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Abstract: In this paper, an SEAI epidemic model with asymptomatic infection is studied under the
background of mass transmission of COVID-19. First, we use the next-generation matrix method
to obtain the basic reproductive number R0 and calculate the equilibrium point. Secondly, when
R0 < 1, the local asymptotic stability of the disease-free equilibrium is proved by Hurwitz criterion,
and the global asymptotic stability of the disease-free equilibrium is proved by constructing the
Lyapunov function. When R0 > 1, the system has a unique endemic equilibrium point and is
locally asymptotically stable, and it is also proved that the system is uniformly persistent. Then,
the application of optimal control theory is carried out, and the expression of the optimal control
solution is obtained. Finally, in order to verify the correctness of the theory, the stability of the
equilibrium point is numerically simulated and the sensitivity of the parameters of R0 is analyzed.
We also simulated the comparison of the number of asymptomatic infected people and symptomatic
infected people before and after adopting the optimal control strategy. This shows that the infection
of asymptomatic people cannot be underestimated in the spread of COVID-19 virus, and an isolation
strategy should be adopted to control the spread speed of the disease.

Keywords: asymptomatic infection; stability; consistent persistence; optimal control; numerical
simulation; sensitivity analysis

MSC: 34A34; 34A37

1. Introduction

Infectious diseases [1,2] are one of the biggest threats to human survival. The frequent
outbreaks and epidemics of infectious diseases not only affect people’s health and hinder
economic development, but also threaten social stability and damage social interests to a
greater extent. Therefore, experts in the field of epidemiology and related biology are deeply
studying infectious diseases, and their goal is to expose the spread dynamics and patterns
of diseases and predict the future development trend by analyzing and understanding
various infectious disease models [3–5].

Since the end of 2019, COVID-19 [6], caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), has spread all over China and the world. This virus shows
symptoms such as dry cough, fever and fatigue, and may further develop into pneumonia
and renal failure, which may lead to death in severe cases [7–10]. The disease is mainly
spread by bodily contact and sneezing and coughing droplets [11], and more and more
evidence shows that asymptomatic infected people play an important driving role in its
rapid spread [12]. Therefore, in order to prevent the rapid spread of COVID-19, many
researchers in the field of biology aimed to understand it, and wanted to expose the epi-
demic law of diseases through the study of models, so as to provide theoretical basis and
strategies for the detection, prevention and management of disease outbreaks. For example,
Zhang et al. [13] combined the transmission mechanism of COVID-19 with preventive
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measures, put forward a new stochastic dynamic model, and estimated and predicted the
epidemic trend and control opportunity abroad. In addition, Tang et al. [14] considered
medical follow-up quarantine, hospital isolation, treatment and other control and man-
agement measures, and evaluated the impact of public health interventions on the spread
of COVID-19.

Asymptomatic infected people are contagious, but have no clinical symptoms. They
are hidden in the crowd and are not easy to find found. Therefore, this group plays a great
role in the spread of COVID-19. This characteristic of asymptomatic infected people is
the main reason why COVID-19 has become a pandemic. Several studies have found that
asymptomatic infection accounts for about 40% of patients in COVID-19, and individuals
with asymptomatic infection are more likely to cause a larger epidemic than imported
cases [15–17]. In order to understand more deeply how asymptomatic infected people
promote the rapid spread of new pneumonia, many experts and scholars have established
relevant infectious disease models. For example, Khan et al. [18] studied the dynamics of a
stochastic SAIR mathematical model. Tan et al. [19] estimated the spread of symptomatic
and asymptomatic COVID-19 with contact information. Dobrovolny [20] researched the
role of asymptomatic individuals in the spread of infection. This study shows that even if
asymptomatic infection does not necessarily account for a large proportion of infections, it
can still change the scale and lethality of epidemics. Sun et al. [21] established an SCIRA
model to estimate the impact of asymptomatic infected people. Their research shows that
the potential impact of these hidden cases greatly promoted the outbreak of COVID-19
because asymptomatic infected people are contagious.

As an important method to study the transmission mechanism of infectious diseases,
dynamic modeling has always been one of the hot issues in the field of infectious diseases.
At present, the spread theory and modeling of infectious diseases have been extensively
studied [22,23]. Scholars have established an infectious disease model based on the char-
acteristics of COVID-19 to predict the epidemic spread trend, but there are still some
limitations. In order to make up for the deficiency of the existing research, this paper used
the actual transmission characteristics of COVID-19 to improve the classic SEAI infectious
disease model, so as to accurately reveal the transmission mechanism of asymptomatic in-
fected people in COVID-19, explore how asymptomatic infected people affect the outbreak
of COVID-19 epidemic, and put forward some strategies to control the spread of COVID-19.

In this paper, we establish an SEAI model of COVID-19 with asymptomatic infection,
and make a dynamic analysis to determine the influence of asymptomatic infection in the
spread of COVID-19. The rest is organized as follows: Section 1 introduces the research
background of COVID-19. Section 2 establishes the model. Sections 3 and 4 calculate the
basic reproduction number and the equilibrium point of the model and prove the stability
of the equilibrium point. In Section 5, the optimal control theory is put forward and the
optimal control solution is obtained. In Section 6, the stability of the equilibrium point is
numerically simulated, the sensitivity of the parameters affecting R0 is analyzed, and the
number of asymptomatic infected people and symptomatic infected people before and after
adopting the optimal control strategy is further simulated. Section 7 gives the conclusion
of this paper.

