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Abstract: The current study aims to utilize the homotopy perturbation method (HPM) to solve
nonlinear dynamical models, with a particular focus on models related to predicting and controlling
pandemics, such as the SIR model. Specifically, we apply this method to solve a six-compartment
model for the novel coronavirus (COVID-19), which includes susceptible, exposed, asymptomatic
infected, symptomatic infected, and recovered individuals, and the concentration of COVID-19 in
the environment is indicated by S(t), E(t), A(t), I(t), R(t), and B(t), respectively. We present the
series solution of this model by varying the controlling parameters and representing them graphically.
Additionally, we verify the accuracy of the series solution (up to the (n − 1)th-degree polynomial)
that satisfies both the initial conditions and the model, with all coefficients correct at 18 decimal places.
Furthermore, we have compared our results with the Runge–Kutta fourth-order method. Based on
our findings, we conclude that the homotopy perturbation method is a promising approach to solve
nonlinear dynamical models, particularly those associated with pandemics. This method provides
valuable insight into how the control of various parameters can affect the model. We suggest that
future studies can expand on our work by exploring additional models and assessing the applicability
of other analytical methods.

Keywords: COVID-19 model; nonlinear system of ODEs; homotopy perturbation method;
semi-analytical solutions; series solution; Runge–Kutta method; convergence; error analysis

MSC: 34A34; 34A60; 34C46; 74H10

1. Introduction

The COVID-19 pandemic has had a significant impact on global health, economies,
and societies. It is caused by the SARS-CoV-2 virus, which spreads through respiratory
droplets and contact with contaminated surfaces. There are four subtypes of coronavirus,
seven of which are known to affect humans. COVID-19 has exacerbated socioeconomic
inequalities, particularly along the lines of gender, race, ethnicity, nativity, and class. It has
affected employment, income, social welfare spending, and the criminal justice system.
The pandemic has also had a profound impact on mental health, with higher levels of
anxiety, depression, and stress. However, individuals differ in their ability to cope with
the pandemic and some show resilience. Research has been conducted in various fields,
including health, mass media, sociology, business, economics, tourism, education, and law,
to understand and address the challenges posed by COVID-19.

The role of the environment in the transmission and spread of COVID-19 is a significant
aspect to consider in mathematical modeling studies. Environmental contamination by
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infected individuals and the subsequent impact on the transmission dynamics of the disease
have been explored in several articles.

Sarkar et al. [1] proposed a nonlinear mathematical model for COVID-19 transmission
in India, which incorporates environmental contamination as a factor. Hussain et al.,
developed a stochastic mathematical model to analyze the spread and extinction of the
disease, considering environmental white noise [2]. Azoz et al., investigated the dynamics
of COVID-19 using a model that highlights the importance of the environment as a reservoir
for the propagation of disease [3]. There are thousands of COVID-19 models; we refer to
some of the latest published review papers on COVID-19 models for further study [4–11].

In [12], a novel mathematical model was developed to analyze the transmission dynamics
of COVID-19, taking into account the concentration of the coronavirus in the environment.
These studies emphasize the need to understand the environmental mechanisms that contribute
to the pandemic and the importance of disinfection measures to control the spread of the virus.

To investigate the dynamics of COVID-19, we employed the COVID-19 model presented
in [12], which comprises six compartments: susceptible individuals denoted by S(t), exposed
individuals denoted by E(t), asymptomatic infected individuals denoted by A(t), symp-
tomatic infected individuals denoted by I(t), recovered individuals denoted by R(t), and the
concentration of COVID-19 in the environment denoted by B(t). The total human population
is divided into five different classes, given by M(t) = S(t) + E(t) + A(t) + I(t) + R(t). The
following model equations are given:

dS
dt

= Λ − (β1E + β2 I + β3 A + β4B)
S
M

− dS,

dE
dt

= (β1E + β2 I + β3 A + β4B)
S
M

− (δ + d)E,

dI
dt

= (1 − τ)δE − (d + d1 + γ1)I,

dA
dt

= τδE − (d + γ2)A,

dR
dt

= γ1 I + γ2 A − dR,

dB
dt

= ψ1E + ψ2 I + ψ3 A − ϕB.

(1)

where S(0) = S0 ≥ 0, E(0) = E0 ≥ 0, I(0) = I0 ≥ 0, A(0) = A0 ≥ 0, R(0) = R0 ≥ 0,
B(0) = B0 ≥ 0, and ± lim

n→∞
M(t)≤ Λ

d . The model parameters are listed in Table 1. The detailed

formulations of the model with brief discussion, stability of the model, analysis of equilibrium
points, parameter estimations, and sensitivity analysis are given in the research article [12].

Table 1. Description of parameters for model (1).

Parameter Description
β1 Contact rate among exposed and susceptible
β2 Contact rate among infected (symptomatic) and susceptible
β3 Contact rate among infected (asymptomatic) and susceptible
β4 Contact rate among environment and susceptible
ψ1 Virus contribution due to E to B
ψ2 Virus contribution due to I to B
ψ3 Virus contribution due to A to B
d1 Natural death rate due to infection at I
Λ Recruitment rate
d Natural mortality rate
δ Incubation period
τ Incubation period
γ1 Recovery from I
γ2 Recovery from A
ϕ Virus removal from environment
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Ji Huan He proposed the homotopy perturbation method (HPM) in 1999 [13]; he
improved this method and applied it to asymptotology in 2004 [14], nonlinear oscillators
with discontinuities [15], limit cycle and bifurcation of nonlinear problems [16], nonlinear
wave equations [17], and the boundary value problem [18].

