
Citation: Wang, N.; Kuzumaki, T.;

Kanemitsu, S. The Generalized Eta

Transformation Formulas as the

Hecke Modular Relation. Axioms 2024,

13, 304. https://doi.org/10.3390/

axioms13050304

Academic Editor: Mircea Merca

Received: 12 March 2024

Revised: 25 April 2024

Accepted: 30 April 2024

Published: 2 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

The Generalized Eta Transformation Formulas as the Hecke
Modular Relation
Nianliang Wang 1,†,‡ , Takako Kuzumaki 2,‡ and Shigeru Kanemitsu 3,*

1 College of Applied Mathematics and Computer Science, Shangluo University, Shangluo 726000, China;
wangnianliangshangluo@aliyun.com

2 Faculty of Engineering, Gifu University, Gifu 501-1193, Japan; kuzumaki@gifu-u.ac.jp
3 SUDA Res.Inst. No.1, Taiyang Road, Economic Development Zone, Sanmenxia 472000, China
* Correspondence: omnikanemitsu@yahoo.com
† Dedicated to Professor Dr. Masaaki Yoshida on his 75th birthday with friendship and great respect.
‡ These authors contributed equally to this work.

Abstract: The transformation formula under the action of a general linear fractional transformation
for a generalized Dedekind eta function has been the subject of intensive study since the works of
Rademacher, Dieter, Meyer, and Schoenberg et al. However, the (Hecke) modular relation structure
was not recognized until the work of Goldstein-de la Torre, where the modular relations mean
equivalent assertions to the functional equation for the relevant zeta functions. The Hecke modular
relation is a special case of this, with a single gamma factor and the corresponding modular form (or
in the form of Lambert series). This has been the strongest motivation for research in the theory of
modular forms since Hecke’s work in the 1930s. Our main aim is to restore the fundamental work
of Rademacher (1932) by locating the functional equation hidden in the argument and to reveal the
Hecke correspondence in all subsequent works (which depend on the method of Rademacher) as
well as in the work of Rademacher. By our elucidation many of the subsequent works will be made
clear and put in their proper positions.

Keywords: RHB correspondence; transformation formula for Lambert series; Hurwitz zeta function;
Lerch zeta function; vector space structure

MSC: 11F03; 01A55; 40A30; 42A16

1. Hecke Modular Relation for Generalized Eta Functions

Rademacher’s “Topics” [1], along with Siegel’s “Advanced analytic number the-
ory” [2], has been the masterpiece classic of the theory of algebraic aspects of analytic
number theory and is widely read by researchers. Ref. [1] (Chapter 9) is devoted to the
theory of the transformation formula for the Dedekind eta function η(τ); hereafter abbrevi-
ated as ETF. The main concern is about the ETF under a general Möbius transformation,
not restricted to the Spiegelung S : τ → τ−1. The correspondence between the transforma-
tion formula under the Spiegelung and the functional equation for the associated zeta, L
functions has been known as the Hecke correspondence, or more generally as the Riemann–
Hecke–Bochner correspondence, RHB correspondence, also referred to as modular relation.
This has been developed by many authors [3–12], culminating in the work of [13].

Rademacher [1] (Chapter 9), however, incorporates Iseki’s paper [14] for the proof
of ETF under a general substitution. Ref. [14] depends on the partial fraction expansion
(PFE) for the cotangent function and [1] gives an impression that ETF must be proved by
PFE. But, it is known that PFE is equivalent to the functional equation for the Riemann zeta
function ζ(s), ref. [15], which naturally implies that ETF is also a consequence of the RHB
correspondence. Indeed, Rademacher himself [16] developed the integral transform method
to prove ETF prior to Hecke’s discovery of the RHB correspondence, and Rademacher’s
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method was used by many subsequent authors [17–21], all of whom used Rademcaher’s
method and not the RHB correspondence. Iseki [22] seems to be the first who revived
Rademacher’s method [16] to prove the functional equation, which was extended to the
case of the Lambert series by Apostol [23]. Both of them used the gamma transform (56)
of the Estermann-type zeta function, but the RHB correspondence does not seem to be
perceived; for further reading, readers may refer to [24–26].