2. Model Formulation

At present, scholars at home and abroad have begun to study the influence of limited
resources on the spread of diseases. For example, Zhou et al. [24] proposed a continuously
differentiable treatment function

h(I) = rI
1+αI ,

to describe the “saturation” phenomenon of limited treatment. r represents the maximum
cure rate, α describes the effect of the delayed treatment of the infected person. Obviously,
r/α represents the maximum supply of therapeutic resources, while 1/(1 + αI) describes
the supply efficiency of medical resources, which has an important impact on the spread
and control of diseases.
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In this paper, the total population N is divided into four different parts: S stands for
susceptible person, E stands for the infiltrator, A stands for asymptomatic infected person,
I stands for symptomatic infected person. Considering that the treatment of COVID-19 is
saturated, the saturated treatment function h(I) is introduced into the classical infectious
disease model, and the SEAI model is established. A flow chart of the model is shown
in Figure 1.

Figure 1. Flow chart of SEAI transmission.

The propagation dynamics model corresponding to the flow chart is as follows:

dS
dt = Λ − β1SA − β2SI − dS + a1 A

1+b1 A + a2 I
1+b2 I ,

dE
dt = β1SA + β2SI − (δ + d)E,
dA
dt = kδE − (p + d)A − a1 A

1+b1 A ,
dI
dt = (1 − k)δE + pA − (d + µ)I − a2 I

1+b2 I .

(1)

Assuming that all the parameters and variables involved in the above model are
non-negative, please refer to Table 1 for the dynamic significance of infectious diseases of
the corresponding parameters. Note that the expressions a1 A

1+b1 A and a2 I
1+b2 I represent limited

medical resources.

Table 1. Parameter definitions for model (1).

Parameter Definition Unit

Λ the constant input of population people−1day−1

d the natural death rate of population day−1

µ the morbidity and mortality of symptomatic infected persons day−1

p the rate of transformation from asymptomatic infection to symptomatic infection day−1

a1 the maximum cure rate for asymptomatic patients day−1

a2 the maximum cure rate for an infected person day−1

b1 resource constraints for treating asymptomatic patients day−1

b2 resource constraints for treating infected people day−1

β1 the infection rate of asymptomatic infected people to susceptible people people−1day−1

β2 the infection rate of infected people with symptoms to susceptible people people−1day−1

δ the transfer rates of latent to infected persons day−1

kδ the rate at which latent persons develop asymptomatic infections day−1

(1 − k)δ the rate at which latent persons become infected with symptoms day−1
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It follows from model (1) that N = S + E + A + I and dN
dt = Λ − dN − µI ≤ Λ − dN.

When N > Λ
d approaches infinity, such that dN

dt < 0, for the sake of generality, the feasible
domain is

X =

{
(S, E, A, I) ∈ R4

+ : S + E + A + I ≤ Λ
d

}
. (2)

3. Basic Regeneration Number and Equilibrium

By simple calculation, the only disease-free equilibrium of system (1) is E0 = (Λ
d , 0, 0, 0),

where S0 = Λ
d , E0 = A0 = I0 = 0.

By the next generation matrix method [25,26], we will derive the basic regeneration
number of model (1). Let

F =

 β1SA + β2SI
0
0

,V =

 Q1E
−kδE + Q2 A + a1 A

1+b1 A
−(1 − k)δE − pA + Q3 I + a2 I

1+b2 I


be the input rate of newly infected individuals and the rate of transfer of individuals, where

Q1 = δ + d, Q2 = p + d, Q3 = d + µ.

Respectively, then we obtain

F =

 0 β1
Λ
d β2

Λ
d

0 0 0
0 0 0

, V =

 Q1 0 0
−kδ Q2 + a1 0

−(1 − k)δ −p Q3 + a1

.

Thus, we have

FV−1 =


β1Λkδ

dQ1(Q2+a1)
+ β2Λkδp

dQ1(Q2+a1)(Q3+a2)
+ β2Λ(1−k)δ

dQ1(Q3+a2)
β1Λ(Q3+a2)+β2Λp
d(Q2+a1)(Q3+a2)

β2Λ
d(Q3+a2)

0 0 0
0 0 0

.

Therefore, the basic regeneration number is

R0 = ρ(FV−1) = r1 + r2 + r3, (3)

where

r1 =
kδβ1Λ

dQ1(Q2 + a1)
, r2 =

(1 − k)δβ2Λ
dQ1(Q3 + a2)

, r3 =
kδpβ2Λ

dQ1(Q2 + a1)(Q3 + a2)
.

The endemic equilibrium of system (1) is denoted as E∗ = (S1, E1, A1, I1). To solve the
endemic equilibrium, we set the right side of model (1) to 0, that is

Λ − β1S1 A1 − β2S1 I1 − dS1 +
a1 A1

1+b1 A1
+ a2 I1

1+b2 I1
= 0,

β1S1 A1 + β2S1 I1 − (δ + d)E1 = 0,

kδE1 − (p + d)A1 − a1 A1
1+b1 A1

= 0,

(1 − k)δE1 + pA1 − (d + µ)I1 − a2 I1
1+b2 I1

= 0,

(4)
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where 

A1 = A1,

E1 = Q2(1+b1 A1)+a1
(1+b1 A1)kδ

A1,

I1 = (R0−1)(Λ−dN)W
R0µ[W−dQ1(Q2+a1)(Q3+a2)]

,

S1 = µQ1[Q2(1+b1 A1)+a1]A1
(1+b1 A1)kδ[µβ1 A1+β2(Λ−dN)]

,

and W = kδβ1Λ(Q3 + a2) + (1 − k)δβ2Λ(Q2 + a1 + p).
If R0 > 1, then I1 is positive, and A1 satisfies the following equation

w1 A2
1 + w2 A1 + w3 = 0,

where

w1 = b1kp + (1 − k)Q2b1 > 0, w2 = kp + (1 − k)Q2 + (1 − k)a1 > 0,
w3 = −H < 0, H = a2(Λ−dN)

µ+b2(Λ−dN)
> 0, A1 = −w2/(2w1),

∆ = w2
2 − 4w1w3 = [kp + (1 − k)Q2 + (1 − k)a1]

2 + 4(b1kp + (1 − k)Q2b1)H > 0.