Recently, many scientists and researchers have applied HPM to solve numerous
problems which arise in science, technology, and health, such as nonlinear problems arising
in heat transfer [19], the nonlinear Burgers’ equation [20], the fractional KdV–Burgers’
equation [21], the Helmholtz–Fangzhu oscillator [22], linear parabolic equations [23], the
Balitsky–Kovchegov equation [24], a one-dimensional convection diffusion problem [25], a
fractional wave equation [26], a shock wave equation [27], linear fuzzy delay differential
equations [28], a mathematical model of dengue fever [29], a mathematical model of the
eardrum [30], a mathematical model of mumps [31], systems of second-order nonlinear
ordinary differential equations [32], iterative methods for nonlinear equations [33], and
a model of depletion of forest resources [34]. Agarwal et al. [35] applied the HPM and
Bernoulli equation to measure the COVID-19 outbreak. They concluded that the fractional
order performs better than the integer order. Nasution et al. [36] also studied an SEIR
model for the spread of COVID-19 using the HPM and RK–fourth-order methods. They
focused on the impact of moving the recovered sub-population back to the susceptible
sub-population.

In this study, the homotopy perturbation method (HPM) is utilized to solve the
COVID-19 model (1), providing a series solution that closely approximates the exact solu-
tion. The validity of HPM is established in Section 2, focusing on the convergence of HPM.
The series solution for this model is further validated in Section 3.1. It is demonstrated that
the series solution outperforms the numerical solution obtained through the RK–fourth-
order method, as discussed in Section 3.2. The pertinent parameters crucial for controlling
this pandemic disease are thoroughly examined in Section 4, titled Numerical Simulation
and Discussion.

2. Homotopy Perturbation Method

To illustrate the homotopy perturbation method [13], we consider a differential equation

D(µ)− g(τ) = 0, τ ∈ ℧, (2)

subject to the boundary condition

β(µ,
∂µ

∂τ
) = 0, τ ∈ Γ, (3)

where D is a differential operator, β is boundary operator, Γ is the boundary of the domain
℧, and g(τ) is a known analytic function. The D, generally consist of two parts, a linear
and nonlinear part, represented as L and N, respectively. Therefore, (2) can be written
as follows:

L(µ) + N(µ)− g(τ) = 0. (4)

Using the homotopy method, by taking an embedding parameter q, one can construct
a homotopy w (τ, q) : ℧× [0, 1] → R for Equation (4), which satisfies

H(w, q) = (1 − q)[L(w)− L(µ0)] + q[L(w) + N(w)− g(τ)] = 0, (5)

it is equivalent to

H(w, q) = L(w)-L(µ0) + qL(µ0) + q[N(w)− g(τ)] = 0, (6)
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where q ∈ [0, 1] is an embedding parameter and µ0 is an initial guess approximation of (6),
which satisfies the initial (or boundary) conditions. It can be written as follows:

q = 0, H(w, 0) = L(w)− L(µ0), (7)

q = 1, H(w, 1) = L(w) + N(w)− g(τ). (8)

We suppose that the solution is in the form of power series for Equation (5) by taking
an embedding parameter q :

w = w0 + qw1 + q2w2 + q3w3 + · · · . (9)

The approximate solution of Equation (2) can be obtained by setting q = 1,

µ = lim
q→1

w = w0 + w1 + w2 + w3 + · · · . (10)

The convergence of (10) has been proved in [13], which depends upon the nonlinear
operator A(w) and the following conditions:

1. The second derivative of N(w) with respect to w must be small, because the parameter
q may be relatively large, i.e., q → 1.

2. The norm of L−1∂N/∂w must be smaller than one, in order for the series to converge.

Convergence of HPM

The convergence of HPM is derived in [37,38] as well. If we consider Equation (6), we
can write

L(w)− L(v0) = q[g(t)− L(v0)− N(w)], (11)

by using Equation (9) in Equation (11), we get

L

(
∞

∑
i=0

wiqi

)
− L(v0) = q

[
g(t)− L(v0)− N

(
∞

∑
i=0

wiqi

)]
, (12)

when we put q = 1 in L.H.S of Equation (12),

∞

∑
i=0

L(wi)− L(v0) = q

[
g(t)− L(v0)− N

(
∞

∑
i=0

wiqi

)]
. (13)

According to the Maclaurin expansion of N(∑∞
i=0 wiqi) with respect to q,

N

(
∞

∑
i=0

wiqi

)
=

∞

∑
n=0

(
1
n!

δn

δqn N

(
∞

∑
i=0

wiqi

))
qn. (14)

Here,

N

(
∞

∑
i=0

wiqi

)
≈ N

(
n

∑
i=0

wiqi

)
. (15)

By using Equation (15) in R.H.S of Equation (14),

N

(
∞

∑
i=0

wiqi

)
=

∞

∑
n=0

(
1
n!

