Article

Some Results on Zinbiel Algebras and Rota-Baxter Operators

Jizhong Gao ${ }^{1, \dagger}$, Junna $\mathrm{Ni}^{2, \dagger}$ and Jianhua $\mathrm{Yu}^{2, *}$
1 School of Electrical and Computer Engineering, Guangzhou Nanfang College, Guangzhou 510970, China; jizgao@126.com
2 School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China; nijunna@126.com
* Correspondence: yujianhuascnu@126.com
+ These authors contributed equally to this work.

Citation: Gao, J.; Ni, J.; Yu, J. Some Results on Zinbiel Algebras and Rota-Baxter Operators. Axioms 2024, 13,314. https://doi.org/10.3390/ axioms13050314

Academic Editors: Andreja Tepavčević and Florin Felix Nichita

Received: 4 April 2024
Revised: 26 April 2024
Accepted: 1 May 2024
Published: 10 May 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

Rota-Baxter operators (RBOs) play a substantial role in many subfields of mathematics, especially in mathematical physics. In the article, RBOs on Zinbiel algebras (ZAs) and their subadjacent algebras are first investigated. Moreover, all the RBOs on two and three-dimensional ZAs are presented. Finally, ZAs are also realized in low dimensions of the RBOs of commutative associative algebras. It was found that not all ZAs can be attained in this way.

Keywords: Zinbiel algebra; commutative associative algebra; Rota-Baxter operator; deviation
MSC: 17A30; 17A32

1. Introduction

Zinbiel algebras (ZAs) were defined in [1] and are dual to Leibniz algebras in the Koszul sense. A ZA is a commutative Dendriform algebra [2]. It is well known that any ZA in terms of the anti-commutator defined as $a * b=a b+b a$ is called a commutative associative algebra (CAA). Some interesting properties of ZAs were presented in [3-7]. In particular, the nilpotent property of an arbitrary finite-dimensional complex ZA was proved in [6]. Thus, the classification of complex ZAs up to the third dimension can be attained $[6,8]$.

The Rota-Baxter operators (RBOs) were originally proposed to resolve an analytic problem [9]. Later, they were researched in several areas of mathematics [10-15]. In particular, some studies investigated RBOs on different algebras [16-18]. In the article, the RBOs on ZAs are focused on. First, the relationship between the RBO on ZA and the ones on its sub-adjacent CAA will be explored. Then, the RBOs on ZAs up to the third dimension based on the classification of ZAs will be determined [6]. Finally, the mutual realization of ZAs and the sub-adjacent CAAs with RBOs up to the third dimension will be investigated based on the derived result of the RBOs on the CAA [19]. Throughout the manuscript, all vector spaces and algebras are composed of finite dimensions over \mathbb{C} unless stated otherwise.

2. Preliminary

Definition 1. $A Z A$ is a vector space A with a bilinear map $(x, y) \rightarrow x y$ satisfying the associative property,

$$
(x y) z=x(y z)+x(z y), \forall x, y \in A
$$

A with $x y=0, \forall x, y \in A$ is a ZA, which is called a trivial ZA, otherwise, a nontrivial ZA.
For a ZA A, the anti-commutator is defined by

$$
x * y=x y+y x, \forall x, y \in A,
$$

and it satisfies the associative property,

$$
\begin{aligned}
(x * y) * z & =(x y+y x) * z=(x y+y x) z+z(x y+y x) \\
& =(x y) z+(y x) z+(z y) x \\
& =x(y z)+x(z y)+(y z) x+(z y) x \\
& =x *(y z+z y) \\
& =x *(y * z) .
\end{aligned}
$$

So, the new product defines a CAA denoted by $\mathfrak{B}=\mathfrak{B}(A)$, which is called the sub-adjacent algebra (SAA) of A.

Definition 2. Let A be an algebra not necessarily associative. A linear operator $R: A \rightarrow A$ is called an RBO on A if R satisfies Equation (1).

$$
\begin{equation*}
R(x) R(y)=R(R(x) y+x R(y)), \forall x, y \in A \tag{1}
\end{equation*}
$$

We denote the set of RBOs on an algebra A by $\mathrm{RB}(A)$. The relationship between the two sets, $R B(A)$ and $R B(\mathfrak{B}(A))$, can be obtained as follows:

Proposition 1. Let R be an $R B O$ on a $Z A A$. Then, R is an $R B O$ on its $S A A \mathfrak{B}(A)$. It is implied that $R B(A) \subseteq R B(\mathfrak{B}(A))$.

Proof. For $x, y \in \mathfrak{B}(A)$, and $R \in R B(A)$, the subsequent equality is presented.

$$
\begin{aligned}
R(R(x)) * y+x * R(y)) & =R(R(x) y+y R(x)+x R(y)+R(y) x) \\
& =R(R(x) y+y R(x))+R(x R(y)+R(y) x) \\
& =R(x) R(y)+R(y) R(x) \\
& =R(x) * R(y) .
\end{aligned}
$$

Next, new RBOs will be constructed from several aspects. Note that a derivation on a ZA A is a linear operator $D: A \rightarrow A$ satisfying

$$
D(x y)=D(x) y+x D(y), \forall x, y \in A
$$

Proposition 2. Suppose that A is a ZA and $R: A \rightarrow A$ is an invertible operator. Then, R is an $R B O$ on A if and only if R^{-1} is a derivation of A.

Alternatively, any derivation D of a ZA A is also a derivation of its SAA $\mathfrak{B}(A)$, that is, D satisfies

$$
D(x * y)=D(x) * y+x * D(y), \forall x, y \in A
$$

Furthermore, invertible derivations or RBOs are simply constructed. Let A be a ZA. A is called graded if $A=\oplus_{\lambda \in \Gamma} A_{\lambda}$ as a direct summation of vector spaces, where $A_{\lambda} \neq 0$ and $A_{\alpha} A_{\beta} \subseteq A_{\alpha+\beta}$.

Proposition 3. Let $A=\oplus_{\lambda \in \Gamma} A_{\lambda}$ be a graded $Z A$. If $0 \notin \Gamma$, then A has an invertible derivation.
Proof. Suppose that $D: A \rightarrow A$ is a linear map defined by $D(x)=\lambda x$ for each $x \in A_{\lambda}$. Then, D is a derivation of A. Furthermore, the invertibility of D is realized since $0 \notin \Gamma$.

Proposition 4. Let $A=A_{1} \oplus A_{2}$ be a direct sum of two ideals of a ZAA. For any $R B O R_{i}$ on $A_{i},(i=1,2)$, the linear map $R: A \rightarrow A$ is given by

$$
R\left(x_{1}, x_{2}\right)=\left(R_{1}\left(x_{1}\right), R_{2}\left(x_{2}\right)\right)
$$

(for any $x_{1} \in A_{1}, x_{2} \in A_{2}$) that defines an RBO on A.
Finally, how CAAs as well as ZAs generate new ZAs through their RBOs will be discussed. Firstly, a result is extracted from [20,21].

