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Abstract: Let F be a field of characteristic, not 2 or 3. The first Tits construction is a well-known
tripling process to construct separable cubic Jordan algebras, especially Albert algebras. We generalize
the first Tits construction by choosing the scalar employed in the tripling process outside of the base
field. This yields a new family of non-associative unital algebras which carry a cubic map, and maps
that can be viewed as generalized adjoint and generalized trace maps. These maps display properties
often similar to the ones in the classical setup. In particular, the cubic norm map permits some kind
of weak Jordan composition law.
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1. Introduction

Let F be a field of characteristic, not 2 or 3. Separable cubic Jordan algebras over F play
an important role in Jordan theory (where separable means that their trace defines a non-
degenerate bilinear form). It is well known that every separable cubic Jordan algebra can
be obtained by either a first or a second Tits construction [1] (IX, Section 39). In particular,
exceptional simple Jordan algebras, also called Albert algebras, are separable cubic Jordan
algebras. The role of Albert algebras in the structure theory of Jordan algebras is similar to
the role of octonion algebras in the structure theory of alternative algebras. Moreover, their
automorphism group is an exceptional algebraic group of type F4, and their cubic norms
have isometry groups of type E6. For some recent developments, see [2–6].

In this paper, we canonically generalize the first Tits construction J(A, µ). The first
Tits construction starts with a separable associative cubic algebra A and uses a scalar
µ ∈ F× in its definition. Our construction also starts with A and employs the same algebra
multiplication as that used for the classical first Tits construction, but now allows also
µ ∈ A×.

We obtain a new class of non-associative unital algebras which we again denote by
J(A, µ). They carry a cubic map N : J(A, µ) → A that generalizes the classical norm, a map
T : J(A, µ) → F that generalizes the classical trace, and a map ♯ : J(A, µ) → J(A, µ) that
generalizes the classical adjoint of a Jordan algebra. Starting with a cubic étale algebra E,
the algebras obtained this way can be viewed as generalizations of special nine-dimensional
Jordan algebras. Starting with a central simple algebra A of degree three, the algebras
obtained this way can be viewed as generalizations of Albert algebras.

Cubic Jordan algebras carry a cubic norm that satisfies some Jordan composition law
involving the U-operator. Curiously, the cubic map N : J(A, µ) → A of our generalized
construction still allows some sort of generalized weak Jordan composition law, and some
of the known identities of cubic Jordan algebras involving a generalized trace map and
adjoint can be at least partially recovered.
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We point out that there already exists a canonical non-associative generalization of
associative central simple cyclic algebras of degree three, involving skew polynomials: the
non-associative cyclic algebras (K/F, σ, µ), where K/F is a cubic separable field extension
or a C3-Galois algebra, and µ ∈ K \ F, were first studied over finite fields [7], and then later
over arbitrary base fields and rings [8–11] and applied in space-time block coding [12,13].
Their “norm maps” reflect some of the properties of the non-associative cyclic algebra
(K/F, σ, µ) and are isometric to the “norm maps” N : J(K, µ) → K of the generalized Tits
construction J(K, µ). We show that these algebras are not related, however.

Some obvious questions like if and when the algebras obtained through a generalized
first Tits construction are division algebras seem to be very difficult to answer. We will not
address these here and only discuss some straightforward implications.

The contents of the paper are as follows: After introducing the terminology in Section 2
and reviewing the classical first Tits construction, we generalize the classical construction in
Section 3 and obtain unital non-associative algebras J(A, µ), where µ ∈ A×. The algebras
J(A, µ) carry maps that satisfy some of the same identities we know from the classical setup.
If A ̸= F, then Nucl(J(A, µ)) = Nucr(J(A, µ)) = F for all µ ∈ A×. If A is a central simple
associative division algebra of degree three, then Nucm(J(A, µ)) = F (Theorems 3 and 4).
Some necessary conditions on when J(A, µ) is a division algebra are listed in Theorem 6:
If J(A, µ) is a division algebra, then µ /∈ NA(A×) and A must be a division algebra. If
N is anisotropic, then A is a division algebra and µ /∈ NA(A×). If there exist elements
0 ̸= x = (x0, x1, x2) ∈ J(A, µ) such that x♯ = 0, we show that either A must have zero
divisors, or A is a division algebra and µ ∈ NA(A×). Moreover, if A is a division algebra
over F and 1, µ, and µ2 are linearly independent over F, then N must be anisotropic.

We investigate in which special cases several classical identities carry over in Section 4.
In Section 5, we compare the algebras obtained from a generalized first Tits construc-

tion starting with a cyclic field extension with the algebras (K/F, σ, µ)+, where (K/F, σ, µ)
is a non-associative cyclic algebra over F of degree three. If µ ∈ F×, then it is well known
that these algebras are isomorphic. For µ ∈ K \ F, they are not isomorphic, but their norms
are isometric.

This construction was briefly investigated for the first time in Andrew Steele’s PhD
thesis [11]. We improved and corrected most of their results, and added many new ones.

2. Preliminaries
2.1. Non-Associative Algebras

Throughout the paper, F is a field of characteristic, not 2 or 3. An algebra over F is
an F-vector space A together with an F-bilinear map A × A → A, (x, y) 7→ x · y, denoted
simply by juxtaposition of xy, the multiplication of A. An algebra A is unital if there exists
an element in A, denoted by 1, such that 1x = x1 = x for all x ∈ A.

A non-associative algebra A ̸= 0 is called a division algebra if for any a ∈ A, a ̸= 0, the
left multiplication with a, La(x) = ax, and the right multiplication with a, Ra(x) = xa, are
bijective. We will only consider unital finite-dimensional algebras, which implies that A
is a division algebra if and only if A has no zero divisors. Define [x, y, z] = (xy)z − x(yz).
The subalgebras Nucl(A) = {x ∈ A | [x, A, A] = 0}, Nucm(A) = {x ∈ A | [A, x, A] = 0},
and Nucr(A) = {x ∈ A | [A, A, x] = 0} of A are called the left, middle, and right nuclei
of A, Nuc(A) = {x ∈ A | [x, A, A] = [A, x, A] = [A, A, x] = 0} is called the nucleus of A.
The center of A is defined as C(A) = {x ∈ A | xy = yx for all y ∈ A} ∩ Nuc(A) [14]. All
algebras we consider will be unital.

A non-associative unital algebra J is called a cubic Jordan algebra over F, if J is a Jordan
algebra, i.e., xy = yx and (x2y)x = x2(yx) for all x, y ∈ J, and if its generic minimal
polynomial has degree three. Given an associative algebra A over F, its multiplication
written simply by juxtaposition, we can define a Jordan algebra over F denoted by A+ on
the F-vector space underlying the algebra A via x · y = 1

2 (xy + yx). A Jordan algebra J is
called special, if it is a subalgebra of A+ for some associative algebra A over F; otherwise, J
is exceptional. An exceptional Jordan algebra is called an Albert algebra.
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The following easy observation is included for the sake of the reader:

Lemma 1. Let A be an associative algebra over F such that A+ is a division algebra. Then, A is a
divison algebra.

Proof. Suppose that xy = 0 for some x, y ∈ A. Then, (yx) · (yx) = y(xy)x = 0, and since
A+ is a division algebra, we obtain yx = 0. This implies that x · y = 1

2 (xy + yx) = 0. Using
again that A+ is a division algebra, we deduce that x = 0 or y = 0.

A non-associative cyclic algebra (K/F, σ, c) of degree m over F is an m-dimensional
K-vector space (K/F, σ, c) = K ⊕ Kz ⊕ Kz2 ⊕ · · · ⊕ Kzm−1, with multiplication given by
the relations zm = c, zl = σ(l)z for all l ∈ K. The algebra (K/F, σ, c) is a unital F-central
algebra and associative if and only if c ∈ F×. The algebra (K/F, σ, c) is a division algebra for
all c ∈ F×, such that cs ̸∈ NK/F(K×) for all s which are prime divisors of m, 1 ≤ s ≤ m − 1.
If c ∈ K \ F, then (K/F, σ, c) is a division algebra for all c ∈ K \ F such that 1, c, . . . , cm−1

are linearly independent over F [10]. If m is prime, then (K/F, σ, c) is a division algebra for
all c ∈ K \ F.

