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Abstract: Computational statistics is a critical skill for professionals in fields such as data science,
statistics, and related disciplines. One essential aspect of computational statistics is the ability to
simulate random variables from specified probability distributions. Commonly employed techniques
for sampling random variables include the inverse transform method, acceptance–rejection method,
and Box–Muller transformation, all of which rely on sampling from the uniform (0, 1) distribution. A
significant concept in statistics is the finite mixture model, characterized by a convex combination
of multiple probability density functions. In this paper, we introduce a modified version of the
composition method, a standard approach for sampling finite mixture models. Our modification
offers the advantage of relying on sampling from the uniform (0, 1) distribution, aligning with
prevalent methods in computational statistics. This alignment simplifies teaching computational
statistics courses, as well as having other benefits. We offer several examples to illustrate the approach.

Keywords: composition method; computational statistics; finite mixture distribution; simulation

MSC: 62-08; 62-04

1. Introduction

Computational statistics has gained significant importance in recent years due to
the exponential growth of data and the increasing complexity of data-driven problems.
Within computational statistics, the ability to simulate or generate random samples from
a probability distribution is fundamental. These generated random samples are utilized
for estimating probabilities, expectations, and testing hypotheses. The inverse transform
method and the acceptance–rejection method are two of the most fundamental techniques
for generating random samples, and these can be found in well-known computational
statistics textbooks such as Statistical Computing with R by [1]. These methods rely on
generating numbers from the uniform (0, 1) distribution. The choice of method depends
on the specific distribution being generated and the desired properties of the generated
sample, such as efficiency or accuracy.

In certain cases, the data may not conform to commonly known distributions such
as the normal or exponential distributions. Instead, they can be represented as a finite
mixture model, which combines multiple probability density functions in a convex manner.
These models find applications in various scientific domains. For instance, normal mixture
distributions are used as parametric density estimators [2], whereas finite mixture models
are employed in medical studies [3] and financial analyses [4]. Finite mixture models have
also been used by [5] in the analysis of wind speeds, and Ref. [6] have demonstrated their
usefulness in Bayesian density estimation. Furthermore, Ref. [7] provide a comprehensive
overview of the different applications of mixture models.

Sampling from finite mixture models is a standard topic covered in many compu-
tational statistics textbooks, including works by [1,8], among others. In these texts, the
primary approach for sampling from finite mixture models is typically the composition
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method. However, although the composition method is effective, it does not directly use the
uniform distribution.

The goal of this paper is to modify the standard composition algorithm by incorpo-
rating sampling from the uniform (0, 1) distribution to ensure consistency with primary
sampling algorithms such as the inverse transform method and the acceptance–rejection
method. This aspect could prove beneficial in teaching computational statistics courses, as
sampling from the uniform (0, 1) distribution becomes a standard step in various sampling
algorithms.

The remainder of this paper is organized as follows. Section 2 provides a relevant
background on finite mixture models and discusses the proposed modification. Section 3
presents several examples demonstrating the effectiveness of the proposed method. Finally,
Section 4 offers concluding remarks.

2. Finite Mixture Models and Simulation Theorem

In this section, we define a finite mixture model and introduce a theorem for sampling
this model via an adaptation of the composition method. The proof of this theorem is also
included.

A finite mixture model is a statistical model that represents a probability distribution
as a mixture of several component distributions. Mathematically, given k component
distributions f1(x), . . . , fk(x), each with associated mixing probabilities (also known as mixing
weights) π1, . . . , πk, a finite mixture model f (x) is defined as:

f (x) =
k

∑
i=1

πi fi(x), (1)

where 0 ≤ πi ≤ 1 and ∑k
i=1 πi = 1. Further insights into Equation (1) can be found in

studies by [9,10].
In the literature, simulating a variable from a finite k-mixture distribution is typically

carried out by the composition method [1,11]:

1. Generate an integer I ∈ {1, . . . , k} such that

P(I = i) = πi, for i = 1, . . . , k;

2. Deliver X with cumulative distribution function FI .

The following theorem introduces an algorithm for generating a sample from (1). This
theorem presents a modified version of the composition method, utilizing the uniform
distribution. Aligning with well-established algorithms such as the inverse transform and
acceptance–rejection method enhances accessibility for learners.