So there is only root A1 > 0. When R0 > 1, S1, E1, A1, I1 are positive and system (1)
has a unique endemic equilibrium E∗ = (S1, E1, A1, I1).

3.1. Stability of Disease-Free Equilibrium

Theorem 1. When R0 < 1, the disease-free equilibrium E0 of system (1) is locally asymptotically
stable in X; When R0 > 1, the disease-free equilibrium is unstable.

Proof of Theorem 1. The Jacobian matrix of system (1) at E0 is

J∗ =


−d 0 −β1

Λ
d + a1 −β2

Λ
d + a2

0 −Q1 β1
Λ
d β2

Λ
d

0 kδ −Q2 − a1 0
0 (1 − k)δ p −Q3 − a2

.

The characteristic equation of matrix J∗ is

(λ + d)(λ3 +A1λ2 +A2λ +A3) = 0. (5)

Obviously, λ1 = −d is a negative real root of equation, and

A1 = Q1 + Q2 + Q3 + a1 + a2 > 0,
A2 = (Q3 + a2)(Q1 + Q2 + a1) + Q1(Q2 + a1)− β2(1 − k)δ Λ

d − β1kδ Λ
d

= Q1(Q3 + a2)(1 − r2) + Q1(Q2 + a1)(1 − r1) + (Q3 + a2)(Q2 + a1) > 0,
A3 = Q1(Q2 + a1)(Q3 + a2)− (Q2 + a1)β2

Λ
d (1 − k)δ − (Q3 + a2)β1

Λ
d kδ − kδpβ2

Λ
d

= Q1(Q2 + a1)(Q3 + a2)(1 − R0) > 0.

Then, we obtain

A1A2 −A3 = Q2
1[(Q3 + a2)(1 − r2) + (Q2 + a1)(1 − r1)]

+(Q2 + Q3 + a1 + a2)[Q1(Q3 + a2)(1 − r2) + Q1(Q2 + a1)(1 − r1)
+(Q3 + a2)(Q2 + a1)] + Q1(Q2 + a1)(Q3 + a2)R0 > 0.

Therefore, according to the Hurwitz criterion [27,28], when R0 < 1,A3 > 0, system (1)
is locally asymptotically stable at the disease-free equilibrium point E0. When R0 > 1
A3 < 0, the disease-free equilibrium point is unstable. The proof is complete.

Theorem 2. When R0 ≤ 1 − W
β1 A+β2 I < 1, the disease-free equilibrium point E0 of system (1) is

globally asymptotically stable in X, where
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W =
[

β1(Q3+a2)+pβ2
(Q2+a1)(Q3+a2)

a1b1 A2

1+b1 A + β2
Q3+a2

a2b2 I2

1+b2 I

]
.

Proof of Theorem 2. Construction of Lyapunov function

V = Λ
d

[
kδ

Q1(Q2+a1)
β1 +

kδp+(1−k)δ(Q2+a1)
Q1(Q2+a1)(Q3+a2)

β2

]
E

+Λ
d

[
β1

Q2+a1
+ pβ2

(Q2+a1)(Q3+a2)

]
A + Λ

d
β2

Q3+a2
I > 0.

When R0 ≤ 1 − W
β1 A+β2 I < 1,

dV
dt = Λ

d

[
kδ

Q1(Q2+a1)
β1 +

kδp+(1−k)δ(Q2+a1)
Q1(Q2+a1)(Q3+a2)

β2

]
E

′

+Λ
d

[
β1

Q2+a1
+ pβ2

(Q2+a1)(Q3+a2)

]
A

′
+ Λ

d
β2

Q3+a2
I
′

= Λ
d

[
kδ

Q1(Q2+a1)
β1 +

kδp+(1−k)δ(Q2+a1)
Q1(Q2+a1)(Q3+a2)

β2

]
[β1SA + β2SI − (δ + d)E]

+Λ
d

[
β1

Q2+a1
+ pβ2

(Q2+a1)(Q3+a2)

]
[kδE − (p + d)A − a1 A

1+b1 A ]

+ β2
Q3+a2

[(1 − k)δE + pA − (d + µ)I − a2 I
1+b2 I ]

Λ
d

= (R0 − 1)(β1 A + β2 I) +
[

β1(Q3+a2)+pβ2
(Q2+a1)(Q3+a2)

a1b1 A2

1+b1 A + β2
Q3+a2

a2b2 I2

1+b2 I

]
= (R0 − 1)(β1 A + β2 I) + W ≤ 0.

Let Ω =
{
(S, E, A, I)| dV

dt = 0
}
= {(S, E, A, I)|A = I = 0}, within Ω , when t → ∞,

there is S → Λ
d . Therefore, E0 is the maximal w-invariant set of Ω. According to LaSalle’s

invariant set principle [29], any trajectory within X converges to E0, where E0 is the disease-
free equilibrium and is globally asymptotically stable within X. The proof is complete.