δn

δqn N

(
n

∑
i=0

wiqi

))
qn. (16)

Now, we set

Hn(w0, w1, w2, w3, · · · ) =
(

1
n!

δn

δqn N

(
n

∑
i=0

wiqi

))
qn, n = 1, 2, 3, . . . , (17)
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substituting Equation (17) in Equation (16),

N

(
∞

∑
i=0

wiqi

)
=

∞

∑
n=0

Hnqn. (18)

Using Equation (18) in Equation (13), we have

∞

∑
i=0

L(wi)− L(v0) = q

[
g(t)− L(v0)−

∞

∑
n=0

Hnqn

]
. (19)

By equating the terms with the powers in q,

q0 : L(w0)− L(v0) = 0,

q1 : L(w1) = g(t)− L(v0)− H0,

q3 : L(w3) = −H2,

q4 : L(w4) = −H3,
...

We derive

w0 = v0,

w1 = L−1(g(t))− v0 − L−1(H0),

w2 = −L−1(H1),

w3 = −L−1(H2),

w4 = −L−1(H3),
...

We suppose that

Sn = w1 + w2 + w3 + w4 + w5 + · · ·+ wn =
n

∑
k=1

wk. (20)

Now, we suppose that B is a Banach space, S ∈ B. ∑∞
k=1 wk converges to s ∈ B if

∃(0 ≤ λ < 1), s.t (∀n ∈ N =⇒ ||vn||≤ λ||vn−1||).
We need to show that (Sn) is a Cauchy sequence in the Banach space. For any m, n ∈ N,

and n ≥ m, we derive

||Sn − Sm|| = ||(Sn − Sn−1) + (Sn−1 − Sn−2) + · · ·+ (Sm+1 − Sm)||
≤ ||Sn − Sn−1||+||Sn−1 − Sn−2||+ · · ·+ ||Sm+1 − Sm||
≤ λn||w0||+λn−1||w0||+ · · ·+ λm+1||w0||
≤ (λn + λn−1 + · · ·+ λm+1)||w0||
≤ (λm+1 + · · ·+ λn + . . . )||w0||
≤ λm+1(1 + λ + · · ·+ λn + . . . )||w0||

≤ λm+1

1 − λ
||w0||.

So, limm,n→∞||Sn − Sm||= 0. Therefore, (Sn) is a Cauchy sequence in the Banach space
and is convergent.
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3. Application of HPM

Now, we apply HPM on the model (1) of COVID-19 (nonlinear system of differential
equations) as

(1 − q)(u′ − S′
0) + q

(
u′ −

(
Λ − (β1v + β2w + β3x + β4z) u

N − d × s
))

= 0,
(1 − q)(v′ − E′

0) + q
(
v′ − (β1v + β2w + β3x + β4z) u

N − (δ + d)v
)
= 0,

(1 − q)(w′ − I′0) + q(w′ − (1 − τ)δv − (d + d1 + γ1)w) = 0,
(1 − q)(x′ − A′

0) + q(x′ − (τδv − (d + γ2)x)) = 0,
(1 − q)(y′ − R′

0) + q(y′ − (γ1w + γ2x − dy)) = 0,
(1 − q)(z′ − B′

0) + q(z′ − (ψ1v + ψ2w + ψ3x − ϕz)) = 0.

(21)

The initial guesses for (21) are constant, as defined in [12]:

u0(t) = S0(t) = S(0) = n1
v0(t) = E0(t) = E(0) = n2
w0(t) = I0(t) = I(0) = n3

x0(t) = A0(t) = A(0) = n4
y0(t) = R0(t) = R(0) = n5
z0(t) = B0(t) = B(0) = n6

(22)

and we assume the solution of (21):

u = u0 + qu1 + q2u2 + q3u3 + . . . ,

v = v0 + qv1 + q2v2 + q3v3 + . . . ,

w = w0 + qw1 + q2w2 + q3w3 + . . . ,

x = x0 + qx1 + q2x2 + q3x3 + . . . , (23)

y = y0 + qy1 + q2y2 + q3y3 + . . . ,

z = z0 + qz1 + q2z2 + q3z3 + . . . .

Using Equation (23) in Equation (21) and collecting the terms of powers of q, we obtain

q0 :



u′
0 = 0, u0(0) = n1,

v′0 = 0, v0(0) = n2,
w′

0 = 0, w0(0) = n3,
x′0 = 0, x0(0) = n4,
y′0 = 0, y0(0) = n5,
z′0 = 0, z0(0) = n6.

(24)

q1 :



u′
1 = Λ − u0

Λ (β1v0 + β2w0 + β3x0 + β4z0)d − u0d, u1(0) = 0,
v′1 = u0

Λ (β1v0 + β2w0 + β3x0 + β4z0)d − (δ + d)v0, v1(0) = 0,
w′

1 = δ(1 − τ)v0 − (d + d1 + γ1)w0, w1(0) = 0,
x′1 = τδv0 − (d + γ2)x0, x1(0) = 0,
y′1 = γ1w0 + γ2x0 − y0d, y1(0) = 0,
z′1 = ψ1v0 + ψ2w0 + ψ3x0 − ϕz0, z1(0) = 0.