Thus, the real starter of the proper use of the RHB correspondence is [27],which cites [5]
and proves the general ETF from the generating zeta function, satisfying the ramified
(Hecke) functional equation. Ref. [28], a sequel to [27], treats a more general eta function
on a totally real field of degree n via a similar argument based on the RHB correspondence.
On the other hand, ref. [29] adopted the RHB correspondence, streamlining [20,21].

Our main aim is to elucidate the (Hecke) modular relation structure involved in earlier
works by Rademacher, Dieter, and Schoenberg et al. and make further developments. In
this paper we confine ourselves to the case of the Lambert series, but as we will see, there
appear the Koshlyakov transforms, which are used recently, cf. [30].

Notation and symbols. Let

ℓs(x) =
∞

∑
n=1

e2πinx

ns , σ > 1, x ∈ R or s = 1, 0 < x < 1

be the Lerch zeta function and

ζ(x, x) =
∞

∑
n=0

1
(n + x)s 0 < x ≤ 1

be the Hurwitz zeta function, respectively. For x = 1 (and σ > 1), they reduce to the
Riemann zeta function

ζ(s) =
∞

∑
n=1

1
ns σ = Re s > 1.

We make use of the vector space structures in the scone variable x of both these
functions, for which we refer to [31–33]. Let C(s) = {a(n)} be the vector space of all
periodic arithmetic functions with period c ∈ N and let D(c) be the corresponding space of
the Dirichlet series f (s) = ∑∞

n=1
a(n)
ns , both with a dimension c. It is shown that one basis

of C(c) is the set of characters and the other is their orthogonality relation, which yields
the bases of D(c): {ℓs

(
ν
c
)
|ν = 1, · · · , c} and {ζ

(
s, ν

c
)
|ν = 1, · · · , c}, respectively. One of the

base change formulas

ℓz

(ν

c

)
= c−z

c

∑
λ=1

e2πi ν
c λζ

(
z,

λ

c

)
. (1)

will play an important role.
ℓ1(x) is not defined at integer points x and needs separate consideration. E.g., its

odd part
1
2
(ℓ1(x)− ℓ1(1 − s)) = −πiB̄1(x) (2)

is discontinuous at integer points x but has the value 0. The same applies to ℓ0(x).
Another important vector space is the space Ks of the Kubert functions, which are

periodic functions with period 1, satisfying the Kubert relation:

m−1

∑
r=0

f
(

x + r
m

)
= m1−s f (x).
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Cf., Milnor [34]. Ks is of dimension 2 and is spanned by ℓs(x) and ℓs(1− x) for s ̸= negative
integers while it is spanned by ζ(s, x) and ζ(s, 1 − x) for s ̸= non-negative integers. The
Kubert relations

c

∑
µ=1

ℓs

(
x + µ

c

)
= c1−sℓs(x), 0 < x < 1 (3)

c

∑
µ=1

ζ

(
s,

x + µ

c

)
= c1−sζ(s, x), 0 < x ≤ 1

hold for s ∈ C except for singularities.
Since every element of Ks is a linear combination of these two zeta functions, we write

f (s, x) ↔ ζ(s, x), g(s, x) ↔ ℓs(x)

to mean that f (s, x) is of the Hurwitz zeta-type resp. g(s, x) of the Lerch zeta-type, satisfying
the same conditions as ζ(s, x) resp. ℓs(x) does. This in particular applies to their even and
odd parts.

Define

E a,b
c ( f , g, w, z) =

c

∑
λ=1

f
(

w, 1 −
{

aλ

c

})
g
(

z, 1 −
{

bλ

c

})
. (4)

Equation (4) is Estermann’s type of Dedekind sum whose concrete case will appear in
the second proof of Theorem 1. We substitute the functional equation

f (1 − w, x) =
Γ(w)

(2π)w

(
e−

πi
2 wg(w, x) + e

πi
2 wg(w, 1 − x)

)
or

g(1 − z, x) =
Γ(z)
(2π)z

(
e−

πi
2 z f (z, 1 − x) + e

πi
2 z f (z, x)

)
.

as the case may be to deduce

f (1 − w, x)g(1 − z, y) =
Γ(w)Γ(z)
(2π)w+z

(
e−

πi
2 (w+z) f (w, 1 − x)g(z, y) (5)

+ e
πi
2 (w+z) f (w, x)g(z, 1 − y) + e

πi
2 (w−z) f (w, x)g(z, y)

+ e−
πi
2 (w−z) f (w, 1 − x)g(z, 1 − y)

)
This will appear in Section 5.