3.2. Stability of the Endemic Equilibrium

Theorem 3. When R0 > 1, if B1B2 − B3 > 0 and B3(B1B2 − B3) > B2
1B4, then the endemic

equilibrium E∗ of system (1) is locally asymptotically stable in X. Among them,

B1 = a11 + a12 + d,
B2 = a11(a12 + d) + a13 + a14 − a15,
B3 = (a12 + d)(a13 + a14 − a15) + a12a17 + a16 + a18 − kδpβ2S1,
B4 = (a12 + d)(a16 − β2S1kδp − a18)

+a12{δ(β2S1 + N)[kp + (1 − k)(Q2 + M)] + kδ(Q3 + N)(β1S1 + M)}

and have
a11 = Q1 + Q2 + Q3 + M + N, a12 = β1 A1 + β2 I1,
a13 = (Q2 + M)(Q3 + N), a14 = Q1(Q2 + Q3 + M + N),
a15 = [β2(1 − k)− kβ1]S1δ, a16 = Q1(Q2 + M)(Q3 + N),
a17 = (1 − k)δ(β2S1 + N) + kδ(β1S1 + M),
a18 = (1 − k)δβ2S1(Q2 + M) + kδβ1S1(Q3 + N),

where

M = a1
(1+b1 A1)2 , N = a2

(1+b2 I1)2 .

Proof of Theorem 3. The Jacobian matrix of system (1) at E∗ is

J|E∗ =


−β1 A1 − β2 I1 − d 0 −β1S1 − a1

(1+b1 A1)2 −β2S1 − a2
(1+b2 I1)2

βA1 + β2 I1 −Q1 β1S1 β2S1
0 kδ −Q2 − a1

(1+b1 A1)2 0
0 (1 − k)δ p −Q3 − a2

(1+b2 I1)2

,

then
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λIdentity − J|E∗ =


λ + β1 A1 + β2 I1 + d 0 β1S1 +

a1
(1+b1 A1)2 β2S1 +

a2
(1+b2 I1)2

−βA1 − β2 I1 λ + Q1 −β1S1 −β2S1
0 −kδ λ + Q2 +

a1
(1+b1 A1)2 0

0 −(1 − k)δ −p λ + Q3 +
a2

(1+b2 I1)2

,

then

det(λIdentity − J|E∗) = λ4 + B1λ3 + B2λ2 + B3λ + B4 = 0.

If R0 > 1, it can be determined that

B1,B2,B3,B4 > 0, (6)

then we have
B1B2 −B3 > 0,B3(B1B2 −B3) > B2

1B4. (7)

The proofs of (6) and (7) are given in Appendix A and Appendix B, respectively.
Therefore, according to Hurwitz criterion [30], the equilibrium E∗ of system (1) is locally
asymptotically stable. The proof is complete.

4. Persistence

Theorem 4. When R0 > 1, the system (1) is uniformly persistent.

Proof of Theorem 4. To prove persistence, we first give the following notation and definition

X0 = {(S, E, A, I) ∈ X|E, A, I > 0}, ∂X0 = X \ X0.

We obtain from system (1)

E(t) ≥ E(t0)e−(σ+d)(t−t0), A(t) ≥ A(t0)e−(p+d)(t−t0), I(t) ≥ I(t0)e−(µ+d)(t−t0). (8)

Therefore, X and X0 are positively invariant sets, where ∂X0 is a relatively closed set
of X. Next, we will prove that system (1) is uniformly persistent. Let

M∂ = {(S(0), E(0), A(0), I(0))|(S(t), E(t), A(t), I(t)) ∈ ∂X0, ∀t ≥ 0}.

Now we prove

M∂ = (S(0), 0, 0, 0)|S(t) ≥ 0,

we clearly have

{(S(0), 0, 0, 0)|S(t) ≥ 0} ⊆ M∂,

and now we just need proof

M∂ ⊆ {(S(0), 0, 0, 0)|S(t) ≥ 0}.

Let (S(0), E(0), A(0), I(0)) ∈ M∂ be a statement. We need to prove that for statement
∀t ≥ 0, have E(t) = 0, A(t) = 0, I(t) = 0, there exists the statement E(t) = 0, A(t) = 0,
I(t) = 0. By using proof by contradiction, let us assume that the conclusion is not true.
In that case, there exists the statement t0 ≥ 0 such that one of the following equations holds:

(i)E(t0) > 0; (ii)A(t0) > 0; (iii)I(t0) > 0.

For case (i), solving Equation (8) for all t > t0 yields statement A(t) > 0 . Furthermore,
from system (1), we have E(t) > 0, I(t) > 0. Hence, we have statement (S(t), E(t), A(t), I(t)) /∈
∂X0, which leads to a contradiction. For case (ii) , a similar approach leads to a contradiction
with statement (S(0), E(0), A(0), I(0)) ∈ M∂. In the case of (iii), that is E(t0) > 0, when
t > t0 holds, we can obtain
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A(t) = A(t0)e−(p+d)(t−t0) +
∫ t

t0

(kδE − a1 A
1 + b1 A

)ep+ddt.