Lemma 1. Suppose that (B, \cdot) is a $C A A$ and R is an $R B O[20,21]$. Then, the following product

$$
\begin{equation*}
x * y=x \cdot R(y), \forall x, y \in B \tag{2}
\end{equation*}
$$

defines a $Z A$.
Proposition 5. Let (B, \cdot) be a $C A A$. If D is an invertible derivation on B, then there exist two isomorphic ZAs given by

$$
\begin{gather*}
x * y=x \cdot D^{-1}(y), \forall x, y \in B \tag{3}\\
x \circ y=D^{-1}(D(x) \cdot y), \forall x, y \in B . \tag{4}
\end{gather*}
$$

Proof. For each $x, y, z \in B$, by Propositions 2 and Lemma $1,(B, *)$ is a ZA led by the subsequent equality.

$$
\begin{aligned}
x *(y * z+z * y) & =x D^{-1}\left(y D^{-1}(z)+z D^{-1}(y)\right) \\
& =x D^{-1}(y) D^{-1}(z)=\left(x D^{-1} y\right) D^{-1}(z) \\
& =(x * y) * D^{-1}(z)=(x * y) * z .
\end{aligned}
$$

(B, \cdot) is a ZA led by the subsequent equality.

$$
\begin{aligned}
x \cdot(y \cdot z+z \cdot y) & =D^{-1}(D(x)(y \cdot z))+D^{-1}(D(x)(z \cdot y)) \\
& =D^{-1}\left(D(x) D^{-1}(D(y) z)\right)+D^{-1}\left(D(x) D^{-1}(D(z) y)\right) \\
& =D^{-1}(D(x) *(D(y) z))+D^{-1}(D(x) *(D(z) y)) \\
& =D^{-1}(D(x) *(D(y) * D(z)))+D^{-1}(D(x) *(D(z) * D(y))) \\
& =D^{-1}((D(x) * D(y)) * D(z))=D^{-1}(D(x) *(D(y)) \cdot z \\
& =D^{-1}(D(x) y) \cdot z=(x \cdot y) \cdot z .
\end{aligned}
$$

Alternatively, $(B, 0)$ is a ZA whose product is induced by $(B, *)$ through the algebraic isomorphism D defined by

$$
x \circ y=D^{-1}(D(x) * D(y))=D^{-1}(D(x) \cdot y), \forall x, y \in B
$$

Thus, the conclusion holds.
Corollary 1. Let (B, \cdot) be a $C A A$ and R be an $R B O$. Then, R is an $R B O$ on the $Z A$ generated by Equation (2).

Proof. For each $x, y \in B$, the equality is satisfied as follows:

$$
R(x) * R(y)=R(x) \cdot R^{2}(y)=R\left(R(x) \cdot R(y)+x \cdot R^{2}(y)\right)=R(R(x) * y+x * R(y))
$$

Thus, the R becomes an RBO on $(B, *)$.
Corollary 2. Suppose that (B, \cdot) is $Z A$ and R is an $R B O$. Then, the product is given by

$$
x * y=x \cdot R(y)+R(y) \cdot x, \forall x, y \in B
$$

which defines a new ZA. Furthermore, R is still an RBO on $(B, *)$.

Proof. The first and second statements are followed by Propositions 1 and Lemma 1 and Corollary 1, respectively.

The ZA $(B, *)$ given above is the (1-st) double of (B, \cdot) associated with the RB R. Additionally, for any $\operatorname{ZA}(B, \cdot)$ with an RBO R, a series of $\operatorname{ZAs}\left(B, *_{i}\right)$ can be defined as follows: $\left(B, *_{0}\right)=(B, \cdot)$ and a product on $\left(B, *_{i}\right)(i \geq 1)$ is given by

$$
x *_{i} y=x *_{i-1} R(y)+R(y) *_{i-1} x, \forall x, y \in B .
$$

(B, \cdot) is called the i-th double of (B, \cdot). It is the ($1-$ st) double of $\left(B, *_{i-1}\right)$ associated with R.

Proposition 6. Suppose that (B, \cdot) is a $Z A$ and R is an $R B O$. Then, for any $i \geq 0$, Equation (5) is attained.

$$
\begin{equation*}
x *_{i+1} y=\sum_{k=0}^{i} C_{i}^{k}\left\{R^{k}(x), R^{i+1-k}(y)\right\}, \forall x, y \in B, \tag{5}
\end{equation*}
$$

where $a \cdot b+b \cdot a$ is denoted by $\{a, b\}$ for any $a, b \in B$.
Proof. The conclusion is proved by induction on i.
Equation (5) holds for $i=1$.
Now, suppose that it holds for a generic i, i.e.,

$$
\begin{equation*}
x *_{i+1} y=\sum_{k=0}^{i} C_{i}^{k}\left\{R^{k}(x), R^{i+1-k}(y)\right\} \tag{6}
\end{equation*}
$$

Then, Equation (6) leads to

$$
\begin{aligned}
& x *_{i+2} y=x *_{i+1} R(y)+R(y) *_{i+1} x \\
= & \sum_{k=0}^{i} C_{i}^{k}\left\{R^{k}(x), R^{i+2-k}(y)\right\}+\sum_{k=0}^{i} C_{i}^{k}\left\{R^{k+1}(y), R^{i+1-k}(x)\right\} \\
= & \sum_{k=0}^{i} C_{i}^{k}\left\{R^{k}(x), R^{i+2-k}(y)\right\}+\sum_{k=0}^{i} C_{i}^{k}\left\{R^{i+1-k}(x), R^{k+1}(y)\right\} \\
= & \sum_{k=0}^{i} C_{i}^{k}\left\{R^{k}(x), R^{i+2-k}(y)\right\}+\sum_{t=0}^{i+1} C_{i}^{i+1-t}\left\{R^{t}(x), R^{i+2-t}(y)\right\} \\
= & C_{i}^{0}\left\{x, R^{i+2}(y)\right\}+\sum_{k=1}^{i} C_{i}^{k}\left\{R^{k}(x), R^{i+2-k}(y)\right\} \\
& +C_{i}^{i+1-i-1}\left\{R^{i+1}(x), R(y)\right\}+\sum_{t=1}^{i} C_{i}^{i+1-t}\left\{R^{t}(x), R^{i+2-t}(y)\right\} \\
= & C_{i}^{0}\left\{x, R^{i+2}(y)\right\}+C_{i}^{0}\left\{R^{i+1}(x), R(y)\right\}+\sum_{k=1}^{i}\left(C_{i}^{k}+C_{i}^{i+1-k}\right)\left\{R^{k}(x), R^{i+2-k}(y)\right\} \\
= & \left\{x, R^{i+2}(y)\right\}+\left\{R^{i+1}(x)+R(y)\right\}+\sum_{k=1}^{i} C_{i+1}^{k}\left\{R^{k}(x), R^{i+2-k}(y)\right\} \\
& \sum_{k=0}^{i+1} C_{i+1}^{k}\left\{R^{k}(x), R^{i+2-k}(y)\right\} .
\end{aligned}
$$

So, Equation (5) holds for any i.
Corollary 3. Suppose that (B, \cdot) is a $Z A$ and R is an $R B O$. If R is nilpotent, then there exists a positive integer N such that $\left(B, *_{n}\right)$ are trivial for $n>N$.