It was Mikolás [35] who first introduced the transcendental generalization of the
Dedekind sums in which, instead of (4), the f , f -type zeta functions are considered as with
almost all preceding papers. In the second proof of Theorem 1, we will reveal that the
Estermann-type zeta functions makes things simpler.

2. The Rademacher–Apostol Case

In this section we display the elucidation of Rademacher’s integral transform method
by showing the functional equation for the zeta function and the general ETF as developed
in Rademacher [16] (for eta function) and also by Apostol [17] (for the Lambert series).
The residual function in Theorem 1 is the corrected form of that of [17] in the form nearest
to Apostol’s. This corrected form was first proved by Mikolás [36] (p. 106) and shortly
thereafter by Iseki [14], both of whom treated the case p ≥ 1. Then, as stated above, ref.
[22] proved the Hecke functional equation in the case p = 1 and Apostol [23] used the same
method to treat the case p > 1, without mentioning the RHB correspondence.

Toward the end we shall briefly explain the case of Krätzel [37].
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Let c ∈ N, p ≥ 1 be an odd integer and let h be an integer such that (h, c) = 1. Define
the Rademacher–Apostol zeta function

Zp(s, h) =
c

∑
µ,ν=1

e
2πihµν

c ζ
(

s,
µ

c

)
ζ
(

s + p,
ν

c

)
. (6)

Let
gp(x) = gp

(
e2πi iz+h

c

)
=

1
2πi

∫
(γ)

Γ(s)Zp(s, h)c−1(2πcz)−s ds, (7)

be the Hecke gamma transform of Zp(s, h) as in [16] (1.14), where γ > 1.

Theorem 1. The zeta function Zp(s, h) satisfies the Hecke functional equation

(2πc)−s− p−1
2 Γ(s)Zp(s, h) = (2πc)s+ p−1

2 (−1)
p−1

2 Γ(−s)Zp(1 − p − s, H), (8)

where H is an integer such that
hH ≡ −1 mod c. (9)

The Lambert series (7) satisfies the transformation formula

gp

(
e2πi iz+h

c

)
= gp

(
e2πi iz−1+H

c

)
+ Pp(z), (10)

where

Pp(z) = Ress=−p,··· ,0,1Γ(s)Zp(s, h)c−p(2πcz)−s (11)

=
−1

2(p + 1)!

(
2πz

c

)p
Bp+1 +

(−1)
p−1

2

2(p + 1)!

(
2π

c

)p
z−1Bp+1

+
−i(2πi)p

2(p)!
sp,1(c, h) +

1
2

δp,1 log a +
1
2

(
1 − (−1)

p−1
2

)
ζ(p)

+
p

∑
r=2

(−1)r

r!
(2πz)r−1 −(2πi)p+1−r

2(p + 1 − r)!
sp,r(c, h),

and where δp,1 is the Kronecker symbol.

Proof. We combine the Hurwitz Formula (12) and the base change Formula (13) with
f = χµ to deduce (14): The Hurwitz formula (i.e., the functional equation for the Hurwitz
zeta function): for σ > 1, 0 < x ≤ 1,

ζ(1 − s, x) =
Γ(s)
(2π)s

(
e−

πis
2 ℓs(x) + e

πis
2 ℓs(1 − x)

)
. (12)

The base change—linear combination expression—formula reads

1
cs

c

∑
a=1

a(n)ζ
(

s,
n
c

)
= D(s, a) =

1√
c

c

∑
n=1

â(n)ℓs

(n
c

)
(13)

=
1√
c

c−1

∑
n=1

â(n)ℓs

(n
c

)
+

â(c)√
c

ζ(s),

where â(n) is the DFT (discrete Fourier transform) of a(n). Choosing a(n) = χµ(n), χµ
being the characteristic function of µ, we see that its DFT is the character, which implies (1).
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Combining (12) and (1), we deduce

ζ
(

s,
µ

c

)
= Γ(1 − s)

2

(2πc)1−s (14)

×
(

sin
π

2
s

c

∑
λ=1

cos
2πλµ

c
ζ

(
1 − s,

λ

c

)
+ cos

π

2
s

c

∑
λ=1

sin
2πλµ

c
ζ

(
1 − s,

λ

c

))
.

