bottom).

Figure 8. 3D-visualization of the trajectories of the quadrotor: EKF-based LQR method (left-hand
side); LMI-based method (right-hand side).

To evaluate the influence of the actuator fault magnitude on the system dynamics,
Figure 9 visualizes the maximum violation of the angular velocity intervals of the polytopic
model right after the appearance of the actuator fault. The visualization is performed by
scaling all fault components simultaneously within the range of [0;100]%.

Figure 9 Illustrates three different operating regimes:

1. Faults with a magnitude between 0 and 70%. The closed-loop system is asymptotically
stable as the ensemble of all trajectories remains within the polytopic domain specified
in Section 3.1.
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2. Within a short time frame after the fault appearance, the trajectories remain in the
polytope mentioned above. However, the simplification acc. to Equation (10) is no
longer valid, so that a long-term stabilization is no longer possible in a reliable manner
(70–74%). To allow for such large disturbances, a consideration of the nonlinearities is
inevitable during the feedforward control design.

3. In (80–100%), the trajectories diverge right after the fault appearance because the
polytopic domain acc. to Section 3.1. In such cases, the linear control design is no
longer valid, and nonlinear conterparts are inevitable to ensure stability.

0 20 40 60 80 100
0

2

4

6

8

Divergence range after 6s

Figure 9. The impact of the actuator fault deviation.

To date, the results have been obtained without penalizing the responses outside
the bounds. By choosing γ = 100, the values of the PI position controller are obtained
with kp2 = 17.1209 for the proportional gain and ki2 = 6.3371 for the integral gain, while
the value of the P velocity controller is obtained as kp1 = 3.1066. Figure 10 shows a
reduction in the amplitude of the yaw rate compared with that obtained before. However,
the precision of the pitch axis tracking became a little bit worse. This behavior is caused
by the huge actuator fault which was chosen intentionally to violate the boundaries of
the polytopic domain. Hence, a combined search for maximum admissible actuator faults,
with iteratively tuning the bounds of the polytopic domain, could be a subject for future
work. Alternatively, further means for robustification of the control performance against
disturbances, such as H∞ design criteria, can be combined in the future with the procedure
for the specification of eigenvalue domains.

To validate the behavior of the quadrotor model further, a second trajectory is chosen
that does not violate the predefined range of angular velocities. An actuator fault is
additionally assumed to occur, which leads at the same time to deviations in the yaw torque
τψ of −2 Nm, −1 Nm in the roll torque τθ , and −3 N in the total thrust Ft. The gains for the
PI/P controllers were optimized for each of the two design methods with the weighting
parameter γ = 100. For the LMI-based simulation, the parameter values of the PI position
controller are obtained as kp2 = 8.5967 for the proportional gain, and ki2 = 7.0966 for
the integral gain, while the value of the P velocity controller is obtained as kp1 = 24.9408.
For the EKF-based LQR simulation, the values of the PI position controller are obtained
with kp2 = 3.5048 for the proportional gain and ki2 = 14.5782 for the integral gain, while
the value of the velocity P controller is obtained as kp1 = 38.7325. For the variance in the
Gaussian output noise vd, the value π

9 10−5 was chosen for all three components
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Figure 10. Responses to an actuator fault with penalization.

From Figure 11, it can be seen that the desired position values are small enough and
chosen to be close to the hovering state. The closer the chosen values are to the vicinity
of the hovering state, the better the performance of the LMI-based approach becomes. It
outperforms the EKF-LQR results shown on the left side while dealing with actuator faults
at t = 22 s that are more reliably compensated with less overshoot in the trajectory tracking
as shown on the right-hand side.

Figure 11. Responses of the quadrotor model for a lemniscate trajectory: left-hand side with EKF-
based LQR; right-hand side with LMI-based method.
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From the figures above, another time-performance analysis is shown in Table 3 for a
comparison between the LMI-based method on the left side of the vertical bar symbol and
the EKF-based LQR method on the right side.

Table 3. Table of quantitative comparison.

max |ex| max |ey| max |ez| xRMS yRMS zRMS

1st trajectory with
disturbance 2.1770|24.1849 7.5178|22.9656 0.6381|3.0462 24.7121|24.4517 25.0507|25.9155 14.8453|14.8520

1st trajectory without
disturbance 2.1541|24.2827 7.5102|23.0401 0.6380|3.0625 24.7041|24.4526 25.0466|25.9221 14.8453|14.8520

2rd trajectory with
disturbance 0.1747|0.2046 0.1062|0.0877 0.0972|0.0863 0.8013|0.7976 0.4737|0.4600 2.9454|2.9454

2rd trajectory
without disturbance 0.1758|0.2040 0.1061|0.0878 0.0972|0.0863 0.8013|0.7976 0.4737|0.4600 2.9454|2.9454

5. Conclusions and Future Work

The results obtained above show the impact of the control method of the inner loop
on the outer loop, where the attitude obtained from the first sub-model acts as the input for
the second sub-model. With both LMI and EKF-based LQR methods, the convergence of
the position coordinate was assured; however, the outer-loop control system could not deal
well with the actuator fault in the case of the EKF-based LQR method even with optimized
P/PI controllers. In contrast to the LMI-based counterpart, it does not inherit a proof of
stability for nonlinear systems.

The stability of the EKF-based LQR control approach can only be guaranteed for
sufficiently small attitude values. However, the detection of the corresponding stability
domain is hard to perform and would require an a posteriori application of Lyapunov
techniques. This is avoided by the proposed LMI technique, which performs the stability
proof of the inner control loop directly during its design. This stability property is preserved
as long as the outer velocity and position controllers lead to inputs for the inner control loop
that do not violate the a priori specified state constraints. For a nominal operation, i.e., for
a system without actuator faults, this can be achieved by appropriate trajectory planning.
Finally, it should be pointed out that the LMI-based procedure has the significant advantage
of a smaller computational effort during the online application and that it requires only the
selection of two scalar tuning parameters in contrast to the weights for each of the states
and control inputs in the LQR design.

Future work will deal with an experimental validation of the novel LMI-based joint con-
trol and observer parameterization for numerous application scenarios such as a laboratory-
scale twin rotor aerodynamic system.
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Abbreviations
The following abbreviations are used in this manuscript:

EKF extended Kalman filter
LMI linear matrix inequality
LQR linear-quadratic regulator
PI proportional–integral
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