2.2. Cubic Maps

Let V and W be two finite-dimensional vector spaces over F. A trilinear map
M : V × V × V → W is called symmetric if M(x, y, z) is invariant under all permuta-
tions of its variables. A map M : V → W is called a cubic map over F, if M(ax) = a3M(x)
for all a ∈ F, x ∈ V, and if the associated map M : V × V × V → W defined by

M(x, y, z) =
1
6
(M(x + y+ z)− M(x + y)− M(x + z)− M(y+ z) + M(x) + M(y) + M(z))

is a (symmetric) F-trilinear map. We canonically identify symmetric trilinear maps
M : V × V × V → W with the corresponding cubic maps M : V → W.

A cubic map M : V → F is called a cubic form and a trilinear map M : V × V × V → F
a trilinear form over F. A cubic map is called non-degenerate if v = 0 is the only vector such
that M(v, v2, , v3) = 0 for all vi ∈ V. A cubic map M is called anisotropic if M(x) = 0 implies
that x = 0; otherwise, it is isotropic. For a non-associative algebra A over F together with a
non-degenerate cubic form M : A → F, M is called multiplicative, if M(vw) = M(v)M(w)
for all v, w ∈ A.

2.3. Associative Cubic Algebras

(cf. for Instance [1,15] (Chapter C.4)) Let A be a unital separable associative algebra
over F with cubic norm NA : A → F. Let x, y ∈ A and let Z be an indeterminate. The
linearization NA(x + Zy) = NA(x) + ZNA(x; y) + Z2NA(y; x) + Z3NA(y) of NA, i.e., the
coefficient of Z in the above expansion, is quadratic in x and linear in y, and is denoted by
NA(x; y). Indeed, we have

NA(x + Zx) = NA((1 + Z)x) = (1 + Z)3NA(x) = (1 + 3Z + 3Z2 + Z3)NA(x),

so NA(1; 1) = 3NA(1) = 3. Linearize NA(x; y) to obtain a symmetric trilinear map NA :
A × A × A → F, NA(x, y, z) = NA(x + z; y)− NA(x; y)− NA(z; y). We define

TA(x) = NA(1; x),

TA(x, y) = TA(x)TA(y)− NA(1, x, y),

SA(x) = NA(x; 1),

x♯ = x2 − TA(x)x + SA(x)1,
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for all x, y ∈ A. We call x♯ the adjoint of x, and define the sharp map ♯ : A × A → A,
x♯y = (x + y)♯ − x♯ − y♯ as the linearization of the adjoint. We observe that
TA(1) = SA(1) = 3. Since the trilinear map NA(x, y, z) is symmetric,

TA(x, y) = TA(y, x) (1)

for all x, y ∈ A.
The algebra A is called an (associative) cubic algebra (respectively, called an algebra of

degree three in [15] (p. 490)), if the following three axioms are satisfied for all x, y ∈ A:

x3 − TA(x)x2 + SA(x)x − NA(x)1 = 0 (degree 3 identity), (2)

TA(x♯, y) = NA(x; y) (trace-sharp formula), (3)

TA(x, y) = TA(xy) (trace-product formula). (4)

For the rest of Section 2.3, we assume that A is a separable cubic algebra over F with
cubic norm NA : A → F. Note that (2) is equivalent to the condition that

xx♯ = x♯x = NA(x)1, (5)

and combining (1) with (4) gives

TA(xy) = TA(yx). (6)

An element x ∈ A is invertible if and only if NA(x) ̸= 0. The inverse of x ∈ A is
x−1 = NA(x)−1x♯. It can be shown that

(xy)♯ = y♯x♯ (7)

for all x, y ∈ A. Notice that

TA(x♯) = TA(x♯, 1) = NA(x; 1) = SA(x), (8)

using (3) and (4). We also have SA(x) = TA(x♯) = TA(x2)− TA(x)2 + 3SA(x), so

2SA(x) = TA(x)2 − TA(x2). (9)

A straightforward calculation shows that

x♯y = 2(x · y)− TA(x)y − TA(y)x + (TA(x)TA(y)− TA(x · y))1 (10)

for all x, y ∈ A. In particular,

x · y =
1
2
(xy + yx) =

1
2
(x♯y + TA(x)y + TA(y)x − (TA(x)TA(y)− TA(x, y))1)

for all x, y ∈ A and by employing (5) and the adjoint identity in A, we see that the norm
NA satisfies the relation

NA(x♯) = NA(x)2. (11)

A+ satisfies the adjoint identity
(x♯)♯ = NA(x)x (12)

for all x ∈ A. By (11), we have NA(x♯)1 = x♯(x♯)♯ = x♯NA(x)x = NA(x)21. For x, y ∈ A,
we define the operators Ux : A → A, Ux(y) = TA(x, y)x − x♯♯y and Ux,y : A → A,
Ux,y(z) = Ux+y(z)− Ux(z)− Uy(z). Then, we have x · y = 1

2 Ux,y(1) for all x, y ∈ A and

xyx = TA(x, y)x − x♯♯y, (13)
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Hence, Ux(y) = xyx for all x, y ∈ A×.
Define

x × y =
1
2
(x♯y),

and
x̄ =

1
2
(TA(x)1 − x)

for x, y ∈ A. (Note that some literature does not include the factor 1
2 in the definition of ×,

e.g., [16]). By (10), we then have

x × y = x · y − 1
2

TA(x)y − 1
2

TA(y)x +
1
2
(TA(x)TA(y)− TA(x · y))1

for all x, y ∈ A; hence,

x × x = x2 − TA(x)x +
1
2
(TA(x)2 − TA(x2)) = x♯, (14)

using (9).

2.4. The First Tits Construction

Let A be a separable cubic associative algebra over F with norm NA, trace TA and
adjoint map ♯. Let µ ∈ F× and define the F-vector space J = J(A, µ) = A0 ⊕ A1 ⊕ A2,
where Ai = A for i = 0, 1, 2. Then, J(A, µ) together with the multiplication

(x0, x1, x2)(y0, y1, y2)

= (x0 · y0 + x1y2 + y1x2, x0y1 + y0x1 + µ−1(x2 × y2), x2y0 + y2x0 + µ(x1 × y1))

becomes a separable cubic Jordan algebra over F. J(A, µ) is called a first Tits construction.
A+ is a subalgebra of J(A, µ) by canonically identifying it with A0. If A is a cubic etale
algebra, then J(A, µ) ∼= D+ for with D an associative cyclic algebra D of degree three. If A
is a central simple algebra of degree three then J(A, µ) is an Albert algebra.

We define the cubic norm form N : J(A, µ) → F, the trace T : J(A, µ) → F, and the
quadratic map ♯ : J(A, µ) → J(A, µ) (the adjoint) by

N((x0, x1, x2)) = NA(x0) + µNA(x1) + µ−1NA(x2)− TA(x0x1x2)

T((x0, x1, x2)) = TA(x0),

(x0, x1, x2)
♯ = (x♯0 − x1x2, µ−1x♯2 − x0x1, µx♯1 − x2x0).