Substituting (14) in (6) and using

c

∑
µ=1

e
2πihµν

c cos
2πλµ

c
=

c

∑
µ=1

cos
2πhµν

c
cos

2πλµ

c
(15)

c

∑
µ=1

e
2πihµν

c sin
2πλµ

c
=

c

∑
µ=1

sin
2πhµν

c
sin

2πλµ

c
,

we conclude that

Zp(s, h) = c−1(2πc)s

(
c

∑
λ,µ,ν=1

cos
2πhµν

c
cos

2πλµ

c
1

cos π
2 s

ζ

(
1 − s,

λ

c

)
ζ
(

p + s,
ν

c

)
(16)

+
c

∑
λ,µ,ν=1

sin
2πhµν

c
sin

2πλµ

c
1

sin π
2 s

ζ

(
1 − s,

λ

c

)
ζ
(

p + s,
ν

c

))
.

Changing s by 1 − p − s and µ by Hµ, where H is as in (9), then the second factor remains

unchanged up to the additional factor (−1)
p−1

2 . Hence,

Zp(1 − p − s, H) = (2πc)1−p−2s(−1)
p−1

2 Zp(s, h),

which is (8).
Substituting (16) in (7), we derive that

gp(x) =
1

2cp+1 (17)

×
(

c

∑
λ,µ,ν=1

cos
2πhµν

c
cos

2πλµ

c
1

2πi

∫
(γ)

1
cos π

2 s
ζ

(
1 − s,

λ

c

)
ζ
(

s + p,
ν

c

)
z−s ds

+
c

∑
λ,µ,ν=1

sin
2πhµν

c
sin

2πλµ

c
1

2πi

∫
(γ)

1
sin π

2 s
ζ

(
1 − s,

λ

c

)
ζ
(

s + p,
ν

c

)
z−s ds

)
,

which is [16] (1.27).
Shifting the integration path to σ = 1 − p − γ and applying (8), we conclude [16]

(1.29), which is (10).
Incorporating the residual function found in [17] with the correction calculated in

[30], we arrive at the general transformation formula, entailing ETF [16] (1.45), completing
the proof.

Proof. We may give a more lucid proof of (8) using the Estermann-type Dedekind sum

E a,b
c (w, z) = ∑

λ mod c
ζ

(
w, 1 −

{
aλ

c

})
ℓz

(
1 −

{
bλ

c

})
(18)

=
c−1

∑
λ=1

ζ

(
w,
{

aλ

c

})
ℓz

(
bλ

c

)
+ ζ(w)ζ(z).
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Estermann [38] (19) established the functional equation

E a,1
c (s, s) = −2(2π)2s−2Γ2(1 − s)

(
cos(πs)E1,−a

c (1 − s, 1 − s)− E1,a
c (1 − s, 1 − s)

)
, (19)

which is a special case of the more general functional equation

E a,b
c (1 − w, 1 − z) =

2Γ(w)Γ(z)
(2π)w+z (20)

×
(

cos
π

2
(w + s)E b,−a

c (z, w) + cos
π

2
(w − s)E b,a

c (z, w)
)

.

We consider the sum slightly more general than (6):

Ip(w, z, h) :=
c

∑
µ,ν=1

e
2πihµν

c ζ
(

w,
µ

c

)
ζ
(

z,
ν

c

)
=

c

∑
µ=1

ζ
(

w,
µ

c

) c

∑
ν=1

e
2πihµν

c ζ
(

z,
ν

c

)
. (21)

The inner sum on the right of (21) is czℓz

(
hµ
c

)
in view of the base change Formula (1)

becomes

Ip(w, z, h) = cz
c

∑
µ=1

ζ
(

w,
µ

c

)
ℓz

(
hµ

c

)
= czE1,h

c (w, z), (22)

which becomes
Zp(s, h) = Ip(s, s + p, h) = cs+pE1,h

c (s, s + p), (23)

on specifying w = s, z − p + s. Hence, substituting (20) in (22), we deduce that

Ip(w, z, h) = cz 2Γ(1 − w)Γ(1 − z)
(2π)2−w−z (24)

×
(
− cos

π

2
(w + s)E−h,1

c (1 − z, 1 − w) + cos
π

2
(w − s)E h,1

c (1 − z, 1 − w)
)

.