Proof. Set $R^{m}=0$. For any $n \geq 2 m-1$ and $k \leq n$, either $k \geq m$ or $n-k \leq m$ holds. Hence, by Equation (5), $x *_{n} y=0$ for any $x, y \in B$.

3. RBOs of Low-Dimensional ZAs

All the RBOs on two- and three-dimensional ZAs will be presented. Suppose that the set $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is a basis of ZA $A . e_{i} e_{j}=\sum_{k=1}^{n} c_{i j}^{k} e_{k}$ is set. Any RBO R could then be characterized by a matrix $\left(r_{i j}\right) \cdot R\left(e_{i}\right)=\sum_{j=1}^{n} r_{j i} e_{j}$ and $r_{i j}^{\prime}$ satisfies Equation (7).

$$
\begin{equation*}
\sum_{k, l, m}^{n}\left(c_{k l}^{m} r_{i k} r_{j l}-c_{k j}^{l} r_{i k} r_{l m}-c_{i l}^{k} r_{j l} r_{k m}\right)=0, i, j=1,2, \ldots, n \tag{7}
\end{equation*}
$$

Next, the classification results of ZAs up to the third dimension in the literature are presented.

Lemma 2. Let A be a $Z A$ with up to the third dimension; then, it must be isomorphic to one of the following cases (just list the nonzero product for nontrivial cases) [6,8].

$$
\begin{gathered}
\operatorname{dim} A=1 \cdot e_{1} e_{1}=0 \\
\operatorname{dim} A=2 . T_{1}: e_{i} e_{j}=0 \text { and } T_{2}: e_{1} e_{1}=e_{2}
\end{gathered}
$$

$$
\operatorname{dim} A=3 . A_{1}: e_{i} e_{j}=0 ; A_{2}: e_{1} e_{1}=e_{3} ; A_{3}: e_{1} e_{1}=e_{3}, e_{2} e_{2}=e_{3} ; A_{4}: e_{1} e_{2}=\frac{1}{2} e_{3}, e_{2} e_{1}=-\frac{1}{2} e_{3} ;
$$

$$
A_{5}: e_{2} e_{1}=-e_{3} ; A_{6}: e_{1} e_{1}=e_{3}, e_{1} e_{2}=e_{3}, e_{2} e_{2}=\lambda e_{3}, \lambda \neq 0 ; A_{7}: e_{1} e_{1}=e_{2}, e_{1} e_{2}=\frac{1}{2} e_{3}, e_{2} e_{1}=e_{3}
$$

In the first dimension, there is only the trivial ZA (the products being zero). In this case, any linear transformation is an RBO. In the second dimension, there are two ZAs: one is the trivial ZA T_{1} whose RBOs are all linear transformations and another T_{2} is given by the nonzero products.

$$
e_{1} e_{1}=e_{2}
$$

By Equation (7), the subsequent equations are attained.

$$
\left\{\begin{array}{l}
r_{12}^{2}-2 r_{11} r_{22}=0 \\
2 r_{11} r_{12}=0 \\
r_{12}\left(r_{11}-r_{22}\right)=0 \\
r_{12}^{2}=0
\end{array}\right.
$$

So, the subsequent results are attained.

1. $\quad r_{12}=0, r_{11} \neq 0, r_{11}=2 r_{22}$.
2. $\quad r_{12}=0, r_{11}=0, r_{22} \in \mathbb{C}$.

The new ZAs pertinent to the RBO R can be attained as follows:
For case $1, R=\left(\begin{array}{cc}2 r_{22} & 0 \\ r_{21} & r_{22}\end{array}\right)\left(r_{22} \neq 0\right)$. Then,

$$
\begin{aligned}
e_{1} * e_{1} & =e_{1} R\left(e_{1}\right)+R\left(e_{1}\right) e_{1} \\
& =e_{1}\left(2 r_{22} e_{1}+r_{21} e_{2}\right)+\left(2 r_{22} e_{1}+r_{21} e_{2}\right) e_{1} \\
& =4 r_{22} e_{2}
\end{aligned}
$$

Similarly, $e_{1} * e_{2}=0, e_{2} * e_{1}=0, e_{2} * e_{2}=0$ are attaiened. When $4 r_{22} e_{2}$ is taken as e_{2}, $e_{1} * e_{1}=e_{2}$ becomes a nonzero product. As discussed above, $e_{1} *_{k} e_{1}=e_{2}, k \in \mathbb{N}$ is attained.

For case $2, R=\left(\begin{array}{cc}0 & 0 \\ r_{21} & r_{22}\end{array}\right) \cdot e_{i} * e_{j}=0, i, j=1,2$ is attained. So $e_{i} * e_{j}=0$ and $e_{i} *_{k} e_{j}=0$, where $i, j=1,2, k \in \mathbb{N}$.

Based on the above arguments, Theorem 1 is stated.

Theorem 1. Let A be the nontrivial two-dimensional $Z A T_{2}$ with an $R B O R$. If $=\left(\begin{array}{cc}2 r_{22} & 0 \\ r_{21} & r_{22}\end{array}\right)$ $\left(r_{22} \neq 0\right)$, for each $i \geq 1$, the i-th double pertinent to R has an isomorphism to A. If $R=\left(\begin{array}{cc}0 & 0 \\ r_{21} & r_{22}\end{array}\right)$, the i-th double is related to R that becomes trivial for each $i \geq 1$.

By Equation (7), for three-dimensional ZA algebras, calculations are performed one at a time, and 103 of them are obtained by the subsequent steps.