Clearly, when E(t0) > 0, for ∀t > t0 have A(t) > 0 holds. Similarly, by applying
the same method, the formal solutions for I(t) can be obtained. When t > t0, we have
I(t) > 0. Therefore, statement (S(t), E(t), A(t), I(t)) /∈ ∂X0 leads to a contradiction. Thus,
it is concluded that M∂ = {(S(0), 0, 0, 0)|S(0) ≥ 0} holds. The system (1) has a globally
asymptotically stable disease-free equilibrium E(0), and there is only one equilibrium E(0)
in M∂.

The following will prove that E0 is weakly repulsive with respect to the set X0, that
is, proving lim

t→∞
supd(Φ(t), E0) > 0 is sufficient by demonstrating Ws(E0) ∩ X0 = ∅. Using

proof by contradiction, let us assume this conclusion is not true. Then there exists a positive
solution (S(t), E(t), A(t), I(t)) for system (1) such that

lim
t→∞

(S(t), E(t), A(t), I(t)) = (S0, 0, 0, 0).

Define M = F − V. Due to R0 > 1, therefore s(M) > 0. For a small enough value of
ε > 0, there exists s(M − Mε) > 0, where

Mε =

 0 β1ε β2ε
0 0 0
0 0 0

.

There exists T > 0 such that for any t > T, have S0 − ε < S(t) < S0 + ε. Thus,
the following differential equation inequality can be obtained:

dE
dt ≥ β1(S0 − ε)A + β2(S0 − ε)I − (δ + d)E,
dA
dt = kδE − (p + d)A − a1 A

1+b1 A ,
dI
dt = (1 − k)δE + pA − (d + µ)I − a2 I

1+b2 I .

Auxiliary system
dE
dt = β1(S0 − ε)A + β2(S0 − ε)I − (δ + d)E,
dA
dt = kδE − (p + d)A − a1 A

1+b1 A ,
dI
dt = (1 − k)δE + pA − (d + µ)I − a2 I

1+b2 I .

(9)

Because of s(M − Mε) > 0, when t → ∞, E(t) → ∞, A(t) → ∞, I(t) → ∞. This
contradicts the assumption that when t → ∞,E(t) → 0, A(t) → 0, I(t) → 0. Thus, it is
proved that Ws(E0) ∩ X0 = ∅ holds. In summary, it can be concluded that the system (1)
with respect to (X0, ∂X0) is uniformly persistent. The proof is complete.

5. Optimal Control Strategy

The maximum principle proposed by Pontryagin is one of the three cornerstones of
optimal control theory. It can be applied to solve interdisciplinary problems, formulate
rational and effective control strategies in mathematical models, and effectively prevent
the spread of COVID-19. Given the complexity of infectious disease modeling, which
typically involves numerous parameters, the use of optimal control measures to analyze
the dynamics of diseases is crucial. The application of optimal control theory contributes to
improving the predictive accuracy of models and designing the most effective strategies to
reduce the impact of diseases on populations [31].

In this section, the Pontryagin maximum principle is employed to identify optimal
control strategies for addressing COVID-19, with the aim of minimizing the number of
infected individuals and minimizing the associated control costs. Applying the Pontryagin
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maximum principle from optimal control theory allows for the identification of rational
and effective strategies for controlling infectious diseases, necessitating the exploration of
optimal control conditions within the model.

Rewrite system (1) as the following set of nonlinear differential equations:

dS
dt = Λ − β1(1 − u1)SA − β2(1 − u2)SI − dS + a1 A

1+b1 A + a2 I
1+b2 I ,

dE
dt = β1(1 − u1)SA + β2(1 − u2)SI − (δ + d)E,
dA
dt = kδE − (p + d + u3)A − a1 A

1+b1 A ,
dI
dt = (1 − k)δE + pA − (d + µ + u4)I − a2 I

1+b2 I ,

(10)

where u1 signifies the strategy of isolating to reduce interaction between susceptible and
asymptomatic infected individuals, u2 indicates the strategy of isolating to lessen contact
between susceptible and symptomatic infected individuals, u3 denotes the approach to
enhance treatment and recovery of asymptomatic infected individuals, and u4 corresponds
to the strategy of improving treatment and recovery of symptomatic infected individuals.

Define the control set

U = {(u1(t), u2(t), u3(t), u4(t))|0 ≤ ui(t) ≤ 1, i = 1, 2, 3, 4},

and ui(t) is Lebesgue measurable at [0, 1].
By applying the method of Ahmad et al. [32] to construct the objective function, we

have completed additional research on the basis of their work and constructed the following
objective function

J(u1, u2, u3, u4) =
∫ T

0
(P1 A + P2 I +

w1

2
u2

1 +
w2

2
u2

2 +
w3

2
u2

3 +
w4

2
u2

4)dt, (11)

where: P1 and P2, respectively, represent the weight coefficients of asymptomatic infected
persons and symptomatic infected persons; w1, w2, w3, w4 respectively represent the weight
coefficients corresponding to each control strategy; w1

2 u2
1, w2

2 u2
2, w3

2 u2
3, w4

2 u2
4 respectively

indicate the cost required for the corresponding control policy.
The optimal control strategy problem is now described as

OCP :

{
minJ(u),
s.t.u = (u1, u2, u3, u4) ∈ U.