Specifying w = s, z − p + s, (24) reads

Zp(s, h) = Ip(s, s + p, h) = cs+p 2Γ(1 − s)Γ(1 − p − s)
(2π)2−2s−p (25)

×
(
− cos

π

2
(2s + p)E−h,1

c (1 − p − s, 1 − s) + cos
π

2
pE h,1

c (1 − p − s, 1 − s)
)

.

Taking the oddness of p into account, this reduces to

Zp(s, h) = cs+p 2Γ(1 − s)Γ(1 − p − s)
(2π)2−p−2s (−1)

p−1
s sin πsE−h,1

c (1 − p − s, 1 − s),

whence

Γ(s)Zp(s, h) = cs+p Γ(1 − p − s)
(2π)1−p−2s (−1)

p−1
s E−h,1

c (1 − p − s, 1 − s). (26)

Now, let H be as in (9). Then,

E−h,1
c (1 − p − s, 1 − s) = E1,H

c (1 − p − s, 1 − s) = c1−sZp(1 − p − s, H)

by (23). Substituting this in (26) proves (8).

Proof. We may restore the argument of [16,17] to prove (10) and the proof entails the proof
of (8), cf. [30].
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3. The Krätzel Case

Ref. [37] deals with a generalization (38) of the eta function which depends on the
Hecke gamma transform of the zeta function

Za.b(s) :=
1

Γ(s + 1) sin π
2ab s

ζ

(
1
a

s
)

ζ

(
−1

b
s
)

, (27)

where a, b are natural numbers, (a, b) = 1. Za.b(s) satisfies the Hecke functional equation

Γ(s)Za.b(s) = Γ(−s)Zb,a(−s). (28)

Krätzel’s method is essentially that of Rademacher, although he does not refer to [16], and
we give a brief account on this point.

Theorem 2. The Krätzel–Rademacher method yields the modular relation (28) as well as the
transformation formula

ηa,b(x) = x−
ab
2 ηb,a

(
1
x

)
. (29)

Proof. For the moment, we work with (Re x > 0 and | arg z| < π
2ab )

η̃a,b(x) :=
∞

∏
m=1

a−1

∏
ν=0

(
1 − e2πiε2ν+1(4a)n

b
a xb
)

, (30)

where ε2ν+1(4a) = e2πi 2ν+1
4a . Then, for κ > a

b , we have by the Hecke gamma transform

log η̃a,b(x) = − 1
2πi

∫
(κ)

Γ(s)ζ(s + 1)ζ
(

b
a

s
) a−1

∑
ν=0

(
e2πi 2ν+1

4a

)−s(
2πxb

)−s
ds. (31)

Now the sum becomes

a−1

∑
ν=0

(
e2πi 2ν+1

4a

)−s
=

a

∑
ν=1

(
e2πi 2ν−1

4a

)−s
=

sin π
2 s

sin π
2a s

.

Hence, (31) becomes

log η̃a,b(x) = − 1
2πi

∫
(κ)

Γ(s)
sin π

2 s
sin π

2a s
ζ(s + 1)ζ

(
b
a

s
)(

2πxb
)−s

ds. (32)

Now we apply the functional equation only to one factor ζ(s + 1):

ζ(s + 1) = −(2π)s π

Γ(s + 1) sin π
2 s

ζ(−s). (33)

Substituting (33) in (32), we obtain

log η̃a,b(x) =
1

2πi

∫
(κ)

Γ(s)
Γ(s + 1) sin π

2a s
πζ(−s)ζ

(
b
a

s
)(

xb
)−s

ds. (34)

Note that the factor Γ(s)
Γ(s+1)ds being 1

s ds remains invariant under the change of variable
s → as, so that (34) becomes as in Krätzel,

log η̃a,b(x) =
1

2πi

∫
(κ1)

Γ(s)
Γ(s + 1) sin π

2 s
πζ(−as)ζ(bs)

(
xab
)−s

ds, (35)

where κ1 > 1
b . These two are the main ingredients of Krätzel and correspond to

Rademacher’s (17).
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Changing the variable s → abs, (35) becomes

log η̃a,b(x) =
1

2πi

∫
(κ2)

Γ(s)Za,b(s)x−s ds, (36)

i.e., the Hecke gamma transform of Za,b(s), where κ2 > a. As usual, shifting the integration
path to σ = −κ2 < − 1

a , we encounter poles and we are to find residues. The resulting
integral is the same as (36), with x changed by 1

x . Krätzel writes [37] (p. 116), “Then under
the substitution s → −s, the functional Equation (28) follows on symmetry grounds”,
meaning that he proves (28) at this stage.