The intermediate quadratic form S : J(A, µ) → F, S(x0) = N(x; 1), linearizes to a map
S : J(A, µ)× J(A, µ) → F. The sharp map ♯ : J(A, µ)× J(A, µ) → J(A, µ) is the linearization
x♯y = (x + y)♯ − x♯ − y♯ of the adjoint. For every x = (x0, x1, x2) ∈ J(A, µ), we have
x♯1 = T(x)1 − x and

x♯y = (x0♯y0 − x1y2 − y1x2, µ−1(x2♯y2)− x0y1 − y0x1, µ(x1♯y1)− x2y0 − y2x0)

for all x = (x0, x1, x2), y = (y0, y1, y2) ∈ J(A, µ). We define the trace symmetric bilinear
form T : J(A, µ)× J(A, µ) → F, T(x, y) = TA(x0y0) + TA(x1y2) + TA(x2y1). Then, for all
x, y ∈ J(A, µ), we have

T(x, y) = T(xy). (15)

Remark 1. (N, ♯, 1) is a cubic form with adjoint and base point (1, 0, 0) on J(A, µ) which makes
J(A, µ) into a cubic Jordan algebra J(N, ♯, 1).
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3. The Generalized First Tits Construction J(A, µ)

Let A be a separable associative cubic algebra over F with norm NA, trace TA and
adjoint map ♯.

We now generalize the first Tits construction by choosing the scalar µ ∈ A×. Then,
the F-vector space J(A, µ) = A0 ⊕ A1 ⊕ A2, where again Ai = A for i = 0, 1, 2, becomes a
unital non-associative algebra over F together with the multiplication given by

(x0, x1, x2)(y0, y1, y2)

= (x0 · y0 + x1y2 + y1x2, x0y1 + y0x1 + µ−1(x2 × y2), x2y0 + y2x0 + µ(x1 × y1)).

The algebra J(A, µ) is called a generalized first Tits construction. The special Jordan algebra
A+ is a subalgebra of J(A, µ) by canonically identifying it with A0. If µ ∈ F×, then J(A, µ)
is the first Tits construction from Section 2.4.

We define a (generalized) cubic norm map N : J(A, µ) → A, a (generalized) trace T :
J(A, µ) → F, and a quadratic map ♯ : J(A, µ) → J(A, µ) via

N((x0, x1, x2)) = NA(x0) + µNA(x1) + µ−1NA(x2)− TA(x0x1x2) (16)

T((x0, x1, x2)) = TA(x0), (17)

(x0, x1, x2)
♯ = (x♯0 − x1x2, µ−1x♯2 − x0x1, µx♯1 − x2x0). (18)

Put ♯ : J(A, µ)× J(A, µ) → J(A, µ), x♯y = (x + y)♯ − x♯ − y♯; then, it can be verified by a
direct computation that

x♯y = (x0♯y0 − x1y2 − y1x2, µ−1(x2♯y2)− x0y1 − y0x1, µ(x1♯y1)− x2y0 − y2x0)

for all x = (x0, x1, x2), y = (y0, y1, y2) ∈ J(A, µ). We also define a symmetric F-bilinear
form T : J(A, µ)× J(A, µ) → F via T(x, y) = TA(x0y0) + TA(x1y2) + TA(x2y1).

The quadratic form SA : A → F, SA(x0) = NA(x; 1), linearizes to SA : A × A → F,
and we have SA(x0) = TA(x♯0) for all x0 ∈ A. We extend SA to J(A, µ) by defining the
quadratic map S : J(A, a) → A, S(x) = N(x; 1). As in the classical case, we obtain:

Theorem 1.

(i) [11] (Proposition 5.2.2) For all x ∈ J(A, µ), we have S(x) = T(x♯) and the linearization
S : J(A, µ)× J(A, µ) → A satisfies

S(x, y) = T(x)T(y)− T(x, y)

for all y ∈ J(A, µ).
(ii) [11] (Lemma 5.2.3) For all x, y ∈ J(A, µ), we have T(x, Y) = T(xy).
(iii) [11] (Lemma 5.2.3) For all x ∈ J(A, µ), we have x♯1 = T(x)1 − x.

Proof.

(i) Let x = (x0, x1, x2), y = (y0, y1, y2) ∈ J(A, a), then

N(x; y) =NA(x0; y0) + µNA(x1; y1) + µ−1NA(x2; y2)

− TA(x0x1y2)− TA(x0y1x2)− TA(y0x1x2),

and since S(x) = N(x; 1) we obtain S(x) = NA(x0; 1) − TA(x1x2) = SA(x0) −
TA(x1x2). On the other hand,

T(x♯) = TA(x♯0 − x1x2) = TA(x♯0)− TA(x1x2) = SA(x0)− TA(x1x2) = S(x).

We have SA(x0, y0) = TA(x0)TA(y0) − TA(x0, y0) for all x0, y0 ∈ A. Linearizing
S gives S(x, y) = SA(x0, y0)− TA(x1y2)− TA(y1x2) = TA(x0)TA(y0)− TA(x0, y0)−
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TA(x1y2) − TA(y1x2) = T(x)T(y) − T(x, y) using the definitions of TA(xi) and
TA(xi, yi) and the fact that TA(x0, y0) = TA(x0y0).

(ii) Let x = (x0, x1, x2), y = (y0, y1, y2) ∈ J(A, µ). Since TA is linear, we obtain

T(xy) = TA(x0 · y0) + TA(x1y2) + TA(y1x2)

=
1
2
(TA(x0y0) + TA(y0x0)) +

1
2
(TA(x1y2)TA(1)− TA(x1y2))

+
1
2
(TA(y1x2)TA(1)− TA(y1x2)).

By (6) we obtain TA(x0y0) = TA(y0x0) and TA(y1x2) = TA(x2y1). Since we have
TA(1) = 3 we obtain T(xy) = TA(x0y0) + TA(x1y2) + TA(x2y1) = T(x, y).

(iii) Let x = (x0, x1, x2) ∈ J(A, µ). By (10), we have x0♯1 = TA(x0)1 − x0. Thus, x♯1 =
(x0♯1,−x1,−x2) = T(x)1 − x.

Theorem 2. Let µ ∈ A×, and let x, y ∈ J(A, µ). Then,

(i) x♯ = x2 − T(x)x + S(x)1,
(ii) S(x) = T(x♯),
(iii) T(x × y) = 1

2 (T(x)T(y)− T(xy)).

Note that these are relations that also hold for a cubic form with adjoint and base point
(N, ♯, 1) [15,17].

Proof. Let x = (x0, x1, x2), y = (y0, y1, y2) ∈ J(A, µ).

(i) We have that x2 − T(x)x + S(x)1 = (x0, x1, x2)
2 − TA(x0)(x0, x1, x2) + (SA(x0)1 −

TA(x1x2)1, 0, 0) = (x2
0 − TA(x0)x0 + SA(x0)1 + 2x1x2 − TA(x1x2)1,

µ−1x♯2 + 2x0x1 −TA(x0)x1, µx♯1 + 2x2x0 −TA(x0)x2) = (x♯0 − x1x2, µ−1x♯2 − x0x1, µx♯1 −
x2x0) = x♯.

(ii) As for the classical construction,

T(x♯) = TA(x♯0 − x1x2) = TA(x♯0)− TA(x1x2) = SA(x0)− TA(x1x2) = S(x).

(iii) Since x × y = 1
2 (x♯y) = 1

2 (x0♯y0 − x1y2 − y1x2, µ−1(x2♯y2)− x0y1 − y0x1, µ(x1♯y1)−
x2y0 − y2x0), we obtain T(x × y) = TA(x0 × y0) − 1

2 TA(x1y2) − 1
2 TA(y1x2)

= 1
2 (TA(x0)TA(y0)− TA(x0y0)− TA(x1y2)− TA(y1x2)) =

1
2 (T(x)T(y)− T(xy)).

Define operators Ux, Ux,y : J(A, µ) → J(A, µ) via

Ux(y) = T(x, y)x − x♯♯y, Ux,y(z) = Ux+y(z)− Ux(z)− Uy(z)

for all z ∈ J(A, µ).

Proposition 1. (cf. [11] (Proposition 5.2.4) without factor 1
2 because of slightly different terminol-

ogy) For all x, y ∈ J(A, µ), we have xy = 1
2 Ux,y(1).