1. For A_{2}, the nonzero products are

$$
e_{1} e_{1}=e_{3}
$$

A set of equations is attained as follows:

$$
\left\{\begin{array}{l}
r_{11} r_{23}=0 \\
r_{11}^{2}-2 r_{11} r_{33}=0 \\
r_{12}=r_{13}=0
\end{array}\right.
$$

Then, the subsequent results are attained.
(1) $r_{12}=r_{13}=r_{11}=0, r_{i j} \in \mathbb{C}, i=2,3 ; j=1,2,3$.
(2) $\quad r_{12}=r_{13}=0, r_{11} \neq 0, r_{i j} \in \mathbb{C}, i=2,3 ; j=1,2,3$.
2. For A_{3}, the nonzero products are

$$
e_{1} e_{1}=e_{3}, e_{2} e_{2}=e_{3}
$$

A set of equations is attained as follows:

$$
\left\{\begin{array}{l}
r_{13}=r_{23}=0 \\
2 r_{11} r_{33}=r_{11}^{2}+r_{21}^{2} \\
2 r_{11} r_{33}=r_{12}^{2}+r_{22}^{2} \\
\left(r_{12}+r_{21}\right) r_{33}=r_{12} r_{11}+r_{22} r_{21}
\end{array}\right.
$$

Then, the subsequent results are attained.
(1) $\quad r_{13}=r_{23}=0, r_{11}=r_{22}, r_{12}=\mp \alpha, r_{21}= \pm \alpha, \alpha=\sqrt{-r_{22}\left(r_{22}-2 r_{33}\right)}, r_{22}$, $r_{3 j} \in \mathbb{C}, j=1,2,3$.
(2) $r_{13}=r_{23}=0, r_{11}=-r_{22}+2 r_{33}, r_{12}= \pm \alpha, r_{21}= \pm \alpha, \alpha=\sqrt{-r_{22}\left(r_{22}-2 r_{33}\right)}$, $r_{22}, r_{3 j} \in \mathbb{C}, j=1,2,3$.
3. For A_{4}, the nonzero products are

$$
e_{1} e_{2}=\frac{1}{2} e_{3}, e_{2} e_{1}=-\frac{1}{2} e_{3}
$$

A set of equations is attained as follows:

$$
\left\{\begin{array}{l}
r_{13}=r_{23}=0, \\
\left(r_{11}+r_{22} r_{33}=r_{11} r_{22}-r_{21} r_{12}\right.
\end{array}\right.
$$

Then, the subsequent outcomes are attained.
(1) $\quad r_{22} \neq r_{33}, r_{13}=r_{23}=0, r_{11}=\frac{r_{12} r_{21}+r_{22} r_{33}}{r_{22}-r_{33}}, r_{21}, r_{22}, r_{3 j} \in \mathbb{C}, j=1,2,3$.
(2) $r_{22}=r_{33}, r_{13}=r_{23}=r_{21}=0, r_{11}, r_{12}, r_{21}, r_{22}, r_{3 j} \in \mathbb{C}, j=1,2$.
(3) $r_{22}=r_{33}, r_{13}=r_{23}=0, r_{12}=-\frac{r_{22}^{2}}{r_{21}}, r_{11}, r_{21}, r_{22}, r_{3 j} \in \mathbb{C}, j=1,2$.
4. For A_{5}, the nonzero products are

$$
e_{2} e_{1}=-e_{3}
$$

A set of equations is attained as follows:

$$
\left\{\begin{array}{l}
r_{13}=r_{23}=0 \\
r_{21} r_{12}=0 \\
r_{12} r_{33}=r_{12} r_{22} \\
r_{21} r_{33}=r_{21} r_{11} \\
\left(r_{11}+r_{22}\right) r_{33}=r_{11} r_{22}
\end{array}\right.
$$

Then the subsequent results are obtained.
(1) $r_{11}=r_{12}=r_{13}=r_{23}=r_{33}=0, r_{21}, r_{22}, r_{3 j} \in \mathbb{C}, j=1,2$.
(2) $r_{21}=r_{22}=r_{13}=r_{23}=r_{33}=0, r_{11}, r_{12}, r_{31}=0, r_{32} \in \mathbb{C}$.
(3) $\quad r_{22} \neq r_{33}, r_{11}=\frac{r_{22} r_{33}}{r_{22}-r_{33}}, r_{12}=r_{13}=r_{21}=r_{23}=0, r_{22}, r_{3 j} \in \mathbb{C}, j=1,2,3$.
5. For A_{6}, the nonzero products are

$$
e_{1} e_{1}=e_{3}, e_{1} e_{2}=e_{3}, e_{2} e_{2}=\lambda e_{3}, \lambda \neq 0 .
$$

A set of equations is attained as follows:

$$
\left\{\begin{array}{l}
r_{13}=r_{23}=0 \\
\left(2 r_{11}+r_{21}\right) r_{33}=r_{11}^{2}+r_{11} r_{21}+\lambda r_{21}^{2} \\
\left(r_{12}+r_{11}+r_{22}+\lambda r_{21}\right) r_{33}=r_{11} r_{12}+r_{11} r_{22}+\lambda r_{21} r_{22} \\
\left(r_{12}+\lambda r_{21}\right) r_{33}=r_{12} r_{11}+r_{12} r_{21}+\lambda r_{22} r_{21} \\
\left(r_{12}+2 \lambda r_{22}\right) r_{33}=r_{12}^{2}+r_{12} r_{22}+\lambda r_{22}^{2}
\end{array}\right.
$$

Then, the following solutions are reached:

$$
r_{13}=r_{23}=0, r_{11}=\frac{1 r_{33}-r_{21}}{2} \pm \alpha, r_{12} \frac{r_{33}-r_{22}}{2}+ \pm \beta, r_{21}, r_{22}, r_{3 j} \in \mathbb{C}, j=1,2,3,
$$

$$
\text { for } \alpha=\frac{\sqrt{-4 \lambda r_{21}^{2}+r_{21}^{2}+4 r_{33}^{2}}}{2}, \beta=\frac{\sqrt{-4 \lambda r_{22}^{2}+8 \lambda r_{22} r_{32}+r_{22}^{2}-2 r_{22} r_{33}+r_{33}^{2}}}{2}
$$

6. For A_{7}, the nonzero products are

$$
e_{1} e_{1}=e_{2}, e_{1} e_{2}=\frac{1}{2} e_{3}, e_{2} e_{1}=e_{3} .
$$

A set of equations is attained as follows:

$$
\left\{\begin{array}{l}
r_{12}=r_{13}=r_{23}=0 \\
2 r_{11} r_{22}=r_{11}^{2}, \\
2 r_{11} r_{32}+\frac{3}{2} r_{21} r_{33}=\frac{3}{2} r_{11} r_{21} \\
\left(r_{22}+r_{11}\right) r_{33}=r_{22} r_{11}
\end{array}\right.
$$

Then, the following outcomes are reached:
(1) $\quad r_{i j}=0, r_{3 k} \in \mathbb{C}, i=1,2 ; j, k=1,2,3$.
(2) $r_{1 j}=0, r_{23}=r_{33}=0, r_{11}, r_{21}, r_{22}, r_{31}, r_{32} \in \mathbb{C}$.
(3) $r_{11}=3 r_{33}, r_{21}=2 r_{32}, r_{22}=\frac{3}{2} r_{33}, r_{3 j} \in \mathbb{C}, j=1,2,3$.

The arguments presented above lead to Theorem 2.

Theorem 2. The subsequent mathematical expressions depict the RBOs of the ZAs with three dimensions in Table 1.

Table 1. ZAA and RBOs with three dimensions.