(25)

q2 :



u′
2 = − d

Λ

(
u1(β1v0 + β2w0 + β3x0 + β4z0u0)
+u0(β1v1 + β2w1 + β3x1 + β4z1)

)
− u1d, u2(0) = 0,

v′2 = d
Λ

(
u1(β1v0 + β2w0 + β3x0 + β4z0)
+u0(β1v1 + β2w1 + β3x1 + β4z1)

)
− (δ + d)v1, v2(0) = 0,

w′
2 = δ(1 − τ)v1 − (d + d1 + γ1)w1, w2(0) = 0,

x′2 = τδv1 − (d + γ2)x1, x2(0) = 0,
y′2 = γ1w1 + γ2x1 − y1d, y2(0) = 0,
z′2 = ψ1v1 + ψ2w1 + ψ3x1 − ϕz1, z2(0) = 0.

(26)
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q3 :



u′
3 = − d

Λ

 u2(β1v0 + β2w0 + β3x0 + β4z)
+u1(β1v1 + β2w1 + β3x1 + β4z1)
+u0(β1v2 + β2w2 + β3x2 + β4z2)

− u2d, u3(0) = 0,

v′3 = d
Λ

 u2(β1v0 + β2w0 + β3x0 + β4z0)
+u1(β1v1 + β2w1 + β3x1 + β4z1)
+u0(β1v2 + β2w2 + β3x2 + β4z2)

− (δ + d)v2, v3(0) = 0,

w′
3 = δ(1 − τ)v2 − (d + d1 + γ1)w2, w3(0) = 0,

x′3 = τδv2 − (d + γ2)x2, x3(0) = 0,
y′3 = γ1w2 + γ2x2 − y2d, y3(0) = 0,
z′3 = ψ1v2 + ψ2w2 + ψ3x2 − ϕz2, z3(0) = 0.

(27)

q4 :



u′
4 = d

Λ

(
−u0(β1v3 + β2w3 + β3x3 + β4z3)− u1(β1v2 + β2w2 + β3x2 + β4z2)
−u2(β1v1 + β2w1 + β3x1 + β4z1)− u3(β1v0 + β2w0 + β3x0 + β4z0)

)
− u3d, u4(0) = 0,

v′4 = d
Λ

(
u0(β1v3 + β2w3 + β3x3 + β4z3) + u1(β1v2 + β2w2 + β3x2 + β4z2)
+u2(β1v1 + β2w1 + β3x1 + β4z1) + u3(β1v0 + β2w0 + β3x0 + β4z0)

)
− (δ + d)v3, v4(0) = 0,

w′
4 = (δτ − δ)v3 − (d + d1 + γ1)w3, w4(0) = 0,

x′4 = δτv3 − (d + γ2)x3, x4(0) = 0,
y′4 = (γ1 + γ2)x3 − y3d, y4(0) = 0,
z′4 = ψ1v3 + ψ2w3 + ψ3x3 − ϕz3, z4(0) = 0.

(28)

...
By integrating Equations (24) to (28) with respect to t considering the initial values,

S(0) = u0(0) = n1 = 34813871, E(0) = v0(0) = n2 = 1, I(0) = w0(0) = n3 = 1,
A(0) = x0(0) = n4 = 1, R(0) = y0(0) = n4 = 1, and B(0) = z0(0) = n6 = 1, and the pa-
rameters Λ = 1392.55484, d = 0.00004, β1 = 0.1233, β2 = 0.0542, β3 = 0.0020, β4 = 0.1101,
δ = 0.1980, τ = 0.3085, d1 = 0.0104, γ1 = 0.3680, γ2 = 0.2945, ψ1 = 0.2574, ψ2 = 0.2798,
ψ3 = 0.1584, and ϕ = 0.3820 [12]; we have the corresponding solution as

u0 = 34, 813, 871,
v0 = 1,
w0 = 1,
x0 = 1,
y0 = 1,
z0 = 1.

(29)

u1 = −0.2896t,
v1 = 0.0915634t,
w1 = −0.24152t,
x1 = −0.233454t,
y1 = 0.662463t,
z1 = 0.3136t.

(30)

u2 = −0.0161246t2,
v2 = 0.00706348t2,
w2 = 0.0519682t2,
x2 = 0.0371768t2,

y2 = −0.0788278t2,
z2 = −0.100392t2.

(31)

u3 = 0.00243058t3,
v3 = −0.00289666t3,
w3 = −0.00623319t3,
x3 = −0.00350616t3,

y3 = 0.0100253t3,
z3 = 0.0201991t3.

(32)
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u4 = −0.000380499t4,
v4 = 0.000523888t4,
w4 = 0.000490566t4,
x4 = 0.000213939t4,

y4 = −0.000831686t4,
z4 = −0.00269027t4.

(33)

...