Theorem 1. Consider F(x) as defined in (1). The following algorithm generates a random variate
from X with the cumulative distribution function F(x):

1. Generate a random u from the uniform (0, 1) distribution;

2. If
l−1
∑

i=1
πi ≤ u <

l
∑

i=1
πi, generate a random x from Fl(x), where l = 1, . . . , k, with the

convention that
0
∑

i=1
πi = 0.
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Proof. We show that the generated sample has the same distribution as X. By the law of
total probability, we have

P(X ≤ x) =
∫ 1

0
P(X ≤ x|U = u)du

=
∫ π1

0
P(X ≤ x|U = u)du +

∫ π1+π2

π1

P(X ≤ x|U = u)du +

· · ·+
∫ ∑l

i=1 πi

∑l−1
i=1 πi

P(X ≤ x|U = u)du +

· · ·+
∫ 1

∑k−1
i=1 πi

P(X ≤ x|U = u)du

=
∫ π1

0
F1(x)du +

∫ π1+π2

π1

F2(x)du +

· · ·+
∫ ∑l

i=1 πi

∑l−1
i=1 πi

Fl(x)du + · · ·+
∫ 1

∑k−1
i=1 πi

Fk(x)du

= π1F1(x) + π2F2(x) + · · ·+ πl Fl(x) + · · ·+ πkFk(x)

=
k

∑
i=1

πiFi(x) = F(x).

The proof of Theorem 1 reveals that the approach is overly general, encompassing
not only mixtures of continuous distributions but also extending to other scenarios. This
includes mixtures involving continuous and discrete distributions, as well as mixtures
comprising only discrete distributions. Additionally, the framework can be extended to
sample mixtures of multivariate distributions. In the following section, we explore specific
examples that illustrate these various cases.

3. Examples

In this section, we demonstrate the proposed algorithm outlined in Theorem 1 with
six illustrative examples. The R code is provided in the Supplementary Materials.

Example 1. Mixture of three normal distributions [10].

Suppose X1 ∼ N(µ = 0, σ2 = 1), X2 ∼ N(µ = 5, σ2 = 0.25), and X3 ∼ N(µ = 2, σ2 = 9)
are independent. Let

F(x) = 0.3F1(x) + 0.5F2(x) + 0.2F3(x).

Using Theorem 1, we generated a sample of size 106 from F(x). Figure 1 shows the
histogram of the generated sample with the true density superimposed. It is evident from
Figure 1 that the proposed method performs exceptionally well in this example.

Example 2. Mixture of five gamma distributions: different shapes with same scale parameters [1].

Consider F(x) = ∑5
i=1 πiFi(x), where Xi ∼ gamma(r = 3, βi = i) are independent

and the mixing probabilities are πi = i/15, i = 1, . . . , 5. Using Theorem 1, we generated
a sample of size 106 from F(x). Figure 2 displays the histogram plot of the generated
sample with the true density superimposed. The proposed procedure also performs well in
this example.
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Figure 1. Mixture of three normal distributions in Example 1.

Example 3. Mixture of five gamma distributions: different scale with same shape parameters.

Let F(x) be as described in Example 2, with Xi ∼ gamma(ri = i, βi = 3). Employing
Theorem 1, we generated a sample of size 106 from F(x). Figure 3 presents the histogram
plot of the generated sample with the true density superimposed. The proposed procedure
demonstrates effective performance in this example as well.

Example 4. Comparing empirical and true mixed distributions.

In this example, we compare Fn(x), the empirical cumulative distribution function
(ECDF) of the simulated data, with the true mixed distribution

F(x) =
3

∑
i=1

πiFi(x),

where Fi represents three cases:

• Case 1: X1 ∼ t(5), X2 ∼ t(10), and X3 ∼ t(15). Here, t(ν) represents the t distribution
with ν degrees of freedom;

• Case 2: X1 ∼ beta(2, 5), X2 ∼ beta(2, 10), and X3 ∼ beta(2, 15);
• Case 3: X1 ∼ Pareto(1, 1), X2 ∼ Pareto(2, 2.5), and X3 ∼ Pareto(3, 3). Here, Pareto

(xm, α) is the Pareto distribution with xm as the minimum possible value (scale param-
eter) and α as the shape parameter.



Axioms 2024, 13, 307 5 of 8

In all three cases, we let π1 = 9/20, π2 = 9/20, and π3 = 1/10. As a measure of
proximity, we utilize the Cramér–von Mises distance defined as

D =
∫
(Fn(x)− F(x))2dF(x).

We examine various sample sizes n ∈ {20, 50, 100, 1000}. For each generated sample
X1, . . . , Xn, we estimate D using

D̂ =
1
n

n

∑
i=1

(Fn(Xi)− F(Xi))
2.