This generalizes the classical setup. Our proof is different to the one of [11] (Proposi-
tion 5.2.4), which also proves this result without the factor 1

2 because of the slightly different
definition of the multiplication.
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Proof. We find that Ux(1) = T(x, 1)x − x♯♯1 = T(x)x − T(x♯)1+ x♯; in the second equality,
we have used Theorem 1 and the fact that T(x, 1) = T(x) by Theorem 1. So

Ux,y(1) = Ux+y(1)− Ux(1)− Uy(1)

= T(x + y)(x + y)− T((x + y)♯)1 + (x + y)♯ − T(x)x + T(x♯)1 − x♯

− T(y)y + T(y♯)1 − y♯

= T(x)y + T(y)x + x♯y − T(x♯y)1.

We look at the first component of xy and Ux,y(1): let x = (x0, x1, x2) and y = (y0, y1, y2).
Then, the first component of Ux,y(1) = T(x)y + T(y)x + x♯y − T(x♯y)1 is

TA(x0)y0 + TA(y0)x0 + x0♯y0 − x1y2 − y1x2 − TA(x0♯y0 − x1y2 − y1x2)1. (19)

Using (10), the linearity of TA and (6), we obtain—after some simplification—that (19) is
equal to

2(x0 · y0) + TA(x1y2)− x1y2 + TA(y1x2)− y1x2 = 2(x0 · y0) + 2 x1y2 + 2 y1x2.

This is equal to 2 times the first component of xy. Now, we look at the second component
of xy and Ux,y(1): the second component of Ux,y(1) = T(x)y + T(y)x + x♯y − T(x♯y)1 is

TA(x0)y1 + TA(y0)x1 + µ−1(x2♯y2)− x0y1 − y0x1 = 2x0y1 + 2y0x1 + 2µ−1(x2 × y2).

This is precisely equal to 2 times the second component of xy. Finally, the third component
of 2xy and Ux,y(1) are equal, too. The third component of Ux,y(1) = T(x)y+ T(y)x + x♯y−
T(x♯y)1 is

TA(x0)y2 + TA(y0)x2 + µ(x1♯y1)− x2y0 − y2x0 = 2x2y0 + 2y2x0 + 2µ(x1 × y1).

This is precisely equal to 2 times the third component of xy.

Theorem 3. If µ ∈ A× and A ̸= F, then Nucl(J(A, µ)) = Nucr(J(A, µ)) = F.

Proof. Let (x0, x1, x2) ∈ Nucl(J(A, µ)), then

(x0, x1, x2)[(0, 1, 0)(0, 0, 1)] = [(x0, x1, x2)(0, 1, 0)](0, 0, 1)

implies that
(x0, x1, x2) = (x0, µ−1(µx1), x2),

that means x0 = x0 and x2 = x2. Using the definition of x0, we obtain x0 = 1
4 (TA(x0) + x0),

so x0 = 1
4 (TA(x0) + x0). Thus, x0 = 1

3 TA(x0) ∈ F. Furthermore, since x2 = x2, we find
in a similar way that x2 = 1

3 TA(x2) ∈ F. Next, since x = (x0, x1, x2) ∈ Nucl(J(A, µ)), we
have that

(x0, x1, x2)[(0, 0, 1)(0, 1, 0)] = [(x0, x1, x2)(0, 0, 1)](0, 1, 0).

This implies that
(x0, x1, x2) = (x0, x1, µ(µ−1x2)),

and so x1 = x1. We now find in a similar way that x1 = 1
3 TA(x1) ∈ F, thus Nucl(J(A, µ)) ⊆

{(x0, x1, x2) ∈ J | x0, x1, x2 ∈ F}. Let x = (x0, x1, x2) ∈ Nucl(J(A, µ)), and let
a ∈ A \ F. Then

(x0, x1, x2)[(0, 0, 1)(0, a, 0)] = [(x0, x1, x2)(0, 0, 1)](0, a, 0)

which implies that
(x0 · a, ax1, x2a) = (ax0, x1a, µ(µ−1x2 × a)),
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and so ax1 = x1a. Assume towards a contradiction that x1 ̸= 0. Since x1 ∈ F, this implies
that x1 is invertible and x1 = x1. Thus, the condition ax1 = x1a yields a = a, and so
a = 1

3 TA(a) ∈ F which is a contradiction. Next, since (x0, x1, x2) ∈ Nucl(J(A, µ)), we
know that

(x0, x1, x2)[(0, 1, 0)(0, 0, a)] = [(x0, x1, x2)(0, 1, 0)](0, 0, a)

which implies that
(x0 · a, ax1, x2a) = (x0a, µ−1(µx1 × a), ax2),

and so x2a = ax2. Assume towards a contradiction that x2 ̸= 0. Then, since x2 ∈ F,
x2 is invertible and x2 = x2. Thus, the condition x2a = ax2 yields a = a, and so
a = 1

3 TA(a) ∈ F which is a contradiction. Therefore, x = (x0, 0, 0), x01 ∈ F which
shows that Nucl(J(A, µ)) = F.

Let (x0, x1, x2) ∈ Nucr(J(A, µ)). Then,

(0, 0, 1)[(0, 1, 0)(x0, x1, x2)] = [(0, 0, 1)(0, 1, 0)](x0, x1, x2)

implies that
(x0, µ−1(µx1), x2) = (x0, x1, x2).

Hence, x0 = x0 and x2 = x2. Using the definition of x0, we find that x0 = 1
4 (TA(x0) + x0),

so the condition x0 = x0 gives that x0 = 1
4 (TA(x0) + x0). Thus, x0 = 1

3 TA(x0) ∈ F.
Furthermore, since x2 = x2, we find in a similar way that x2 = 1

3 TA(x2) ∈ F. Next, since
x = (x0, x1, x2) ∈ Nucr(J(A, µ)), we have that

(0, 1, 0)[(0, 0, 1)(x0, x1, x2)] = [(0, 1, 0)(0, 0, 1)](x0, x1, x2).

This implies that
(x0, x1, µ(µ−1x2)) = (x0, x1, x2),

and thus x1 = x1. We find in a similar way that x1 = 1
3 TA(x1) ∈ F, i.e. Nucr(J(A, µ)) ⊆

{(x0, x1, x2) ∈ J | x0, x1, x2 ∈ F}.
Let x = (x0, x1, x2) ∈ Nucr(J(A, µ)), and let a ∈ A \ F. Then, (0, a, 0)[(0, 0, 1)(x0, x1, x2)]

= [(0, a, 0)(0, 0, 1)](x0, x1, x2) which implies that

(ax0, x1a, µ(a × µ−1x2)) = (a · x0, ax1, x2a);

therefore, ax1 = x1a. Assume towards a contradiction that x1 ̸= 0. Then, since x1 ∈ F, x1 is
invertible and x1 = x1. Thus, the condition ax1 = x1a yields a = a, and so a = 1

3 TA(a) ∈ F
which is a contradiction. Next, since (x0, x1, x2) ∈ Nucr(J(A, µ)), we know that

(0, 0, a)[(0, 1, 0)(x0, x1, x2)] = [(0, 0, a)(0, 1, 0)](x0, x1, x2)

which implies that
(x0a, µ−1(a × µx1), ax2) = (a · x0, ax1, x2a),

and so x2a = ax2. Assume towards a contradiction that x2 ̸= 0. Then, since x2 ∈ F, x2 is
invertible and x2 = x2. Thus, the condition x2a = ax2 yields a = a, and so a = 1

3 TA(a) ∈ F
which is a contradiction. Therefore, x = (x0, 0, 0) = x01 ∈ F which shows the assertion.

Theorem 4. Let A ̸= F be a central simple division algebra of degree three and µ ∈ A×. Then,
Nucm(J(A, µ)) = F.

Proof. Let x = (x0, x1, x2) ∈ Nucm(J(A, µ)), and let y0 /∈ C(A). Then, there exists z0 ∈ A
such that y0z0 ̸= z0y0. Since (x0, x1, x2) ∈ Nucm(J(A, µ)), we know that

(y0, 0, 0)[(x0, x1, x2)(z0, 0, 0)] = [(y0, 0, 0)(x0, x1, x2)](z0, 0, 0)
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which implies that

(y0 · (x0 · z0), y0(z0x1), (x2z0)y0) = ((y0 · x0) · z0, z0(y0x1), (x2y0)z0).