By substituting the values of ui, vi, wi, xi, yi, and zi, where 0 ≤ i ≤ 4, in Equations (29)
to (33) in the assumed solution (23) and taking lim

q→1
, we have



S(t) = u = 34813871 − 0.2896t − 0.0161246t2 + 0.00243058t3 − 0.000380499t4 + · · · ,
E(t) = v = 1 + 0.0915634t + 0.00706348t2 − 0.00289666t3 + 0.000523888t4 + · · · ,
I(t) = w = 1 − 0.24152t + 0.0519682t2 − 0.00623319t3 + 0.000490566t4 + · · · ,
A(t) = x = 1 − 0.233454t + 0.0371768t2 − 0.00350616t3 + 0.000213939t4 + · · · ,
R(t) = y = 1 + 0.662463t − 0.0788278t2 + 0.0100253t3 − 0.000831686t4 + · · · ,
B(t) = z = 1 + 0.3136t − 0.100392t2 + 0.0201991t3 − 0.00269027t4 + · · · .

(34)

3.1. Verification of Model and Numerical Results

To verify the validity of the solution, we first verify the solution for initial conditions that
are satisfied at t = 0, then put the solution and its derivatives in the system (model). If both
sides of the system are satisfied, we consider the solution to be correct. To verify the second
condition, we differentiate the solution given in Equation (34) with respect to t, so we have

dS
dt = −0.2896 − 0.0322493t + 0.00729174t2 − 0.001522t3 + · · · ,
dE
dt = 0.0915634 + 0.014127t − 0.00868997t2 + 0.00209555t3 + · · · ,
dI
dt = −0.24152 + 0.103936t − 0.0186996t2 + 0.00196226t3 + · · · ,
dA
dt = −0.233454 + 0.0743536t − 0.0105185t2 + 0.000855755t3 + · · · ,
dR
dt = 0.662463 − 0.157656t + 0.0300758t2 − 0.00332674t3 + · · · ,
dB
dt = 0.3136 − 0.200783t + 0.0605972t2 − 0.0107611t3 + · · · ,

(35)

by using Equations (34) and (35), and the parameters Λ = 1392.55484, d = 0.00004,
β1 = 0.1233, β2 = 0.0542, β3 = 0.0020, β4 = 0.1101, δ = 0.1980, τ = 0.3085, d1 = 0.0104,
γ1 = 0.3680, γ2 = 0.2945, ψ1 = 0.2574, ψ2 = 0.2798, ψ3 = 0.1584, and ϕ = 0.3820 in the
system (1), we have

0.000775602 + 1.38778 × 10−17t − 2.60209 × 10−18t2 − 2.1684 × 10−19t3 − 0.0002046t4 + · · · = 0,
−1.21431 × 10−18t − 1.73472 × 10−18t3 + 1.0842 × 10−18t3 + 0.000308335t4 + · · · = 0,
3.46945 × 10−18t2 + 1.19262 × 10−18t3 + 0.000113919t4 + · · · = 0,
−1.387782 × 10−17t + 1.73472 × 10−18t2 + 7.86047 × 10−19t3 + 0.0000310121t4 + · · · = 0,
−3.46945 × 10−18t2 − 8.67362 × 10−19t3 − 0.000243564t4 + · · · = 0,
0. 2.77556 × 10−17t − 1.38778 × 10−17t2 − 1.73472 × 10−18t3 − 0.00133203t4 + · · · = 0.

(36)

The coefficients of the t powers in (36) are correct at zero or closer to zero (approxi-
mately 18 to 19 decimal places). It means that the solution satisfies the model. Our series
solution is up to fourth-degree polynomials, which satisfies the system up to the third-
degree polynomial (where the coefficients are closer to zero). The solution can be improved
by taking/adding more power t terms (or HPM iterations).

3.2. Runge–Kutta Method and Error Analysis

We will now compare the HPM-derived series solution of our model, Equation (1) with
a well-known numerical method called the Runge–Kutta fourth-order method. This method
is readily available in undergraduate mathematics textbooks. We adapt our model according
to this method and obtain results with different step sizes; then, we calculate the absolute
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error comparing with our obtained series solutions which are shown in Tables 2–4. In these
tables, we have shown some values of absolute errors, eS, eE, eI , eA, eR, and eB for S(t), E(t),
I(t), A(t), R(t), and B(t), respectively. In Table 2, the absolute error is very high at step size
h = 0.1. In Table 3, the step size is kept smaller and the absolute error is slightly reduced at
h = 0.001. In Table 4, the step size is further reduced by h = 0.001 and the absolute error is
significantly reduced. It can be seen here that, for the RK method, we have to keep the step
size very small, while in our series solution, there is no need to do so. In the verification
paragraph above, we have checked the series solution to see how standard it is in this regard.
With such a small step size, the RK method becomes computationally expensive.

Table 2. Absolute error using step size h = 0.1.

t eS eE eI eA eR eB
0 0 0 0 0 0 0
0.5 1.616842099 1.92 × 10−7 3.10 × 10−6 2.35 × 10−6 4.99 × 10−6 1.06 × 10−5