(12)

5.1. Existence of Optimal Control Solutions

Theorem 5. System (10) has optimal control
−→
u∗ = (u∗

1 , u∗
2 , u∗

3 , u∗
4) ∈ U, such that

J(u1
∗, u2

∗, u3
∗, u4

∗) = min
u1,u2,u3,u4∈U

J(u1, u2, u3, u4). (13)

Proof of Theorem 5. According to the theory of optimal existence [33], it is established that

(1) For any control variable ui ∈ U, the initial values of system (10) are all negative;
(2) The control set is a closed and convex set;
(3) The right-hand linear function of system (10) satisfies the initial conditions, ensuring

boundedness on the control set U;
(4) The integrand of the objective function (11) is convex on the control set U, and there

exist constants c1 and c2, such that

P1 A + P2 I + w1
2 u2

1 +
w2
2 u2

2 +
w3
2 u2

3 +
w4
2 u2

4 ≥ c1 ∥ u ∥c2 ,

where P1 A + P2 I ≥ 0, c1 = 1
2 min(Bi)(i = 1, 2, 3, 4), c2 = 2.

Therefore, the optimal control solution for system (10) exists. The proof is complete.
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5.2. Optimal Control Solution

Next, the Pontryagin’s Maximum Principle is employed to determine the solution for
optimal control [34]. For ∀t ∈ [0, T], the Hamiltonian function H is defined as

H(Y, U, λ) = P1 A + P2 I + w1
2 u2

1 +
w2
2 u2

2 +
w3
2 u2

3 +
w4
2 u2

4 + λ1
dS
dt + λ2

dE
dt + λ3

dA
dt + λ4

dI
dt

= P1 A + P2 I + w1
2 u2

1 +
w2
2 u2

2 +
w3
2 u2

3 +
w4
2 u2

4
+λ1[Λ − β1(1 − u1)SA − β2(1 − u2)SI − dS + a1 A

1+b1 A + a2 I
1+b2 I ]

+λ2[β1(1 − u1)SA + β2(1 − u2)SI − (δ + d)E]
+λ3[kδE − (p + d + u3)A − a1 A

1+b1 A ]

+λ4[(1 − k)δE + pA − (d + µ + u4)I − a2 I
1+b2 I ],

where λ1(t), λ2(t), λ3(t), λ4(t) represent the adjoint variables corresponding to each state.
And there is the following:
H1: control system satisfaction

dS
dt

=
∂H
∂λ1

,
dE
dt

=
∂H
∂λ2

,
dA
dt

=
∂H
∂λ3

,
dI
dt

=
∂H
∂λ4

;

H2: adjoint system satisfaction

dλ1

dt
= −∂H

∂S
,

dλ2

dt
= −∂H

∂E
,

dλ3

dt
= −∂H

∂A
,

dλ4

dt
= −∂H

∂I
;

H3: minimum condition

H(Y∗(t), U∗(t), Λ∗(t)) = min
0≤ui≤uimax

H(Y∗(t), U∗(t), Λ∗(t)).

In addition, the following cross-sectional conditions also hold true.

λi(T) = 0, i = 1, 2, 3, 4.

Theorem 6. There exists an optimal control U(t), suppose (S∗(t), E∗(t), A∗(t), I∗(t)) is the
optimal control solution for the system (11), where λ∗

1(t), λ∗
2(t), λ∗

3(t), λ∗
4(t) is the adjoint function.

According to Pontryagin’s Maximum Principle, the derivative of the adjoint variables is obtained as

dλ∗
1

dt = [β1(1 − u1)A + β2(1 − u2)I](λ∗
1 − λ∗

2) + dλ∗
1 ,

dλ∗
2

dt = (δ + d)λ∗
1 − kδλ∗

3 − (1 − k)δλ∗
4 ,

dλ∗
3

dt = −P1 + β1(1 − u1)S(λ∗
1 − λ∗

2) +
a1

(1+b1 A)2 (λ
∗
3 − λ∗

1) + (p + d + u3)λ
∗
3 − pλ∗

4 ,
dλ∗

4
dt = −P2 + β2(1 − u2)S(λ∗

1 − λ∗
2) +

a2
(1+b2 I)2 (λ

∗
4 − λ∗

1) + (d + µ + u4)λ
∗
4 ,

(14)

and there is a cross-sectional condition λ∗
i (T) = 0, i = 1, . . . , 4. Additionally, the optimal control

must satisfy
∂H
∂u1

∣∣∣∣u∗
1 = 0,

∂H
∂u2

∣∣∣∣u∗
2 = 0,

∂H
∂u3

∣∣∣∣u∗
3 = 0,

∂H
∂u4

∣∣∣∣u∗
4 = 0. (15)

Furthermore, the optimal control solution is expressed in the following form:

u∗
1(t) = min

{
max

{
0,

(λ∗
1 − λ∗

1)β1S∗A∗

w1

}
, 1
}

,

u∗
2(t) = min

{
max

{
0,

(λ∗
2 − λ∗

1)β2S∗ I∗

w1

}
, 1
}

,

u∗
3(t) = min

{
max

{
0,

λ∗
3 A∗

w1

}
, 1
}

,
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u∗
4(t) = min

{
max

{
0,

λ∗
4 I∗

w1

}
, 1
}

.

6. Numerical Simulation
6.1. Stability of Balance Point

Assuming Λ = 100 people/day, β1 = 0.01/people/day, β2 = 0.014/people/day,
d = 0.05/day, a1 = 0.15/day, b1 = 0.25/day, a2 = 0.2/day, b2 = 0.3/day, δ = 0.4/day,
p = 0.3/day, k = 0.6, µ = 0.07/day, we obtain R0 ≈ 0.588 people < 1, as shown in
Figure 2, which verifies that the disease-free equilibrium point is globally
asymptotically stable.

Figure 2. Time series of S(t), E(t), I(t), A(t).