Comparing the second and third components yields

y0(z0x1) = z0(y0x1), (20)

(x2z0)y0 = (x2y0)z0. (21)

Now, assume towards a contradiction that x1 ̸= 0. Since A is a division algebra, x1 is
invertible. Since A is associative, (20) implies that y0 z0 = z0 y0. By definition, this yields

(TA(y0)1 − y0)(TA(z0)1 − z0) = (TA(z0)1 − z0)(TA(y0)1 − y0).

Hence, y0z0 = z0y0 which is a contradiction. Now, in a similar way we assume towards
a contradiction that x2 ̸= 0. Then, since A is a division algebra, x2 is invertible. Since
A is associative, (21) implies again that y0 z0 = z0 y0. Hence, y0z0 = z0y0 which is a
contradiction. Next, since x = (x0, 0, 0) ∈ Nucm(J(A, µ)), we also have that

(0, 1, 0)[(x0, 0, 0)(0, 0, y2)] = [(0, 1, 0)(x0, 0, 0)](0, 0, y2)

for each y2 ∈ A. This implies (y2x0, 0, 0) = (x0y2, 0, 0), and so y2x0 = x0y2. By definition,
this means that

1
2

TA(y2x0)1 −
1
2

y2x0 =
1
2

TA(x0y2)1 −
1
2

x0y2. (22)

We know that TA(y2x0) = TA(x0y2) (see (6)), and so (22) gives that y2x0 = x0y2. By
using the definition of y2, this implies that y2x0 = x0y2. Hence, x0 ∈ C(A). Therefore,
x = (x0, 0, 0) = x01 ∈ C(A). Since F ⊆ Nucm(J(A, µ)) this implies the assertion if A is a
central simple division algebra.

Theorem 5. ([18] (Chapter IX, Section 12), [15] (Chapter C.5)) For µ ∈ F×, J(A, µ) is a division
algebra if and only if µ /∈ NA(A×) and A is a division algebra, if and only if N is anisotropic.

The general situation is much harder to figure out and we were only able to obtain
some obvious necessary conditions:

Theorem 6. Let µ ∈ A×.

(i) If J(A, µ) is a division algebra, then µ /∈ NA(A×) and A is a division algebra.
(ii) Let A be a division algebra over F. If 1, µ, µ2 are linearly independent over F then N is

anisotropic.
(iii) If N is anisotropic then A is a division algebra and µ /∈ NA(A×).
(iv) Let 0 ̸= x = (x0, x1, x2) ∈ J(A, µ). Then, x♯ = 0 implies that A has zero divisors, or A is a

division algebra and µ ∈ NA(A×).

Proof.

(i) Suppose that J(A, µ) is a division algebra, then so is A+ and thus A (Lemma 1).
Assume towards a contradiction that µ = NA(x0)1 for some x0 ∈ A×. Then, µ ∈ F×

and J(A, µ) is not a division algebra by Theorem 5. Hence, µ /∈ NA(A)1.
(ii) Since A is a division algebra, NA is anisotropic. So, let N((x0, x1, x2)) = 0; then, the

assumption means that N(x0) = 0, which implies that x0 = 0. This immediately
means that x1 = x2 = 0, too.

(iii) If N is anisotropic, then so is NA; so, A is clearly a division algebra. Moreover,
µ /∈ NA(A×) by Theorem 5.
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(iv) Let 0 ̸= x = (x0, x1, x2) ∈ J(A, µ). Then, x♯ = 0 implies that

x♯0 = x1x2 (23)

µ−1x♯2 = x0x1 (24)

µx♯1 = x2x0. (25)

We can now multiply (23) (resp. (24), (25)) by x0 (resp. x2, x1) on the right and left to
obtain two new equations. Additionally, using the fact that NA(xi) = xix

♯
i = x♯i xi for

all i = 0, 1, 2, we obtain the following six equations:

NA(x0) = x1x2x0

µ−1NA(x2) = x0x1x2

µNA(x1) = x2x0x1

NA(x0) = x0x1x2

µ−1NA(x2) = x2x0x1

µNA(x1) = x1x2x0.

(26)

These imply that NA(x0) = µ−1NA(x2) = µNA(x1). This means that either NA(x0) =
µ−1NA(x2) = µNA(x1) = 0 and so NA is isotropic, or NA(x0) = µ−1NA(x2) =
µNA(x1) ̸= 0 and NA is anisotropic. In the later case, x0, x1, x2 are all invertible in
A, NA(xi) ̸= 0 for all i = 0, 1, 2 and it follows that µ ∈ NA(A×). This proves the
assertion.

In other words: If A is a division algebra and µ ̸∈ NA(A×), 0 ̸= x = (x0, x1, x2) ∈
J(A, µ), then x♯ ̸= 0. Note that (iv) was a substantial part of the classical result that if
µ ∈ F×, µ /∈ NA(A×) and A is a division algebra, then N is anisotropic. What is missing
in order to generalize this result to the generalized first Tits construction is the adjoint
identity (x♯)♯ = N(x)x. This identity only holds in very special cases—see Lemma 4
below. It would be of course desirable to have conditions on when (or if at all) J(A, µ) is a
division algebra.

4. Some More Identities

Lemma 2. Let x = (x0, x1, x2), y = (y0, y1, y2), z = (z0, z1, z2) ∈ J(A, µ) be such that one of
x1, y1, z1 is equal to zero and one of x2, y2, z2 is equal to zero. Then, T(x × y, z) = T(x, y × z).

Proof. We find that

T(x × y, z) =
1
2

TA((x0♯y0)z0 − x1y2z0 − y1x2z0)

+
1
2

TA(µ
−1(x2♯y2)z2 − x0y1z2 − y0x1z2) (27)

+
1
2

TA(µ(x1♯y1)z1 − x2y0z1 − y2x0z1)

and

T(x, y × z) =
1
2

TA(x0(y0♯z0)− x0y1z2 − x0z1y2)

+
1
2

TA(x1µ(y1♯z1)− x1y2z0 − x1z2y0) (28)

+
1
2

TA(x2µ−1(y2♯z2)− x2y0z1 − x2z0y1).

Using the definitions, we can show that TA((x0♯y0)z0) = TA(x0(y0♯z0)). Furthermore,
since one of x1, y1, z1 is equal to zero, we have that TA(µ(x1♯y1)z1) = 0 = TA(x1µ(y1♯z1)).
Finally, since one of x2, y2, z2 is equal to zero, TA(µ

−1(x2♯y2)z2) = 0 = TA(x2µ−1(y2♯z2)).
Therefore, applying these equalities and using (6), we deduce that (27) and (28) are equal,
so T(x × y, z) = T(x, y × z).
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We know that xx♯ = x♯x = N(x)1 holds for all x ∈ J(A, µ) if µ ∈ F×. We now show
for which x ∈ J(A, µ) we still obtain xx♯ = x♯x = N(x)1:

Lemma 3. Let µ ∈ A× and suppose that x ∈ J(A, µ), such that one of the following holds:

(i) x = (x0, 0, x2) ∈ J(A, µ), x0µ = µx0 and NA(x2) = 0.
(ii) x = (x0, x1, 0) ∈ J(A, µ), x1µ = µx1 and NA(x1) = 0.

Then, we have
xx♯ = x♯x = N(x)1. (29)

Moreover, assume that one of the following holds:
(iii) x = (x0, 0, x2) ∈ J(A, µ), x0µ = µx0 and NA(x2) ̸= 0.
(iv) x = (x0, x1, 0) ∈ J(A, µ), x1µ = µx1 and NA(x1) ̸= 0.

Then, xx♯ = x♯x = N(x)1 if and only if µ ∈ F×.