1 3.233692616 4.23 × 10−5 5.34 × 10−5 5.41 × 10−6 6.64 × 10−5 0.000254454
1.5 4.850716822 0.000356877 0.000239544 6.51 × 10−5 0.00042068 0.00180683
2 6.468316101 0.001518456 0.000621071 0.000278623 0.001641022 0.007297106
2.5 8.087210111 0.004566927 0.001153262 0.000834699 0.004772735 0.021466895
3 9.708500035 0.011096696 0.001618225 0.002034279 0.011452179 0.051608136
3.5 11.33371698 0.023323999 0.001563129 0.004315138 0.02400971 0.107905772
4 12.96485896 0.044136898 0.000245444 0.00827457 0.045558465 0.203704952
4.5 14.60441884 0.07713207 0.003415046 0.014690223 0.080070501 0.355718662
5 16.25540547 0.126641564 0.01087792 0.024538976 0.132441761 0.584188452
5.5 17.92135941 0.197751982 0.024018022 0.039013869 0.208547273 0.913008351
6 19.60636462 0.296317974 0.045156182 0.059539181 0.315287878 1.369819985
6.5 21.3150571 0.428971505 0.077085337 0.087783756 0.46062964 1.9860852
7 23.052631 0.603128003 0.123092626 0.125672724 0.653636997 2.797141232
7.5 24.82484309 0.826990239 0.186977975 0.17539775 0.904500543 3.842242332
8 26.63801591 1.109550564 0.273069676 0.239425973 1.224560286 5.164590951
8.5 28.49903976 1.460592006 0.386237365 0.320507763 1.626325031 6.811360906
9 30.41537415 1.890688562 0.531902821 0.421683432 2.123488541 8.833714418
9.5 32.39504866 2.411204963 0.71604889 0.546289031 2.730942952 11.28681449

Table 3. Absolute error using step size h = 0.01.

t eS eE eI eA eR eB
0 0 0 0 0 0 0
0.05 0.161685288 1.60 × 10−7 1.94 × 10−8 3.17 × 10−7 1.81 × 10−7 2.25 × 10−8

0.1 0.323370315 2.98 × 10−7 2.76 × 10−8 6.21 × 10−7 3.80 × 10−7 9.60 × 10−8

0.15 0.485055074 4.21 × 10−7 3.41 × 10−8 9.12 × 10−7 6.02 × 10−7 2.37 × 10−7

0.2 0.64673958 5.33 × 10−7 6.00 × 10−8 1.19 × 10−6 8.63 × 10−7 4.81 × 10−7

0.25 0.808423825 6.33 × 10−7 1.38 × 10−7 1.45 × 10−6 1.18 × 10−6 8.90 × 10−7

0.3 0.970107831 7.10 × 10−7 3.10 × 10−7 1.70 × 10−6 1.58 × 10−6 1.56 × 10−6

0.35 1.131791621 7.44 × 10−7 6.28 × 10−7 1.92 × 10−6 2.11 × 10−6 2.64 × 10−6

0.4 1.29347524 7.03 × 10−7 1.15 × 10−6 2.11 × 10−6 2.81 × 10−6 4.33 × 10−6

0.45 1.45515871 5.39 × 10−7 1.95 × 10−6 2.26 × 10−6 3.74 × 10−6 6.89 × 10−6

0.5 1.616842091 1.89 × 10−7 3.10 × 10−6 2.35 × 10−6 4.99 × 10−6 1.06 × 10−5

0.55 1.778525457 4.26 × 10−7 4.68 × 10−6 2.36 × 10−6 6.66 × 10−6 1.60 × 10−5

0.6 1.940208867 1.41 × 10−6 6.77 × 10−6 2.29 × 10−6 8.84 × 10−6 2.35 × 10−5

0.65 2.101892419 2.88 × 10−6 9.47 × 10−6 2.10 × 10−6 1.17 × 10−5 3.37 × 10−5

0.7 2.263576232 4.98 × 10−6 1.29 × 10−5 1.76 × 10−6 1.54 × 10−5 4.73 × 10−5

0.75 2.42526041 7.89 × 10−6 1.71 × 10−5 1.24 × 10−6 2.00 × 10−5 6.51 × 10−5

0.8 2.586945102 1.18 × 10−5 2.22 × 10−5 5.18 × 10−7 2.59 × 10−5 8.81 × 10−5

0.85 2.748630479 1.69 × 10−5 2.82 × 10−5 4.62 × 10−7 3.32 × 10−5 0.000117264
0.9 2.910316721 2.35 × 10−5 3.54 × 10−5 1.74 × 10−6 4.21 × 10−5 0.000153809
0.95 3.07200402 3.19 × 10−5 4.38 × 10−5 3.37 × 10−6 5.31 × 10−5 0.000199056



Axioms 2024, 13, 311 10 of 18

Table 4. Absolute error using step size h = 0.001.

t eS eE eI eA eR eB
0 0 0 0 0 0 0
0.005 0.016168535 1.73 × 10−8 2.45 × 10−9 3.24 × 10−8 1.76 × 10−8 2.14 × 10−10