Assuming Λ = 100 people/day, β1 = 0.015/people/day, β2 = 0.0145/people/day,
d = 0.05/day, a1 = 0.15/day, b1 = 0.25/day, a2 = 0.2/day, b2 = 0.3/day, δ = 0.4/day,
p = 0.3/day, k = 0.6, µ = 0.066/day, we obtain R0 ≈ 1.527 people > 1, as shown in
Figure 3, the endemic equilibrium point is globally asymptotically stable.

Figure 3. Time series of S(t), E(t), I(t), A(t).
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6.2. Sensitivity Analysis

Sensitivity analysis [35] is a method to evaluate the influence of various input parame-
ters on the output. Simply put, it is a technique for determining which input parameters
have a significant impact on the results of the model. Through sensitivity analysis, we can
find out the most important factors, which can help to optimize model design, improve
model precision and provide a more reliable basis for decision making.

Specific methods and applications of sensitivity analysis may vary in different fields
and applications, but the core objective is to better understand the behavior and predic-
tive results of models. Sensitivity analysis is a common tool for model verification, risk
assessment and decision support in the fields of statistics, engineering, economics, and
environmental science. One of the most important methods is the Partial Rank Correlation
Coefficient method, which is a very useful statistical sampling technique and has been
widely used in the analysis of infectious disease models [36,37].

This method first generates a large number of parameter combinations through Latin
Hypercube Sample (LHS), and then calculates the model output corresponding to these
parameter combinations (e.g., base generation R0). Finally, the influence of each parameter
on the model output is evaluated by calculating the partial correlation coefficient between
each parameter and the model output. This method can reveal the key parameters that
affect the output of the model and provide important information for the further study and
application of the model.

This article employs Latin hypercube sampling to conduct sensitivity analysis on
various parameters affecting the basic reproduction number R0 of the system (1), thereby
determining the degree of influence of each parameter on R0. Through the analysis, it is
found that among the selected parameters, d, a2 and µ are significantly negatively correlated
with R0, while Λ, β1 and β2 are significantly positively correlated with R0.

As can be seen from Figure 4, among these parameters that have different degrees of
influence on the outbreak of COVID-19, the infection rate of asymptomatic infected people
to susceptible people is β1. It has a significant effect on R0. Therefore, it can be reduced
by reducing β1 to reduce and control the spread of COVID-19; one can also increase the
maximum cure coefficients a1 and a2 of asymptomatic infected persons and symptomatic
infected persons can shorten the cure cycle of COVID-19; or, the constant input Λ of the
reduced population can reduce the population mobility, thus reducing the spread speed of
COVID-19.

Figure 4. Correlation between R0 and parameters. The units of each parameter are shown in Table 1.
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6.3. Optimal Control

Suppose Λ = 100 people/day, β1 = 0.0015/people/day, β2 = 0.002/people/day,
d = 0.06/day, a1 = 0.15/day, b1 = 0.25/day, a2 = 0.02/day, b2 = 0.03/day, δ = 0.0068/day,
p = 0.94/day, k = 0.86, µ = 0.07/day. Each control strategy has its limitations, so the
maximum values of u1, u2, u3 and u4 are 0.8, 0.9, 0.6 and 0.7 respectively. As shown in
Figure 5, and all control strategies will gradually decrease with the change of time. In
Figures 6 and 7, we obtain the comparison of the number of asymptomatic infected people
and symptomatic infected people before and after adopting the optimal control strategy.
Obviously, due to adopting the control strategy, the number of infected people quickly
approaches zero. This shows that the control strategy studied can play a very good role in
controlling the spread of COVID-19, which proves the effectiveness of the control strategy.
This practice keeps both asymptomatic and symptomatic infected people in COVID-19 at a
relatively low level.

Figure 5. The functional relationship between the control variable u(t)and time t.

Figure 6. Comparing the number of asymptomatic infectives before and after implementing the
control measures.
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Figure 7. Comparing the number of symptomatic infectives before and after implementing the
control measures.

7. Conclusions

This paper proposes an SEAI model of COVID-19 with asymptomatic infection. This
paper mainly studies the influence of asymptomatic infected people on the rapid spread
of novel coronavirus. Firstly, the basic regeneration number R0 and equilibrium point of
the model are calculated. Then, the local asymptotic stability of disease-free equilibrium
and endemic equilibrium is proved by Hurwitz criterion, and the stability of disease-free
equilibrium is proved by constructing Laplace function, and the uniform persistence of the
system is proved. Then, the Pontryagin maximum principle is applied to solve the optimal
control problem. Finally, the theoretical results are verified by numerical simulation, and the
sensitivity of parameters is analyzed by PRCC technology, which shows that the influence
of asymptomatic infected people on the spread of COVID-19 should not be underestimated.