ZAA	RBOs
$\left(A_{1}\right) e_{i} e_{j}=0$	$\left(\begin{array}{lll}r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{21} \\ r_{31} & r_{32} & r_{33}\end{array}\right)$
$\left(A_{2}\right) e_{1} e_{1}=e_{3}$	$\left(\begin{array}{ccc}0 & 0 & 0 \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33}\end{array}\right),\left(\begin{array}{ccc}r_{11} & 0 & 0 \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & \frac{1}{2} r_{11}\end{array}\right)\left(r_{11} \neq 0\right)$
$\left(A_{3}\right)\left\{\begin{array}{l}e_{1} e_{1}=e_{3} \\ e_{2} e_{2}=e_{3}\end{array}\right.$	$\left.\begin{array}{l} \left(\begin{array}{lll} -r_{22}+r_{33} & \alpha & 0 \\ \alpha & & r_{22} \end{array}\right) \\ r_{31} \end{array} \quad \begin{array}{ll} r_{32} & r_{33} \end{array}\right),\left(\begin{array}{lll} -r_{22}+r_{33} & -\alpha & 0 \\ -\alpha & r_{22} & 0 \\ r_{31} & r_{32} & r_{33} \end{array}\right)$
$\left(A_{4}\right)\left\{\begin{array}{c} e_{1} e_{2}=\frac{1}{2} e_{3} \\ e_{2} e_{1}=-\frac{1}{2} e_{3} \end{array}\right.$	$\begin{aligned} & \left(\begin{array}{lll} r_{11} & r_{12} & 0 \\ 0 & r_{22} & 0 \\ r_{31} & r_{32} & r_{33} \end{array}\right),\left(\begin{array}{lll} r_{11} & \frac{-r_{22}^{2}}{r_{21}} & 0 \\ r_{21} & r_{22} & 0 \\ r_{31} & r_{32} & r_{22} \end{array}\right) \\ & \left(\begin{array}{lll} \frac{r_{12} r_{21}+r_{22} r_{33}}{r_{22}-r_{33}} & r_{12} & 0 \\ r_{21} & r_{22} & 0 \\ r_{31} & r_{32} & r_{33} \end{array}\right)\left(r_{22} \neq r_{33}\right) \end{aligned}$
$\left(A_{5}\right) e_{2} e_{1}=-e_{3}$	$\left(\begin{array}{ccc}r_{11} & r_{12} & 0 \\ 0 & 0 & 0 \\ r_{31} & r_{32} & 0\end{array}\right),\left(\begin{array}{ccc}0 & 0 & 0 \\ r_{21} & r_{22} & 0 \\ r_{31} & r_{32} & 0\end{array}\right),\left(\begin{array}{ccc}\frac{r_{22} r_{33}}{r_{22}-r_{33}} & 0 & 0 \\ 0 & r_{22} & 0 \\ r_{31} & r_{32} & r_{33}\end{array}\right)\left(r_{22} \neq r_{33}\right)$
$\left(A_{6}\right)\left\{\begin{array}{c} e_{1} e_{1}=e_{3} \\ e_{1} e_{2}=e_{3} \\ e_{2} e_{2}=\lambda e_{3}, \lambda \neq 0 \end{array}\right.$	$\begin{aligned} & \left(\begin{array}{lll} \frac{2 r_{33}-r_{21}}{2} \pm \alpha & \frac{r_{33}-r_{22}}{2}+\beta & 0 \\ r_{21} & r_{22} & 0 \\ r_{31} & r_{32} & r_{33} \end{array}\right),\left(\begin{array}{lll} \frac{2 r_{33}-r_{21}}{2} \pm \alpha & \frac{r_{33}-r_{22}}{2}-\beta & 0 \\ r_{21} & r_{22} & 0 \\ r_{31} & r_{32} & r_{33} \end{array}\right) \\ & \alpha=\frac{1}{2} \sqrt{-4 \lambda r_{21}^{2}+r_{21}^{2}+4 r_{33}^{2}} \\ & \beta=\frac{1}{2} \sqrt{-4 \lambda r_{22}^{2}+8 \lambda r_{22} r_{33}+r_{22}^{2}-2 r_{22} r_{33}+r_{33}^{2}} \end{aligned}$
$\left(A_{7}\right)\left\{\begin{array}{c} e_{1} e_{1}=e_{2} \\ e_{1} e_{2}=\frac{1}{2} e_{3} \\ e_{2} e_{1}=e_{3} \end{array}\right.$	$\left(\begin{array}{ccc}0 & 0 & 0 \\ r_{21} & r_{22} & 0 \\ r_{31} & r_{32} & 0\end{array}\right),\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ r_{31} & r_{32} & r_{33}\end{array}\right),\left(\begin{array}{ccc}3 r_{33} & 0 & 0 \\ 2 r_{32} & \frac{3}{2} r_{33} & 0 \\ r_{31} & r_{32} & r_{33}\end{array}\right)$

With the notations presented above, the straightforward conclusion is reached as follows.
Corollary 4. Let A be a three-dimensional ZA.

1. If A is of type A_{1} or A_{4}, then its i-th double associated to any $R B O s R$ is trivial, for each $i \geq 1$;
2. If A is one of the types $A_{2}, A_{3}, A_{5}, A_{6}$, and A_{7}, then there are nonzero $R B O s R$ such that the associated i-th doubles are trivial, for each $i \geq 1$:

$$
\begin{gathered}
A_{2}:\left(\begin{array}{ccc}
0 & 0 & 0 \\
r_{21} & r_{22} & r_{21} \\
r_{31} & r_{32} & r_{33}
\end{array}\right) ; A_{3}:\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
r_{31} & r_{32} & 0
\end{array}\right) ; \quad A_{5}:\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
r_{31} & r_{32} & 0
\end{array}\right) ; \\
A_{6}:\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
r_{31} & r_{32} & r_{33}
\end{array}\right) ; A_{7}:\left(\begin{array}{ccc}
0 & & 0 \\
0 & 0 & 0 \\
r_{31} & r_{32} & 0
\end{array}\right) .
\end{gathered}
$$

Proof. Based on the above results of RBOs and Corollary 2, the new ZAs are calculated.
(1) $A_{1}: e_{2} e_{1}=-e_{3}$.

If $R=\left(\begin{array}{lll}r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33}\end{array}\right)$, the subsequent equality is easily attained.

$$
e_{i} *_{1} e_{j}=e_{i} R\left(e_{j}\right)+R\left(e_{j}\right) e_{i}=0
$$

Then, $e_{i} *_{k} e_{j}=0$, where $i, j=1,2,3$, and $k \in \mathbb{N}$.
(2) $A_{2}: e_{1} e_{1}=e_{3}$.

If $R=\left(\begin{array}{ccc}0 & 0 & 0 \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33}\end{array}\right)$, the new product appears as zero, so $\left(A, *_{1}\right)$ and $\left(A, *_{k}\right)$, $k \in \mathbb{N}$, are of type A_{1}.