For each sample, we compute 104 values of D̂ and report D̂ and sd(D̂), representing
the mean and standard deviation of the 104 values of D̂. Additionally, for comparison, we
include results obtained using samples generated from the composition method described
in Section 2. The results are reported in Table 1. It is clear that both simulation algorithms
work well as both D̂ and sd(D̂) approach zero, especially as we increase the sample size.
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Figure 2. Mixture of five gamma distributions with different shapes and same scale parameters in
Example 2.
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Figure 3. Mixture of five gamma distributions with different scale parameters and same shape
parameters in Example 3.

Example 5. Mixture of four binomial distributions [12].

Consider

F(x) =
4

∑
i=1

πiFi(x),

where Xi ∼ binomial(m = 10, θi) are independent, with θ1 = 0.1, θ2 = 0.2, θ3 = 0.6, and
θ4 = 0.9. The mixing probabilities are π1 = π2 = π3 = 0.2 and π4 = 0.4. Using Theorem 1,
a sample of size 106 was generated from F(x). For comparison, we analyzed the theoretical
mean and variance alongside the sample mean and variance. As stated by [9], we have
E[X] = µ = ∑4

i=1 πiµi and V[X] = ∑4
i=1 πiσ

2
i + ∑4

i=1 πi(µi − µ)2. In this example, µi = mθi
and σ2

i = mθi(1 − θi). Thus, µ = 16.20 and σ2 = 106.98. Additionally, the sample mean
and variance are 16.2050 and 106.9789, respectively. This indicates a close correspondence
between the theoretical and sample statistics.

Example 6. Mixture of normal and Poisson distributions.

Consider the mixture distribution given by

F(x) = 0.7F1(x) + 0.3F2(x),
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where X1 follows a normal distribution with mean 10 and variance 4 and X2 follows
a Poisson distribution with mean 4. X1 and X2 are independent. Utilizing Theorem 1,
a sample of size 106 was generated from F(x). As in Example 4, the exact mean and
the exact variance of the mixture distribution are µ = 0.7 × 10 + 0.3 × 5 = 8.50 and
σ2 = 0.7(4 + (10 − µ)2) + 0.3(5 + (5 − µ)2) = 9.55. Additionally, the simulated mean and
variance of the mixture distribution are 8.4963 and 9.5485, respectively. This demonstrates
a close correspondence between the theoretical and sample statistics.

Table 1. Comparison of proposed and composition methods.

Proposed Composition

F(x) n D̂ sd(D̂) D̂ sd(D̂)

Case 1 20 0.008771 0.007934 0.008814 0.008036
40 0.004291 0.003903 0.004295 0.003871
60 0.002812 0.002515 0.002851 0.002566
80 0.002126 0.00188 0.002109 0.001861
100 0.001687 0.001539 0.001674 0.001517

Case 2 20 0.008795 0.008048 0.008814 0.008207
40 0.004269 0.003854 0.004325 0.003945
60 0.002822 0.00256 0.002842 0.002528
80 0.002087 0.00189 0.002108 0.001951
100 0.001692 0.001546 0.0017 0.001518

Case 2 20 0.008813 0.008194 0.008857 0.008049
40 0.004299 0.003889 0.004293 0.003844
60 0.002842 0.002514 0.00285 0.002601
80 0.002148 0.001903 0.002173 0.002008
100 0.001678 0.001485 0.001711 0.001569

4. Conclusions

This paper introduces a modified version of the composition method for sampling
finite mixture distributions. By incorporating sampling from the uniform (0, 1) distribution,
our modification aligns with prevalent methods in computational statistics, such as the
inverse transform and acceptance–rejection methods. This modification not only enhances
the consistency and accuracy of sampling procedures but also simplifies the teaching of
computational statistics courses, where sampling from the uniform (0, 1) distribution is a
common step in various algorithms.

The effectiveness of the proposed modification is demonstrated through several illus-
trative examples, showcasing its robust performance across different scenarios. From mix-
tures of normal and gamma distributions to binomial and Poisson mixtures, the proposed
algorithm consistently generates samples that closely match the theoretical distributions.
Moreover, comparison metrics such as the Cramér–von Mises distance provide quantitative
evidence of the algorithm’s efficiency and accuracy, especially as sample sizes increase.

Overall, the modified composition method presented in this paper offers a valuable
addition to the toolkit of computational statisticians and educators alike. Its simplicity,
consistency, and performance make it a practical choice for sampling finite mixture distri-
butions in various applications.

Supplementary Materials: The following supporting information can be downloaded at: www.
mdpi.com/xxx/s1. R Code: A Short Note on Generating a Random Sample from Finite Mixture
Distributions.
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