Proof. Let x = (x0, x1, x2) ∈ J(A, µ), and let xx♯ = (a0, a1, a2); then, x♯ = (x♯0 − x1x2, µ−1x♯2
−x0x1, µx♯1 − x2x0). Thus, we have

a0 =
1
2
(x0x♯0 − x0x1x2 + x♯0x0 − x1x2x0)

+
1
2
(TA(x1µx♯1 − x1x2x0)1 − x1µx♯1 + x1x2x0) (30)

+
1
2
(TA(µ

−1x♯2x2 − x0x1x2)1 − µ−1x♯2x2 + x0x1x2),

a1 =
1
2
(TA(x0)− x0)(µ

−1x♯2 − x0x1) +
1
2
(TA(x♯0 − x1x2)− x♯0 + x1x2)x1

+ µ−1(x2 × (µx♯1 − x2x0)), (31)

a2 =
1
2

x2(TA(x♯0 − x1x2)− x♯0 + x1x2) +
1
2
(µx♯1 − x2x0)(TA(x0)− x0)

+ µ(x1 × (µ−1x♯2 − x0x1)) (32)

by the definition of the multiplication on J(A, µ).

(i) If x1 = 0 and NA(x2) = 0, using the fact that xix
♯
i = x♯i xi = NA(xi)1 for all i = 0, 1, 2

(see (5)), (30) simplifies to a0 = NA(x0)1 = N(x). Since we have x0µ−1 = µ−1x0, (31)
gives that a1 = 1

2 µ−1(TA(x0)− x0)x♯2 − µ−1(x2 × (x2x0)). By (10),

x♯2♯x0 = x♯2x0 + x0x♯2 − TA(x♯2)x0 − TA(x0)x♯2 + (TA(x♯2)TA(x0)− TA(x♯2x0))1. (33)

Using the fact that TA(x♯2) = SA(x2) (by (8)) on the right-hand side of (33), we further
obtain after some simplification that

x♯2♯x0 = x2
2x0 − TA(x2)x2x0 + x0x♯2 − TA(x0)x♯2 − TA(x2

2x0)1 + TA(x2x0)1. (34)

Now, combining (13) with (34) yields TA(x0)x♯2 − x0x♯2 = x2
2x0 + x2x0x2 −TA(x2)x2x0 −

TA(x2x0)x2 + (TA(x2)TA(x2x0) − TA(x2
2x0))1 = 2(x2 × (x2x0)), so x2 × (x2x0)

= 1
2 (TA(x0)x♯2 − x0x♯2). Hence, (4) implies a1 = 0. For a2, (32) yields a2 = 1

2 x2(TA(x♯0)−
x♯0)−

1
2 x2(TA(x0)x0 − x2

0). Then, using the definition of x♯0 and the fact that 2SA(x0) =

TA(x0)
2 − TA(x2

0), we find that TA(x♯0)− x♯0 = TA(x0)x0 − x2
0. Therefore, a2 = 0.

(ii) In this case, we have x2 = 0, x1µ = µx1 and NA(x1) = 0. So, (30) simplifies to a0 =

NA(x0)1 = N(x). For a1, (31) simplifies to a1 = − 1
2 (TA(x0)x0 − x2

0)x1 +
1
2 (TA(x♯0)−

x♯0)x1. Then, in a similar way to how we found a2 in (i), we find here that a1 = 0.
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For a2, (32) simplifies to a2 = 1
2 µx♯1(TA(x0)− x0)− µ(x1 × (x0x1)). We now find in a

similar way to how we found a1 in (i) that a2 = 0.
To prove that the claimed equivalence holds assuming (iii) or (iv), we only need to
show the forward direction since we know from the classical first Tits construction
that the reverse direction holds:

(iii) Here, (30) yields a0 = NA(x0)1 + 1
2 (TA(µ

−1)NA(x2) − µ−1NA(x2)); thus, xx♯ =

N(x)1 = (NA(x0)1 + µ−1NA(x2))1 gives that NA(x0)1 + 1
2 (TA(µ

−1)
NA(x2) − µ−1NA(x2)) = a0 = NA(x0)1 + µ−1NA(x2). Therefore, we have µ−1 =
1
3 TA(µ

−1) ∈ F×, so µ ∈ F×.
(iv) In this case, (30) yields a0 = NA(x0)1 + 1

2 (TA(µ)NA(x1) − µNA(x1)); thus, xx♯ =

N(x)1 = (NA(x0)1 + µNA(x1))1 yields NA(x0)1 + 1
2 (TA(µ)NA(x1) − µNA(x1)) =

a0 = NA(x0)1 + µNA(x1). Therefore, we obtain µ = 1
3 TA(µ) ∈ F×. The proof that

x♯x = N(x)1 is performed similarly.

Corollary 1. Let µ ∈ A×. Suppose that x ∈ J(A, µ) satisfies N(x) ̸= 0, and assume that one of
the following holds:

(i) x = (x0, x1, 0) ∈ J(A, µ), x1µ = µx1 and NA(x1) = 0.
(ii) x = (x0, 0, x2) ∈ J(A, µ), x0µ = µx0 and NA(x2) = 0.

Then, x is invertible in J(A, µ) with x−1 = N(x)−1x♯.

Proof. Let µ ∈ A× and suppose that x ∈ J(A, µ) satisfies (i) or (ii); then, xx♯ = x♯x =
N(x)1. Since F = C(J(A, µ)) this yields the assertion.

In particular, if N is anisotropic, then every 0 ̸= xx = (x0, x1, 0) ∈ J(A, µ) in (i) or
(ii) is of the type x = (x0, 0, 0) ∈ J(A, µ), i.e., lies in A; so, this result then becomes trivial.

Corollary 2. Let µ ∈ A× and suppose that x ∈ J(A, µ), such that one of the following holds:

(i) x = (x0, 0, x2) ∈ J(A, µ), x0µ = µx0 and NA(x2) = 0.
(ii) x = (x0, x1, 0) ∈ J(A, µ), x1µ = µx1 and NA(x1) = 0.

Then, we have
x3 − T(x)x2 + S(x)x − N(x)1 = 0.

Proof. Using the fact that x♯ = x2 − T(x)x + S(x)1 from Theorem 2 (i), we have that
x3 − T(x)x2 + S(x)x − N(x)1 = 0 if and only if xx♯ = x♯x = N(x)1. Thus, the result now
follows as a consequence of Lemma 3.

Theorem 7. The identity xx♯ = x♯x = N(x)1 holds for all x ∈ J(A, µ) if and only if µ ∈ F×.

Proof. If µ ∈ F×, then xx♯ = x♯x = (N(x), 0, 0) for all x ∈ J(A, µ). Conversely, suppose
that xx♯ = x♯x = (N(x), 0, 0) holds for all x ∈ J(A, µ). Take x = (0, 1, 0). Then, x♯ =
(0, 0, µ), and so

xx♯ = (µ̄, 0, 0) = (
1
2
(TA(µ)1 − µ), 0, 0).

We also know that by definition, N(x) = µNA(1) = µ, so the condition xx♯ = (N(x), 0, 0)
gives that µ = 1

2 (TA(µ)1 − µ). Hence µ = 1
3 TA(µ)1 ∈ F×.

We know that the adjoint identity (x♯)♯ = N(x)x holds for all x ∈ J(A, µ),
if µ ∈ F× [15] (Chapter C.4). In the general construction, it holds only in very special cases:

Lemma 4. Let µ ∈ A× and suppose that x ∈ J(A, µ), such that one of the following holds:

(i) x = (0, x1, 0) ∈ J(A, µ) and NA(x1) = 0.
(ii) x = (x0, x1, 0) ∈ J(A, µ) and NA(x1) = 0 and x1µ = µx1.
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(iii) x = (x0, 0, x2) ∈ J(A, µ) and NA(x2) = 0 and x0µ = µx0.
Then, we have (x♯)♯ = N(x)x.
Moreover, if one of the following holds:

(iv) x = (x0, x1, 0) ∈ J(A, µ), NA(x1) ̸= 0, x0µ = µx0 and x1µ = µx1.
(v) x = (x0, 0, x2) ∈ J(A, µ), NA(x2) ̸= 0, x0µ = µx0 and x2µ = µx2.