If $R=\left(\begin{array}{ccc}r_{11} & 0 & 0 \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & \frac{1}{2} r_{11}\end{array}\right)\left(r_{11} \neq 0\right)$, the following nonzero product is attained:

$$
\begin{aligned}
e_{1} *_{1} e_{1} & =e_{1} R\left(e_{1}\right)+R\left(e_{1}\right) e_{1} \\
& =e_{1}\left(r_{11} e_{1}+r_{21} e_{2}+r_{31} e_{3}\right)+\left(r_{11} e_{1}+r_{21} e_{2}+r_{31} e_{3}\right) e_{1} \\
& =2 r_{11} e_{3} .
\end{aligned}
$$

Then, the new $\left(A, *_{1}\right)$ is of type A_{2}.
(3) $A_{3}: e_{1} e_{1}=e_{3}, e_{2} e_{2}=e_{3}$.

If $R=\left(\begin{array}{ccc}-r_{22}+r_{33} & \mp \alpha & 0 \\ \pm \alpha & r_{22} & 0 \\ r_{31} & r_{32} & r_{33}\end{array}\right)$ or $R=\left(\begin{array}{ccc}-r_{22}+r_{33} & \mp \alpha & 0 \\ \pm \alpha & r_{22} & 0 \\ r_{31} & r_{32} & r_{33}\end{array}\right)$, where $\alpha=\sqrt{-r_{22}\left(r_{22}-r_{33}\right)}$, the subsequent equality is attained.

$$
e_{1} *_{1} e_{1}=2 r_{11} e_{3}, e_{1} *_{1} e_{2}=2 r_{12} e_{3}, e_{2} *_{1} e_{1}=2 r_{21} e_{3}, e_{2} *_{1} e_{2}=2 r_{22} e_{3} .
$$

If $r_{22}=0$, namely, $R=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ r_{31} & r_{32} & 0\end{array}\right)$, it is obtained that $\left(A, *_{k}\right), k \in \mathbb{N}$, are of type A_{1} by the equations above.
(4) $A_{4}: e_{1} e_{2}=\frac{1}{2} e_{3}, e_{2} e_{1}=-\frac{1}{2} e_{3}$.

It is known that R has the following three cases:

$$
\left(\begin{array}{ccc}
r_{11} & r_{12} & 0 \\
0 & r_{22} & 0 \\
r_{31} & r_{32} & r_{33}
\end{array}\right),\left(\begin{array}{ccc}
r_{11} & \frac{-r_{22}^{2}}{r_{21}} & 0 \\
r_{21} & r_{22} & 0 \\
r_{31} & r_{32} & r_{22}
\end{array}\right),\left(\begin{array}{ccc}
\frac{r_{12} r_{21}+r_{22} r_{33}}{r_{22}-r_{33}} & r_{12} & 0 \\
r_{21} & r_{22} & 0 \\
r_{31} & r_{32} & r_{33}
\end{array}\right)\left(r_{22} \neq r_{33}\right)
$$

No matter which situation R takes, $e_{i} *_{1} e_{j}=0, i, j=1,2,3$ is obtained. Then, by induction, $\left(A, *_{k}\right), k \in \mathbb{N}$, are of type A_{1}.
(5) $A_{5}: e_{2} e_{1}=-e_{3}$.

If $R=\left(\begin{array}{ccc}r_{11} & r_{12} & 0 \\ 0 & 0 & 0 \\ r_{31} & r_{32} & 0\end{array}\right)$, then the nonzero product is attained as follows:

$$
e_{1} *_{1} e_{1}=-r_{21} e_{3}, e_{1} *_{1} e_{2}=-r_{22} e_{3} .
$$

If $R=\left(\begin{array}{ccc}0 & 0 & 0 \\ r_{21} & r_{22} & 0 \\ r_{31} & r_{32} & 0\end{array}\right)$, the following nonzero product is attained:

$$
e_{2} *_{1} e_{1}=-r_{11} e_{3}, 2_{1} *_{1} e_{2}=-r_{12} e_{3}
$$

If $R=\left(\begin{array}{ccc}\frac{r_{22} r_{33}}{r_{22}-r_{33}} & 0 & 0 \\ 0 & r_{22} & 0 \\ r_{31} & r_{32} & r_{33}\end{array}\right)\left(r_{22} \neq r_{33}\right)$, the following nonzero product is attained:

$$
e_{1} *_{1} e_{2}=-r_{22} e_{3}, e_{2} *_{1} e_{1}=-r_{11} e_{3}
$$

In summary, if $\left(A, *_{k}\right), k \in \mathbb{N}$ are of type $A_{1}, R=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ r_{31} & r_{32} & 0\end{array}\right)$ must be taken.
(6) $\quad A_{6}: e_{1} e_{1}=e_{3}, e_{1} e_{2}=e_{3}, e_{2} e_{2}=\lambda e_{3}, \lambda \neq 0$.

If $R=\left(\begin{array}{ccc}\frac{2 r_{33}-r_{21}}{2} \pm \alpha & \frac{r_{33}-r_{22}}{2}+\beta & 0 \\ r_{21} & r_{22} & 0 \\ r_{31} & r_{32} & r_{33}\end{array}\right)$ or $R=\left(\begin{array}{ccc}\frac{2 r_{33}-r_{21}}{2} \pm \alpha & \frac{r_{33}-r_{22}}{2}-\beta & 0 \\ r_{21} & r_{22} & 0 \\ r_{31} & r_{32} & r_{33}\end{array}\right)$, where $\alpha=\frac{1}{2} \sqrt{-4 \lambda r_{21}^{2}+r_{21}^{2}+4 r_{33}^{2}}$

$$
\beta=\frac{1}{2} \sqrt{-4 \lambda r_{22}^{2}+8 \lambda r_{22} r_{33}+r_{22}^{2}-2 r_{22} r_{33}+r_{33}^{2}} .
$$

The nonzero product is attained.

$$
\begin{gathered}
e_{1} *_{1} e_{1}=\left(2 r_{11}+r_{21}\right) e_{3}, e_{1} *_{1} e_{2}=\left(2 r_{12}+r_{22}\right) e_{3} \\
e_{1} *_{1} e_{1}=\left(2 \lambda r_{21}+r_{11}\right) e_{3}, e_{2} *_{1} e_{2}=\left(2 \lambda r_{22}+r_{12}\right) e_{3}
\end{gathered}
$$

Let r_{11} and r_{12} be the corresponding numbers in the matrix.
If $r_{11}=r_{12}=r_{21}=r_{22}=0,\left(A, *_{k}\right), k \in \mathbb{N}$ are of type A_{1}. Then, R can only have the following form: $R=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ r_{31} & r_{32} & r_{33}\end{array}\right)$.
(7) $\quad A_{7}: e_{1} e_{1}=e_{2}, e_{1} e_{2}=\frac{1}{2} e_{3}, e_{2} e_{1}=e_{3}$.