Krätzel treats (35) and shifts the line to −κ2 < − 1
a , finding the sum of residues

−γa,b(x) + γb,a

(
1
x

)
+

1
2
(b − a) log 2π − ab

2
x, (37)

where

γa,b(x) =
π

sin π
2a

ζ

(
− b

a

)
xb.

Hence, defining

ηa,b(x) = (2π)
1−b

2 eγa,b(x)η̃a,b(x), (38)

we conclude (29).

4. Unification of Rademacher and Dieter Cases

In this section we prove the modular relation structure of the zeta functions and
the general ETFs contained in [16–18]. We work in the framework of Dieter with slight
modifications. Let p, d, f , α, andβ be integers satisfying the conditions p ≥ 1 being odd,
(h, c) = 1, f ≥ 1, 0 < α ≤ f . f works as a fixed aixiliary modulus and d = −h in Section
2. In Dieter’s case, α, β ̸≡ 0 mod f is also assumed. Then, the Dieter zeta function is
defined by

fα,β(s, x) = fp,α,β

(
s, e2πi iz+h

c

)
=

c−1

∑
µ=0

f c

∑
ν=1

e2πi hµν+γν
c ζ

(
s,

µ

c
+

α

c f

)
ζ

(
s + p,

ν

c f

)
, (39)

where
γ(−α,−β) = −γ(α, β), γ = γ(α, β) =

−hα − cβ

f
. (40)

We assume γ(−α,−β) = γ(α, β) for α, β ≡ 0 mod f , which we to γ(0, 0). We also assume
that µ varies 1, · · · , c in the case of γ(0, 0). Then, (39) with p = 1 amounts to (6). In almost
all subsequent studies after Rademacher, it is necessary to consider the even part [18] (2,11),
which is

gα,β(s, x) := fα,β(s, x) + f−α,−β(s, x). (41)

One speculated reason for this is stated in [30].
Let

Gp(x) = Gp

(
e2πi iz+h

c

)
=

1
2πi

∫
(γ)

Γ(s)gα,β(s, x)(c f )−1(2πcz)−s ds, (42)

be the Hecke gamma transform, where γ > 1.

Theorem 3. Rademacher’s transform yields the transformation formula

Gp,α,β

(
e2πi iz+h

c

)
= Gp,α,β

(
e2πi iz−1+H

c

)
+ P(z), (43)
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where
P(z) = ∑

s=p,··· ,0,1
ResΓ(s)gα,β(s, x)(c f )−1(2πcz)−s. (44)

as well as the Hecke functional equation for the even part gα,β(s, x) of the Dieter zeta function

(2πc f )−s− p−1
2 Γ(s)gp,α,β(s, x) = (2πc f )s+ p−1

2 (−1)
p−1

2 Γ(1− p− s)gp,α′ ,β′(1− p− s, x), (45)

where H is an integer as in (9) and(
α
β

)
=

(
H c
b −h

)(
α′

β′

)
. (46)

The theorem also covers Theorem 1.

Proof. We give a proof verbatim to that of Theorem 1. We employ (14) as

ζ

(
s,

µ

c
+

α

c f

)
= Γ(1 − s)

2

(2πc f )1−s

(
sin

π

2
s

c

∑
λ=1

cos 2πλ

(
µ

c
+

α

c f

)
ζ

(
1 − s,

λ

c f

)
(47)

+ cos
π

2
s

c

∑
λ=1

sin 2πλ

(
µ

c
+

α

c f

)
ζ

(
1 − s,

λ

c f

))
.