Then, (x♯)♯ = N(x)x for all x ∈ J(A, µ) if and only if NA(µ) = µ3.

Proof. Let x = (x0, x1, x2) ∈ J(A, µ) and (x♯)♯ = (a0, a1, a2). By definition, x♯ = (x♯0 −
x1x2, µ−1x♯2 − x0x1, µx♯1 − x2x0), so a0 = (x♯0 − x1x2)

♯ − (µ−1x♯2 − x0x1)(µx♯1 − x2x0). Now,
using (9) and (10), it is easy to show that

(x♯0 − x1x2)
♯ = (x♯0 − x1x2)

2 − TA(x♯0 − x1x2)(x♯0 − x1x2) + SA(x♯0 − x1x2)

= (x♯0)
♯ − x♯0♯(x1x2) + (x1x2)

♯.

Hence,

a0 = (x♯0 − x1x2)
♯ − (µ−1x♯2 − x0x1)(µx♯1 − x2x0)

= (x♯0)
♯ − x♯0♯(x1x2) + (x1x2)

♯ − µ−1x♯2µx♯1 + µ−1x♯2x2x0 + x0x1µx♯1 − x0x1x2x0. (35)

Similarly, we find that

a1 = µ−1(µx♯1 − x2x0)
♯ − (x♯0 − x1x2)(µ

−1x♯2 − x0x1)

= µ−1((µx♯1)
♯ − (µx♯1)♯(x2x0) + (x2x0)

♯)

− x♯0µ−1x♯2 + x♯0x0x1 + x1x2µ−1x♯2 − x1x2x0x1 (36)

and

a2 = µ(µ−1x♯2 − x0x1)
♯ − (µx♯1 − x2x0)(x♯0 − x1x2)

= µ((µ−1x♯2)
♯ − (µ−1x♯2)♯(x0x1) + (x0x1)

♯)

− µx♯1x♯0 + µx♯1x1x2 + x2x0x♯0 − x2x0x1x2. (37)

(i) Here, x0 = x2 = 0; therefore, (35) implies a0 = 0 and (36) gives that a1 = µ−1(µx♯1)
♯ =

µ−1NA(x1)x1µ♯ = 0 = N(x)x1. Finally, (37) gives that a2 = 0 as required.
(ii) Since x2 = 0, x1µ = µx1 and NA(x1) = 0, we find by (35) that a0 = (x♯0)

♯ + x0µx1x♯1 =

NA(x0)x0 + x0µNA(x1) = N(x)x0. Now, (36) gives that a1 = µ−1(µx♯1)
♯ + x♯0x0x1 =

µ−1NA(x1)x1µ♯ + NA(x0)x1 = N(x)x1, and by (37), we obtain a2 = µ(x0x1)
♯ −

µx♯1x♯0 = 0 = N(x)0.
(iii) Since x1 = 0 and NA(x2) = 0, (35) yields a0 = (x♯0)

♯ + µ−1x♯2x2x0 = NA(x0)x0 +

µ−1NA(x2)x0 = N(x)x0. Now, since x0µ−1 = µ−1x0, we have that x♯0µ−1 = µ−1x♯0,
so (36) gives that a1 = µ−1(x2x0)

♯ − µ−1x♯0x♯2 = 0 = N(x)0. Finally, (37) gives that
a2 = µ(µ−1x♯2)

♯ + x2x0x♯0 = µNA(x2)x2(µ
−1)♯ + NA(x0)x2 = N(x)x2.

(iv) Since x2 = 0, x0µ = µx0 and x1µ = µx1, (35) yields a0 = (x♯0)
♯ + µx0x1x♯1 =

NA(x0)x0 + µNA(x1)x0 = N(x)x0. Now, (37) gives that a2 = µ(x0x1)
♯ − µx♯1x♯0 = 0.

Finally, (36) gives that a1 = µ−1(µx♯1)
♯ + x♯0x0x1 = µ−1NA(x1)x1µ♯ + NA(x0)x1. Thus,

a1 = N(x)x1 if and only if µ−1NA(x1)x1µ♯ + NA(x0)x1 = N(x)x1, which occurs if
and only if µ−1NA(x1)x1µ♯ = µNA(x1)x1. Since NA(x1) ̸= 0 and x1µ♯ = µ♯x1, this
occurs if and only if µ♯x1 = µ2x1. Finally, NA(x1) ̸= 0 implies that x1 is invertible, so
µ♯x1 = µ2x1 if and only if NA(µ) = µµ♯ = µ3.
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(v) Since x1 = 0, (35) yields a0 = (x♯0)
♯ + µ−1x♯2x2x0 = N(x)x0. Furthermore, since

x0 commutes with µ, x♯0 commutes with µ. So, x♯0µ−1 = µ−1x♯0. Hence, (36) gives
that a1 = µ−1(x2x0)

♯ − µ−1x♯0x♯2 = 0 = N(x)0. Finally, (37) yields a2 = µ(µ−1x♯2)
♯ +

x2x0x♯0 = µNA(x2)x2(µ
−1)♯ + NA(x0)x2. Thus, a2 = N(x)x2 if and only if

µNA(x2)x2(µ
−1)♯+ NA(x0)x2 = N(x)x2, which occurs if and only if µNA(x2)x2(µ

−1)♯

= µ−1NA(x2)x2. Since NA(x2) ̸= 0 and x2(µ
−1)♯ = (µ−1)♯x2, this occurs if and

only if (µ−1)♯x2 = µ−2x2. Finally, NA(x2) ̸= 0 implies that x2 is invertible, so
(µ−1)♯x2 = µ−2x2 if and only if NA(µ

−1) = µ−1(µ−1)♯ = µ−3. This is equivalent to
NA(µ) = µ3.

Proposition 2. Let A be a central simple algebra over F. Then, (x♯)♯ = N(x) for all x ∈ J(A, µ)
if and only if µ ∈ F×.

Proof. Let µ ∈ F× then by Lemma 4, the adjoint identity holds for all x ∈ J(A, µ). Suppose
now that the adjoint identity holds for all x ∈ J(A, µ). Let x = (x0, 1, 0) ∈ J(A, µ) for some
x0 ∈ A. Then, x♯ = (x♯0,−x0, µ) and so

(x♯)♯ = ((x♯0)
♯ + x0µ, µ−1µ♯ + (x♯0)

♯x0, 0). (38)

Furthermore, N(x) = NA(x0)1 + µ. Since the adjoint identity holds by assumption, we see
that by using (38),

((x♯0)
♯ + x0µ, µ−1µ♯ + (x♯0)

♯x0, 0) = (NA(x0)x0 + µx0, NA(x0) + µ, 0). (39)

We know that (x♯0)
♯ = NA(x0)x0 for all x0 ∈ A by (12), and so by comparing the first

components of (39), we find that x0µ = µx0 for all x0 ∈ A. Hence, µ ∈ C(A), and since A is
a central simple algebra by assumption, µ ∈ F×.

If µ ∈ F×, then the norm N permits Jordan composition, i.e. N(Uxy) = NA(x)2N(y) for
all x, y ∈ J(A, a). The following result is a corrected version of [11] (Theorem 5.2.5), and a
weak generalization of the Jordan composition for µ ∈ A× \ F:

Theorem 8. Let x = (x0, 0, 0) ∈ A, y = (y0, y1, y2) ∈ J(A, µ) and suppose that one of the
following holds:

(i) TA(y0y1y2) = TA(NA(y0)x♯0y1y2x♯0).
(ii) y0y1y2 = NA(y0)x♯0y1y2x♯0.
(iii) yi = 0 for some i = 0, 1, 2.

Then, N(Ux(y)) = N(x)2N(y).