If $R=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ r_{31} & r_{32} & r_{33}\end{array}\right), e_{i} *_{1} e_{j}=0, i, j=1,2,3$ is attained. Then, $\left(A, *_{k}\right), k \in \mathbb{N}$, are of type A_{1}.

If $R=\left(\begin{array}{ccc}0 & 0 & 0 \\ r_{21} & r_{22} & 0 \\ r_{31} & r_{32} & 0\end{array}\right)$, the following nonzero product is attained:

$$
e_{1} *_{1} e_{1}=\frac{3}{2} r_{21} e_{3}, e_{1} *_{1} e_{2}=\frac{3}{2} r_{22} e_{3}
$$

If $R=\left(\begin{array}{ccc}3 r_{33} & 0 & 0 \\ 2 r_{32} & \frac{3}{2} r_{33} & 0 \\ r_{31} & r_{32} & r_{33}\end{array}\right)$, the following nonzero product is attained:

$$
e_{1} *_{1} e_{1}=6 r_{33} e_{2}+3 r_{32} e_{3}, e_{1} *_{1} e_{2}=\frac{1}{2} r_{22} e_{2}+r_{22} e_{3}, e_{2} *_{1} e_{1}=\frac{3}{2} r_{11} e_{3} .
$$

When three cases are considered and if $R=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ r_{31} & r_{32} & 0\end{array}\right), e_{i} *_{1} e_{j}=0, i, j=1,2,3$ is attained. Then, $\left(A, *_{k}\right), k \in \mathbb{N}$, are of type A_{1}.

4. From CAAs to ZAs

The categorization of both the two- and three-dimensional complex CAAs and their RBOs is known [19]. Then, by Lemma 1 the corresponding ZAs are attained. In the following tables, the CAAs and their RBOs are listed in the first and second columns, respectively, and the corresponding ZAs in the sense of an isomorphism are presented in the third column. Moreover, these RBOs from [19] are sets denoted by $R\left(e_{i}\right)=\sum_{j=1}^{n} r_{i j} e_{j}$.

Theorem 3. The corresponding ZAs (in the sense of an isomorphism) are obtained from the RBOs on two-dimensional CAAs through Equation (2) in following Table 2.

Table 2. CAA B, RBOs R, Type of $\mathrm{ZA}(B, *)$.

$C A A B$	RBOs R	Type of ZA $(B, *)$
$\left(B_{1}\right)\left\{\begin{array}{l}e_{1} e_{1}=e_{2} \\ e_{2} e_{2}=e_{2}\end{array}\right.$	$\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$	T_{1}
$\left(B_{2}\right)\left\{\begin{array}{c}e_{1} e_{2}=e_{2} e_{1}=e_{1} \\ e_{2} e_{2}=e_{2}\end{array}\right.$	$\left(\begin{array}{cc}0 & 0 \\ r_{21} & 0\end{array}\right)$	$\begin{aligned} & r_{21}=0, T_{1} \\ & r_{21} \neq 0, T_{2} \end{aligned}$
$\left(B_{3}\right) e_{1} e_{1}=e_{1}$	$\left(\begin{array}{ll}0 & r_{12} \\ 0 & r_{21}\end{array}\right)$	T_{1}
$\left(B_{4}\right) e_{i} e_{j}=0$	$\left(\begin{array}{ll}r_{11} & r_{12} \\ r_{21} & r_{22}\end{array}\right)$	T_{1}
$\left(B_{5}\right) e_{1} e_{1}=e_{2}$	$\left(\begin{array}{ll}0 & r_{12} \\ 0 & r_{22}\end{array}\right)$	T_{1}
	$\left(\begin{array}{cc}2 r_{22} & r_{12} \\ 0 & r_{22}\end{array}\right)\left(r_{22} \neq \frac{1}{2}\right)$	$\begin{aligned} & r_{22}=0, T_{1} \\ & r_{22} \neq 0, T_{2} \end{aligned}$

Proof. For B_{2}, by Equation (2), the subsequent equality is attained.

$$
e_{2} * e_{2}=e_{2} R\left(e_{2}\right)=e_{2}\left(r_{21} e_{1}\right)=r_{21} e_{1}
$$

and others are zero. Then $(B, *)$ is of type T_{1} if $r_{21}=0$.
If $r_{21} \neq 0$, a new e_{1} is taken as $r_{21} e_{1}$, and $(B, *)$ is of type T_{2}.
For the other cases, they all can be attained similarly.
Remark 1. All the two-dimensional ZAs can be obtained from two-dimensional CAAs and their RBOs through Equation (2).

The corresponding ZAs (in the sense of an isomorphism) obtained from the RBOs on three-dimensional CAAs through Equation (2) are summarized in Table 3.

Table 3. CAA B, RBOs R, Type of $\mathrm{ZA}(B, *)$.

CAA B	RBOs \boldsymbol{R}	Type of $\mathbf{Z A}(\boldsymbol{B}, * \boldsymbol{)}$
$\left(B_{1}\right) e_{i} e_{j}=0$	$\left(\begin{array}{ccc}r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33}\end{array}\right)$	A_{1}
$\left(B_{2}\right) e_{3} e_{3}=e_{1}$	$\left(\begin{array}{ccc}r_{11} & r_{12} & 0 \\ r_{21} & r_{22} & 0 \\ r_{31} & r_{32} & 0\end{array}\right)$	A_{1}

Table 3. Cont.