0.01 0.032337077 3.44 × 10−8 4.81 × 10−9 6.47 × 10−8 3.52 × 10−8 8.62 × 10−10

0.015 0.048505612 5.11 × 10−8 7.05 × 10−9 9.68 × 10−8 5.30 × 10−8 1.95 × 10−9

0.02 0.064674139 6.75 × 10−8 9.19 × 10−9 1.29 × 10−7 7.10 × 10−8 3.48 × 10−9

0.025 0.080842674 8.36 × 10−8 1.12 × 10−8 1.61 × 10−7 8.90 × 10−8 5.47 × 10−9

0.03 0.097011201 9.95 × 10−8 1.31 × 10−8 1.92 × 10−7 1.07 × 10−7 7.92 × 10−9

0.035 0.113179728 1.15 × 10−7 1.49 × 10−8 2.24 × 10−7 1.26 × 10−7 1.08 × 10−8

0.04 0.129348248 1.30 × 10−7 1.65 × 10−8 2.55 × 10−7 1.44 × 10−7 1.42 × 10−8

0.045 0.145516761 1.46 × 10−7 1.80 × 10−8 2.86 × 10−7 1.63 × 10−7 1.81 × 10−8

0.05 0.161685281 1.60 × 10−7 1.94 × 10−8 3.17 × 10−7 1.81 × 10−7 2.25 × 10−8

0.055 0.1778538 1.75 × 10−7 2.07 × 10−8 3.48 × 10−7 2.00 × 10−7 2.73 × 10−8

0.06 0.194022313 1.89 × 10−7 2.18 × 10−8 3.79 × 10−7 2.20 × 10−7 3.27 × 10−8

0.065 0.210190818 2.04 × 10−7 2.29 × 10−8 4.10 × 10−7 2.39 × 10−7 3.86 × 10−8

0.07 0.226359315 2.18 × 10−7 2.38 × 10−8 4.40 × 10−7 2.58 × 10−7 4.51 × 10−8

0.075 0.24252782 2.32 × 10−7 2.46 × 10−8 4.71 × 10−7 2.78 × 10−7 5.21 × 10−8

0.08 0.258696318 2.45 × 10−7 2.53 × 10−8 5.01 × 10−7 2.98 × 10−7 5.97 × 10−8

0.085 0.27486483 2.59 × 10−7 2.60 × 10−8 5.31 × 10−7 3.18 × 10−7 6.78 × 10−8

0.09 0.291033313 2.72 × 10−7 2.66 × 10−8 5.61 × 10−7 3.38 × 10−7 7.66 × 10−8

0.095 0.30720181 2.85 × 10−7 2.71 × 10−8 5.91 × 10−7 3.59 × 10−7 8.59 × 10−8

4. Numerical Simulation and Discussion

In this section, we discuss the numerical results of the COVID-19 model (1). Figure 1
depicts the upward trajectory of E(t), representing the exposed population, and I(t), repre-
senting symptomatic infected individuals, both of which exhibit a comparable rate of increase
from time 0 to time 250. Furthermore, A(t), denoting the number of asymptomatic infected
individuals, experiences an incremental increase, although at a slower pace. The count
of individuals who are infected but do not display symptoms is on the rise; however, the
rate of increase is comparatively slower than that of the exposed and symptomatic infected
individuals. Conversely, the number of individuals in the recovered state, R(t), and those
afflicted with COVID-19, B(t), rises over time, displaying a positive trend. The population’s
suitability S(t) or vulnerability to the virus exhibits a positive decrease over time. This obser-
vation implies that, as time progresses, the population’s susceptibility decreases, potentially
attributed to immunity or other influencing factors. It is imperative to acknowledge that the
aforementioned interpretation is based solely on the descriptions provided.

Figure 1. Total population and the concentration of the COVID-19 in the environment.
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Susceptible with β1, β2, β3, and β4:

We examined certain parameters of the model as described in the literature, specifically
the recruitment rate (birth) and the natural death rate. Subsequently, we conducted an
analysis by altering the parameter values. The graphical representation of the impact of
these parameters on the susceptible population is depicted in Figures 2–5 with respect to
the parameters β1, β2, β3, and β4.

Figure 2. The impact of β1 on susceptible people.

Figure 3. The impact of β2 on susceptible people.
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Figure 4. The impact of β3 on susceptible people.

Figure 5. The impact of β4 on susceptible people.

Figure 2 shows β1, the contact rate between exposed and susceptible people. The rate
of interaction between those who are vulnerable and those who have been exposed to the
virus is influenced by this parameter. As depicted in Figure 2, an increase in β1 results in a
gradual decrease in the susceptibility of individuals. This implies that a reduction in the rate
of contact between exposed and susceptible individuals leads to a decrease in the number of
cases of susceptibility. In particular, within the framework of Figure 2, it is demonstrated
that a decrease in the contact rate (β1) between susceptible and exposed individuals leads to
an increase in the vulnerability of the population. β3 is a contact rate among asymptomatic
infected and susceptible people. Similarly to β1, β3 denotes contact frequency, and it has been
noted that variations in β3 affect susceptibility in a manner comparable to variations in β1. If
a decrease in β3 results in a increased susceptibility, this implies that diminishing the contact
frequency linked to an alternative facet of the ailment (potentially associated with a distinct
demographic or mode of transmission) also renders the populace more susceptible, as seen
in Figure 4. β2 is the contact rate among symptomatic infected and susceptible people and β4
is a contact rate among the concentration of COVID-19 in the environment and susceptible
people. Parameters β2 and β4 are observed to exhibit a consistent susceptibility at the highest
rate of variables. This indicates that changes in β2 and β4 do not seem to affect susceptibility
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in the same way as changes in β1 and β3 do at higher values. The susceptibility retains a
constant value at its utmost level, which could indicate that these particular parameters do
not have a notable effect on the susceptibility of the population at higher values, as seen in
Figures 3 and 5.