In the current COVID-19 epidemic, isolation and keeping social distance are the main
measures to control the spread of the virus. The state can start with this aim and implement
a perfect isolation policy by taking appropriate measures. For asymptomatic infected
people, the state can use advanced technology to identify them and then isolate them to
prevent the outbreak of diseases. In addition, the state can also reduce the mobility of the
population by raising people’s awareness of COVID-19, including prevention measures
such as washing hands frequently, wearing masks when going out, avoiding gatherings of
crowds, reducing the contact between susceptible people and infected people, and reducing
the constant input of population, so as to slow down and eventually control the spread of
this disease.
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Appendix A

Proof of Equation (6). It follows from the Theorem 3 that we have the following expres-
sions of B1,B2,B3 and B4

B1 = a11 + a12 + d

= Q1 + Q2 + Q3 + M + N + β1 A1 + β2 I1 + d,

B2 = a11(a12 + d) + a13 + a14 − a15

= (Q1 + Q2 + Q3 + M + N)(β1 A1 + β2 I1 + d) + (Q2 + M)(Q3 + N)

+ Q1(Q2 + Q3 + M + N)− [β2(k − 1)− kβ1]S1δ

= (Q1 + Q2 + Q3 + M + N)(β1 A1 + β2 I1 + d) + (Q2 + M)(Q3 + N)

+ Q1(Q2 + Q3 + M + N) + [kβ1 + (1 − k)β2]S1δ,

B3 = (a12 + d)(a13 + a14 − a15) + a12a17 + a16 + a18 − kδpβ2S1

= {(β1 A1 + β2 I1 + d)[(Q2 + M)(Q3 + N) + Q1(Q2 + Q3 + M + N)]

+ (β1 A1 + β2 I1)[(1 − k)δ(β2S1 + N) + kδ(β1S1 + M)]

+ Q1(Q2 + M)(Q3 + N) + [kβ1 + (1 − k)β2]S1δ(β1 A1 + β2 I1 + d)}
dQ1(Q2 + a1)(Q2 + a2)(R0 − 1),

B4 = (a12 + d)(a16 − β2S1kδp − a18)

+ a12{δ(β2S1 + N)[kp + (1 − k)(Q2 + M)] + kδ(Q3 + N)(β1S1 + M)}
= (β1 A1 + β2 I1 + d){Q1(Q2 + M)(Q3 + N) + δβ2S1[k(d + M) + (Q2 + M)]

+ kδβ1S1(Q3 + N)}+ (β1 A1 + β2 I1)δ(β2S1 + N)[kp + (1 − k)(Q2 + M)]

+ (β1 A1 + β2 I1)kδ(Q3 + N)(β1S1 + M).

Since Q1 = δ + d, Q2 = p + d, Q3 = d + µ, M = a1
(1+b1 A1)2 , N = a2

(1+b2 I1)2 , the param-
eters δ, p, d, µ, a1, a2, b1, b2 are all positive integers, and A1, I1 are all greater than 0, so the
expressions Q1, Q2, Q3, M, N are all greater than 0, then we have B1 > 0,B2 > 0,B4 > 0.
Meanwhile, the expression B3 > 0 as R0 > 1. The proof is complete.

Appendix B

Proof of Equation (7). Similar to the proof of Appendix A, we first derive the following
expressions

B1B2 −B3 = (a11 + a12 + d)[a11(a12 + d) + a13 + a14 − a15]

− [(a12 + d)(a13 + a14 − a15) + a12a17 + a16 + a18 − kδpβ2S1]

= (Q1 + Q2 + Q3 + M + N + β1 A1 + β2 I1 + d)(Q1 + Q2 + Q3 + M + N)

(β1 A1 + β2 I1 + d) + (Q2 + Q3 + M + N)(Q2 + M)(Q3 + N)

+ (Q1 + Q2 + Q3 + M + N){Q1(Q2 + Q3 + M + N)}
+ [kβ1 + β2(1 − k)]S1δ}+ (1 − k)δβ2S1(Q2 + M) + kδβ1S1(Q3 + N)

+ kδPβ2S1 + (β1 A1 + β2 I1)[(1 − k)δ(β2S1 + N) + kδ(β2S1 + M)],

B1B2B3 −B2
3 −B2

1B4 = (a11 + a12 + d)[a11(a12 + d) + (a13 + a14 − a15)][(a12 + d)(a13 + a14 − a15)

+ a12a17 + a16 − a18 − kδP(β2S1]− [(a12 + d)(a13 + a14 − a15) + a12a17

+ a16 + a18 − kδpβ2S1]
2 − (a11 + a12 + d)2{(a12 + d)(a16 − β2S1kδp − a18)

+ a12δ(β2S1 + N)[kp + (1 − k)(Q2 + M)] + a12kδ(Q3 + N)(β1S1 + M)}

Noting that all the parameters and variables are non-negative, then Q1, Q2, Q3, M, N >
0, so we can easily deduce B1B2 −B3 > 0.

Furthermore,
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B1B2B3 −B2
3 −B2

1B4 > (Q1 + Q2 + Q3 + M + N)(β1 A1 + β2 I1 + d)[(Q2 + M)(Q3 + N)

+ Q1(Q2 + Q3 + M + N) + kβ1S1δ(1 − k)β2S1δ]2 + (Q1 + Q2 + Q3

+ M + N)(β1 A1 + β2 I1)[(1 − k)δ(β2S1 + N) + kδ(β1S1 + M)][(Q2 + M)

(Q3 + N) + Q1(Q2 + Q3 + M + N + kβ1S1δ + (1 − k)β2S1δ)]

+ (Q1 + Q2 + Q3 + M + N)(β1 A1 + β2 I1 + d)3[(Q2 + M)(Q3 + N)

+ Q1(Q2 + Q3 + M + N) + kβ1S1δ + (1 − k)β2S1β1δ + (Q1 + Q2 + Q3

+ M + N)(β1 A1 + β2 I1)[(1 − k)δ(β2S1 + N) + kδ(β1S1 + M)](β1 A1

+ β2 I1 + d)2 + (kδpβ2S1)
2 > 0.

Therefore, we prove that B3(B1B2 −B3) > B2
1B4. The proof is complete.
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