Substituting (14) in (8), we find that

c(2πc f )−sΓ(s) fα,β(s, x) (48)

=
f c

∑
λ,ν=1

(
c−1

∑
µ=0

e2πi hµν+γν
c cos 2πλ

(
µ

c
+

α

c f

)
1

cos π
2 s

ζ

(
1 − s,

λ

c f

)
ζ

(
p + s,

ν

c f

)

+
c−1

∑
µ=0

e2πi hµν+γν
c sin 2πλ

(
µ

c
+

α

c f

)
1

sin π
2 s

ζ

(
1 − s,

λ

c f

)
ζ

(
p + s,

ν

c f

))
.

To proceed further with the non-degenerated (48) we need a counterpart of (15) and
for this we need to consider the even part [18] (2,11), which is (41).

Then, we are to incorporate

c−1

∑
µ=0

e2πi hµν+γν
c cos 2πλ

(
µ

c
+

α

c f

)
+

c−1

∑
µ=0

e2πi hµν−γν
c cos 2πλ

(
µ

c
− α

c f

)
(49)

=
c−1

∑
µ=0

e2πi hµν+γν
c cos 2πλ

(
µ

c
+

α

c f

)
+

c−1

∑
µ=0

e2πi −hµν−γν
c cos 2πλ

(
µ

c
+

α

c f

)

= 2

(
c−1

∑
µ=0

Re
(

e2πi hµν+γν
c

)
cos 2πλ

(
µ

c
+

α

c f

))

= 2
c−1

∑
µ=0

cos 2π
hµν + γν

c
cos 2π

(
λ

µ

c
+

α

c f

)
and

c−1

∑
µ=0

e2πi hµν+γν
c sin 2πλ

(
µ

c
+

α

c f

)
+

c−1

∑
µ=0

e2πi hµν−γν
c sin 2πλ

(
µ

c
− α

c f

)
(50)

= −2i
c−1

∑
µ=0

sin 2π
hµν + γν

c
sin 2π

(
λ

µ

c
+

α

c f

)
.
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Substituting in (48), we obtain

c(2πc f )−sΓ(s)gα,β(s, x) (51)

= 2
f c

∑
λ,ν=1

c−1

∑
µ=0

cos 2π
hµν + γν

c
cos 2π

(
λ

µ

c
+

α

c f

)
1

cos π
2 s

ζ

(
1 − s,

λ

c f

)
ζ

(
p + s,

ν

c f

)

− 2i
f c

∑
λ,ν=1

c−1

∑
µ=0

sin 2π
hµν + γν

c
sin 2π

(
λ

µ

c
+

α

c f

)
1

sin π
2 s

ζ

(
1 − s,

λ

c f

)
ζ

(
p + s,

ν

c f

)
.

Changing s by 1− p − s and µ by Hµ, where hH ≡ −1 mod c, then the right-hand side

of (51) is changed into the one with the factor (−1)
p−1

2 and with the new pair of parameters
α′, β′. Hence,

c(2πc f )s+p−1(−1)
p−1

2 Γ(1 − p − s)gα′ ,β′(s, x) = c(2πc f )−sΓ(s)gα,β(s, x),

which is (45).
Shifting the integration path in (42) to σ = 1 − p − γ and applying (8) establishes the

assertion. The residual function (44) may be found in [18] (p. 48).
The degenerate case of (48) leads to a generalization of Rademacher’s functional

equation. Indeed, (48) with f = 1, γ(0, 0) reads

c(2πc)−sΓ(s) f0,0(s, x) (52)

=
c

∑
λ,ν=1

(
c

∑
µ=1

e
2πihµν

c cos
2πλµ

c
1

cos π
2 s

ζ

(
1 − s,

λ

c

)
ζ
(

p + s,
ν

c

)

+
c

∑
µ=1

e
2πihµν

c sin
2πλµ

c
1

sin π
2 s

ζ

(
1 − s,

λ

c

)
ζ
(

p + s,
ν

c

))
.

Substituting (15) in (52) proves the Rademacher–Apostol case [39]:

(2πc)−s− p−1
2 Γ(s)Zp(s, h) = (2πc)s+ p−1

2 (−1)
p−1

2 Γ(−s)Zp(1 − p − s, H), (53)

where

Zp(s, h) =
c

∑
µ,ν=1

e
2πihµν

c ζ
(

s,
µ

c

)
ζ
(

s + p,
ν

c

)
.

Equation (53) reduces to (8) for p = 1.