Exposed People with β1, β2, β3, and β4:

The impact of parameters β1, β2, β3, and β4 on exposed people is shown graphically in
Figures 6–9. It can be seen that, by decreasing the values of β1, β2, β3, and β4, the exposed
cases decrease. Figure 6 shows that the number of exposed persons reduces as β1 increases.
This implies that there is a negative relationship between the population of exposed persons
and the contact rate linked to β1. That is, there may be a correlation between decreased
exposure and increased contact. Figures 7 and 8 provide evidence for a relationship in
which the number of exposed people gradually increases at lower β2 and β3 values before
reaching positive values. This suggests that the population of exposed persons gradually
increases at reduced contact rates or transmission rates related to β2 and β3. Figure 9 shows
that the number of exposed people decreases further into the negative as the value β4 drops.
This suggests that lowering the rate of β4-associated contact or transmission has an adverse
effect on the population of exposed persons.

Figure 6. The impact of β1 exposed people.

Figure 7. The impact of β2 exposed people.
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Figure 8. The impact of β3 exposed people.

Figure 9. The impact of β4 exposed people.

Concentration of COVID-19 with ψ1, ψ2, ψ3, and ϕ:

Figures 10–13 demonstrate how the concentration of COVID-19 in the environment
increases in tandem with increases in ψ1, ψ2, and ψ3 levels. This implies that there is a
positive relationship between these variables and viral concentration. Practically speaking,
this could imply that the elements associated with ψ1, ψ2, and ψ3 contribute to an increased
level of COVID-19 in the environment.

Figure 13 shows that the concentration of COVID-19 in the environment falls as the
parameter ϕ decreases. This suggests that there is a positive relationship between viral
concentration and ϕ. Stated differently, a decrease in the amount of COVID-19 present in
the environment is associated with an increase in the value of ϕ.
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Figure 10. The impact of ψ1 on the concentration of COVID-19 in the environment.

Figure 11. The impact of ψ2 on the concentration of COVID-19 in the environment.

Figure 12. The impact of ψ3 on the concentration of COVID-19 in the environment.
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Figure 13. The impact of ϕ on the concentration of COVID-19 in the environment.

The homotopy perturbation approach, a mathematical strategy for approximating
solutions to problems that might not have exact analytical solutions, was applied to solve
the COVID-19 model. The resultant solution took the shape of a general series, which most
likely reflects a formula that encapsulates the dynamics of the COVID-19 model. To obtain
a specific series solution, values were given for the parameters and initial circumstances.
This was achieved by putting actual values into the general series solution to obtain a
more tangible model representation. After that, the specific series solution was acquired
by applying the specified initial circumstances and parameter values. The analysis in
this work involved changing the values of the parameters to see how the model was
affected. Understanding how various factors affect the dynamics of the COVID-19 model
requires this kind of investigation. Plots were created to graphically display the model
output. These charts perhaps illustrate how different factors impact different parts of the
dynamics of COVID-19. Mathematical modeling frequently involves this kind of effort,
particularly when addressing complicated systems such as infectious diseases. It enables
researchers to learn more about how the system behaves in various scenarios and with
varying parameter values.

5. Conclusions

In this study, we successfully employed the homotopy perturbation method to solve
a nonlinear dynamical model of COVID-19. The model consists of six compartments
representing susceptible, exposed, asymptomatic infected, symptomatic infected, and
recovered individuals, and the concentration of the virus in the environment. We obtained
the general solution of the model based on variable conditions and parameters, as well as
particular series solutions using initial conditions and specific tested values of parameters.
We discussed the convergence of the homotopy perturbation method. The precision of
the series solution was verified up to the (n − 1)th-degree polynomial with all coefficients
correct at 18 decimal places. Furthermore, we have analyzed the effects of four control
parameters (β1, β2, β3, and β4) on susceptible and exposed populations, as well as the
effects of four other control parameters (ψ1, ψ2, ψ3, and ϕ) on virus concentration in
the environment. With the help of the RK–fourth-order method, we have presented the
importance of HPM. Our findings suggest that these parameters should be considered
important control parameters for pandemic disease management. Overall, the results of
this study demonstrate the effectiveness of the homotopy perturbation method in solving
complex nonlinear models and provide useful insights for public health decision-making
during pandemics.
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While this study successfully applies the homotopy perturbation method (HPM) to a
nonlinear COVID-19 model, several critical areas for future research and improvement are
evident. The model assumptions should be validated against real-world data to enhance
accuracy and realism, potentially requiring adjustments or additional compartments. Com-
prehensive sensitivity analyses are crucial to identify key parameters that affect disease
dynamics, and further calibration of the model against empirical data is needed to improve
predictive capabilities. Future studies should extend the model to incorporate spatial and
temporal dynamics, considering spatial heterogeneity and behavioral influences, such as
compliance with interventions and changes in mobility. Comparative evaluations with
other modeling approaches would provide information on the strengths and limitations of
HPM in epidemiological modeling. Addressing these aspects will refine the structure of the
model, improve the validation processes, and expand the scope of the analysis, ultimately
improving the relevance and reliability of such models for pandemic response strategies.
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