Proof. Using the definitions, we see that T(x, y) = TA(x0y0) and x♯♯y = (x♯0♯y0,−x♯0y1,−y2x♯0).
So Ux(y) = T(x, y)x − x♯♯y = (Ux0(y0), x♯0y1, y2x♯0). This yields

N(Ux(y)) = NA(Ux0(y0))1 + µNA(x♯0y1) + µ−1NA(y2x♯0)− TA(Ux0(y0)x♯0y1y2x♯0)1

= NA(x0)
2(NA(y0)1 + µNA(y1) + µ−1NA(y2)− TA(NA(y0)x♯0y1y2x♯0)1)

= N(x)2(N(y) + TA(y0y1y2)1 − TA(NA(y0)x♯0y1y2x♯0)1),

where in the second equality we have used the fact that NA(x♯0) = NA(x0)
2, and that

NA(Ux0(y0)) = NA(x0)
2NA(y0). Therefore, N(Ux(y)) = N(x)2N(y), if and only if

TA(y0y1y2)1 = TA(NA(y0)x♯0y1y2x♯0).
(ii) and (iii) are examples where this is the case.
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Remark 2. Let f : J(A, µ) → J(A, µ) be an automorphism. Then,

f ((x0, x1, x2)) = f ((x0, 0, 0)) + f ((0, x1, 0)) + f ((0, 0, x2)). (40)

Now, for each x ∈ A, we have f ((0, x, 0)) = f ((x, 0, 0)) f ((0, 1, 0),
and f ((0, 0, x)) = f ((x, 0, 0)) f ((0, 0, 1)). On the other hand, by using the definition of x,

f ((0, x, 0)) =
1
2

TrA(x) f ((0, 1, 0))− 1
2

f ((0, x, 0)),

f ((0, 0, x)) =
1
2

TrA(x) f ((0, 0, 1))− 1
2

f ((0, 0, x)).

Hence,

f ((0, x, 0)) = f ((0, 1, 0))(TrA(x)− 2 f ((x, 0, 0))), (41)

f ((0, 0, x)) = f ((0, 0, 1))(TrA(x)− 2 f ((x, 0, 0))). (42)

So, by (40)–(42), we see that any automorphism of J(A, µ) is determined by its restriction on A+,
and its value on (0, 1, 0) and (0, 0, 1). Let f : J(A, µ) → J(A, µ) be an automorphism that fixes
A+; then, f |A+ = τ is either an automorphism or an anti-automorphism of A. Moreover, clearly
f ((1, 0, 0)) = (1, 0, 0), so

f ((x0, x1, x2)) = (τ(x0), 0, 0) + (τ(x1), 0, 0) f ((0, 1, 0)) + (τ(x2), 0, 0) f ((0, 0, 1)).

Calculation to try gain some deeper understanding on the automorphisms are tedious and did not
lead us anywhere so far.

5. The Nine-Dimensional Non-Associative Algebras J(K, µ)

Let K/F be a separable cubic field extension with Gal(K/F) = ⟨σ⟩, norm NK, and
trace TK. For all x0 ∈ K, we have x♯0 = σ(x0)σ

2(x0) and x0 = 1
2 (σ(x0) + σ2(x0)). Assume

µ ∈ K×.
Let us compare the first Tits construction J(K, µ) with the algebra D+ for a (perhaps

non-associative) cyclic algebra D = (K/F, σ, µ) over F of degree three. Consider D as
a left K-vector space with basis {1, z, z2}. Write Rx for the matrix of right multiplication
by x = x0 + x1z + x2z2, xi ∈ K, with respect to the basis {1, z, z2}, then the cubic map
ND : D → K, ND(x) = det(Rx) (which is the reduced norm of the central simple algebra D
if µ ∈ F×), is given by

ND(x) = NK(x0) + µNK(x1) + µ2NK(x2)− µTK(x0σ(x1)σ
2(x2)).

If ND is anisotropic then D is a division algebra over F. If µ ∈ K \ F, we obtain ND(lx) =
NK(l)ND(x) for all x ∈ D, l ∈ K [11] (Propositions 4.2.2 and 4.2.3).

On the other hand, J(K, µ) is a nine-dimensional non-associative unital algebra over F
with multiplication

xy = (x0 · y0 + x1y2 + x2y1, x0y1 + y0x1 + µ−1(x2 × y2), x0y2 + y0x2 + µ(x1 × y1))

for x = (x0, x1, x2), y = (y0, y1, y2) ∈ J(K, µ), cubic norm map

N((x0, x1, x2)) = NK(x0) + µNK(x1) + µ−1NK(x2)− TK(x0x1x2),

and trace T(x) = TK(x0). Moreover, we have

x♯ = (σ(x0)σ
2(x0)− x1x2, µ−1σ(x2)σ

2(x2)− x0x1, µσ(x1)σ
2(x1)− x2x0).
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If µ ∈ F×, then D = (K/F, σ, µ) is an associative cyclic algebra over F of degree three and
J(K, µ) ∼= D+ is a special cubic Jordan algebra. It is well known that the isomorphism
G : D+ = (K/F, σ, µ)+ → J(K, µ) is given by

x0 + x1z + x2z2 7→ (x0, σ(x1), µσ2(x2)).

However, if µ ∈ K \ F, then the map G : D+ → J(K, µ) is not an algebra isomorphism
between (K/F, σ, µ)+ and J(K, µ), where now (K/F, σ, µ) is a non-associative cyclic algebra,
since σ(µ) ̸= µ. However, for µ ∈ K \ F, the map G : D+ → J(K, µ) still yields an isometry
of norms, since

N((x0, σ(x1), µσ2(x2)) = NK(x0) + µNK(x1) + µ−1NK(x2)− µTK(x0σ(x1)σ(x2))

= ND((x0, x1, x2));

hence, the norms of the two nonisomorphic non-associative algebras D+ = (K/F, σ, µ)+

and J(K, µ) are isometric.

6. Conclusions

We looked at the following canonical question: “what happens if we choose the
element µ that is used in the first Tits construction J(A, µ) in A× instead of in F×?” We
showed that the basic ingredients for an interesting theory are in place: our new algebras
J(A, µ) carry maps that can be understood as generalizations of the classical norms and
traces, and that behave surprisingly similar to the norms and traces of their classical
counterparts; we have a function N on J(A, µ) that extends the cubic norm of A (however,
it has values in A), a trace function T : J(A, µ) → F, and a quadratic map ♯ : J(A, µ) →
J(A, µ). Operations like x♯y can easily be defined. Some of the main identities from the
classical setup hold (Theorems 1 and 2), some others hold only for some elements, e.g.,
Lemmas 2 and 3, Corollaries 1 and 2, but not in general, and some hold if—and only
if—µ ∈ F× (Proposition 2, Theorem 7), i.e., they hold only in the classical case.

It seems a hard problem to check when the algebras J(A, µ) are division algebras.
It would also be interesting to compute their automorphisms; however, we expect the
automorphism group to be “small”. Here is one indication as to why this is the case: For
Albert algebras over fields F of characteristic not 2 or 3, we know that the similarities
of their norms are given either by scalar multiplications or the U operators [4]. Using
Theorem 8 (iii), we see that for J(A, µ) with µ ∈ A× \ F, scalar multiplications still give
similarities; the U-operators, however, do not.

Even partial results on automorphisms or similarities could give an insight on what
is happening in this general context, and it would be interesting to address questions
of whether there are inner automorphisms, whether there are cubic subfields fixed by
automorphisms like in the classical case [2], etc.

The fact that two nonisomorphic algebras D+ = (K/F, σ, µ)+ and J(K, µ) have iso-
metric norms is an example of how rich the structure theory for non-associative algebras
really is (Section 4).

This is an exploratory paper, but our results show that the algebras J(A, µ) obtained
via a generalized first Tits construction merit a closer look. As one referee pointed out, they
also show the weaknesses of the language that we have at our disposal, which describes
highly non-associative structures.

7. Materials and Methods

We used classical methods from algebra.
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