Other papers dealing with generalizations of the eta function use

E(s, h) =
c

∑
µ,ν=1

e
2πihµν

c ζ
(

s,
µ

c

)
ℓs+1

(ν

c

)
.

instead of (6) and are feasible for descriptions in the form of the Hecke correspondence. We
hope to return to the study of this aspect and more general Dedekind sums including one
with Kubert functions elsewhere. But, we shall mention one type of Estermann-type in the
next section.

5. The Schoenberg Case

This section is concerned with [20], which is reproduced in [21] (pp. 184–202, Chapter
VIII). In [21] (p. 184) it is stated that the transition is made from Hecke’s Eisenstein series of
weight −2 [21] (p. 164) to a linearly equivalent system containing non-analytic function G2.

We stick to [20] (p. 5), which is directly related to (5).
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In particular,

ζ(s, α)ℓs+1(β) =
−i(2π)2s

sin πs
(
− e−πisζ(−s, 1 − β)ℓ1−s(α) (54)

+ eπisζ(−s, β)ℓ1−s(1 − α) + ζ(−s, 1 − β)ℓ1−s(1 − α)

− ζ(−s, β)ℓ1−s(α)
)
.

We write ξ = e2πiβ and define the Lambert series [20] (20)

U(x; α, β) = ∑
n>0

m>−α

ξn

n
e−(m+α)nx, x > 0. (55)

Then, [20] (26) considered the gamma transform of the Estermann-type zeta function

U(x; α, β) =
1

2πi

∫
(κ)

Γ(s)ζ(s, α)ℓs+1(β)c−x ds, (56)

where κ > 1. If we substitute (54) into (56), then the integral is hardly tractable. This is
why Schoenberg deduced only an asymptotic formula for U(x; α, β).

Let
a = (a1, a2) ∈ Z2, α = α(a) =

a1

cN
+

r
c

, β = β(a) = ξr, (57)

where

ξr = e
2πi
(

a′1
cN +

qr
c

)
, a′1 = aa1 + ca2. (58)

Then, we consider

X(a) = X(a1, a2) = U(x; α, β) = U
(

2πcx;
a1

cN
+

r
c

, ξr

)
. (59)

But, what is needed eventually is an expression for the even part X(a1, a2)+X(−a1,−a2)
([20] (p. 8)) and we prove the following theorem for the zeta function of the even part.

Theorem 4. For

Z(s, α, β) = ζ(s, α)ℓs+1(β) + ζ(s, 1 − α)ℓs+1(1 − β)

and
Z̃(s, α, β) = ζ(s, 1 − β)ℓs+1(α) + ζ(−s, β)ℓ1−s(1 − α)

the functional equation
Z(s, α, β) = 2(2π)2sZ̃(−s, α, β) (60)

holds.

Proof. In [20] (p. 7), Schoenberg defined

ξ ′r = e
2πi
(
−−a′1

cN +
qr
c

)
(61)

and noted
ξ ′r = ξ−1

c−r, (62)

Hence,
α(−a) = 1 − α(a), β(−a) = 1 − β(a).

X(−a) = U(x; 1 − α, 1 − β). (63)
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It follows that when substituting from (54) in X(a) + X(−a), the sums with the third and
the fourth terms vanish and we sum only the first two terms of (54) and the sine function
cancels. Hence, the zeta function Z(s, α, β) of X(a) + X(−a) is

Z(s, α, β) (64)

=
−i(2π)2s

sin πs

(
−e−πis + eπis

)
(

ζ(−s, 1 − α(a))ℓ1−s(−α(a)) + ζ(−s, β(a))ℓ1−s(α(a))
)

= 2(2π)2s(ζ(−s, 1 − β)ℓ1−s(α) + ζ(−s, β)ℓ1−s(1 − α)),

which proves (60).

Hence, what comes out is the Hecke gamma transform of a tractable function and the
process onwards is verbatim to that of the preceding sections and we do not go into details.

Remark 1. By taking up the Dedekind eta function, one of the most famous example of a half-
integral weight modular form, we have made clear how deeply the RHB correspondence lies in
the general transformation formula, not restricted to the functional equation. We have restored
Rademacher’s opus [16] by streamlining the history that it is his own method of using integral
transforms preceding Hecke to deduce the general transformation formula rather than the PFE of
the cotangent function. We have also clarified Koshlyakov’s intervention using the Fourier–Bessel
expansion and thus PFE.
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