CAA B	RBOs R	Type of ZA ($B, *$)
$\left(B_{3}\right)\left\{\begin{array}{l} e_{2} e_{2}=e_{1} \\ e_{3} e_{3}=e_{1} \end{array}\right.$	$\left(\begin{array}{ccc}0 & 0 & 0 \\ r_{21} & r_{22} & \pm \sqrt{-1} r_{22} \\ r_{31} & \mp \sqrt{-1} r_{33} & r_{33}\end{array}\right)$	$\begin{gathered} r_{22}=r_{33}=0, A_{1} \\ r_{22} r_{33} \neq 0, A_{5} \\ r_{22}=0, r_{33} \neq 0, A_{5} \\ r_{22} \neq 0, r_{33}=0, A_{5} \end{gathered}$
	$\begin{gathered} \left(\begin{array}{ccc} r_{11} & 0 & 0 \\ r_{21} & r_{22}^{ \pm} & r_{23} \\ r_{31} & r_{23} & r_{33}^{ \pm} \end{array}\right)\left(r_{11} \neq 0\right) \\ r_{22}^{ \pm}=r_{33}^{ \pm}=r_{11} \pm\left(r_{11}^{2}-r_{23}^{2}\right)^{\frac{1}{2}} \end{gathered}$	$\begin{gathered} r_{22}^{ \pm}+{ }^{ \pm} r_{33}=r_{23}=0, A_{1} \\ r_{22}^{ \pm}+r_{33}^{ \pm}=2 r_{23}, r_{22}^{ \pm}+r_{33}^{ \pm} \neq-2 r_{23}, A_{2} \\ r_{22}^{ \pm}+r_{33}^{ \pm} \neq 2 r_{23} r_{22}^{ \pm}+r_{33}^{ \pm}=-2 r_{23}, A_{2} \\ r_{22}^{ \pm}+r_{33}^{ \pm} \neq 2 r_{23}, r_{22}^{ \pm}+r_{33}^{ \pm} \neq-2 r_{23}, A_{3} \end{gathered}$
	$\begin{gathered} \left(\begin{array}{ccc} r_{11} & 0 & 0 \\ r_{21} & r_{22}^{ \pm} & r_{23} \\ r_{31} & r_{23} & r_{33}^{ \pm} \end{array}\right)\left(r_{11} \neq 0\right) \\ r_{22}^{ \pm}=r_{33}^{ \pm}=r_{11} \pm\left(r_{11}^{2}-r_{23}^{2}\right)^{\frac{1}{2}} \end{gathered}$	$\begin{gathered} r_{22}^{ \pm}+{ }^{\mp} r_{33}=r_{23}=0, A_{1} \\ r_{22}^{ \pm}+r_{33}^{\mp}=2 r_{23}, r_{22}^{ \pm}+r_{33}^{\mp} \neq-2 r_{23}, A_{2} \\ r_{22}^{ \pm}+r_{33}^{\mp} \neq 2 r_{23}, r_{22}^{ \pm}+r_{33}^{\mp}=-2 r_{23}, A_{2} \\ r_{22}^{ \pm}+r_{33}^{\mp} \neq 2 r_{23}, r_{22}^{ \pm}+r_{33}^{\mp} \neq-2 r_{23}, A_{3} \end{gathered}$
$\left(B_{4}\right)\left\{\begin{array}{c} e_{2} e_{3}=e_{3} e_{2}=e_{1} \\ e_{3} e_{3}=e_{2} \end{array}\right.$	$\left(\begin{array}{ccc}0 & 0 & 0 \\ r_{21} & r_{22} & 0 \\ r_{31} & r_{32} & 0\end{array}\right)$	$\begin{gathered} r_{22}=r_{33}=0, A_{1} \\ r_{22} r_{33} \neq 0, A_{2} \\ r_{22}=0, r_{32} \neq 0, A_{2} \\ r_{22} \neq 0, r_{32}=0, A_{5} \end{gathered}$
	$\left(\begin{array}{lll}r_{11} & 0 & 0 \\ r_{21} & 0 & 0 \\ r_{31} & 0 & 0\end{array}\right)\left(r_{11} \neq 0\right)$	A_{1}
	$\left(\begin{array}{ccc}\frac{2}{3} r_{22} & 0 & 0 \\ \frac{2}{3} r_{32} & r_{22} & 0 \\ r_{31} & r_{32} & 2 r_{22}\end{array}\right)\left(r_{22} \neq 0\right)$	A_{7}
$\left(B_{5}\right)\left\{\begin{array}{l}e_{1} e_{1}=e_{1} \\ e_{2} e_{2}=e_{2} \\ e_{3} e_{3}=e_{3}\end{array}\right.$	$\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$	A_{1}
$\left(B_{6}\right)\left\{\begin{array}{l}e_{2} e_{2}=e_{2} \\ e_{3} e_{3}=e_{3}\end{array}\right.$	$\left(\begin{array}{lll}r_{11} & 0 & 0 \\ r_{21} & 0 & 0 \\ r_{31} & 0 & 0\end{array}\right)$	A_{1}
$\left(B_{7}\right)\left\{\begin{array}{c} e_{1} e_{3}=e_{3} e_{1}=e_{1} \\ e_{2} e_{2}=e_{2} \\ e_{3} e_{3}=e_{3} \end{array}\right.$	$\left(\begin{array}{ccc}0 & 0 & 0 \\ r_{21} & 0 & 0 \\ r_{31} & 0 & 0\end{array}\right)$	$\begin{gathered} r_{21}=r_{31}=0, A_{1} \\ r_{21} r_{31} \neq 0, A_{5} \\ r_{21}=0, r_{31} \neq 0, A_{2} \\ r_{21} \neq 0, r_{31}=0, A_{5} \end{gathered}$
$\left(B_{8}\right) e_{3} e_{3}=e_{3}$	$\left(\begin{array}{lll}r_{11} & r_{12} & 0 \\ r_{21} & r_{22} & 0 \\ r_{31} & r_{32} & 0\end{array}\right)$	A_{1}
$\left(B_{9}\right)\left\{e_{1} e_{3}=e_{3} e_{1}=e_{1}\right.$	$\left(\begin{array}{ccc}0 & 0 & 0 \\ r_{21} & r_{22} & 0 \\ r_{31} & r_{32} & 0\end{array}\right)$	the same as B_{7}
$\left\{e_{3} e_{3}=e_{3}\right.$	$\left(\begin{array}{lll}0 & r_{12} & 0 \\ 0 & r_{22} & 0 \\ 0 & r_{32} & 0\end{array}\right)\left(r_{12} \neq 0\right)$	A_{1}
$\left(B_{10}\right)\left\{\begin{array}{c} e_{1} e_{3}=e_{3} e_{1}=e_{1} \\ e_{2} e_{3}=e_{3} e_{2}=e_{2} \\ e_{3} e_{3}=e_{3} \end{array}\right.$	$\left(\begin{array}{ccc}0 & 0 & 0 \\ r_{21} & 0 & 0 \\ r_{31} & 0 & 0\end{array}\right)$	the same as B_{7}
	$\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ r_{31} & r_{32} & 0\end{array}\right)\left(r_{32} \neq 0\right)$	A_{2}
	$\left(\begin{array}{ccc}r_{11} & r_{12} & 0 \\ \frac{-r_{11}^{2}}{r_{12}} & -r_{11} & 0 \\ \frac{r_{31} r_{11}}{r_{12}} & r_{32} & 0\end{array}\right)\left(r_{12} \neq 0\right)$	A_{5}

Table 3. Cont.

CAA B	RBOs R	Type of ZA $(B, *)$
$\left(B_{11}\right)\left\{\begin{array}{l}e_{1} e_{1}=e_{2}\end{array}\right.$	$\left(\begin{array}{ccc}r_{11} & r_{12} & 0 \\ 0 & 0 & 0 \\ 0 & r_{32} & 0\end{array}\right)$	$\begin{aligned} & r_{11}=0, A_{1} \\ & r_{11} \neq 0, A_{2} \end{aligned}$
(B11) $\left\{\begin{array}{l}e_{3} e_{3}=e_{3}\end{array}\right.$	$\left(\begin{array}{ccc}r_{11} & r_{12} & 0 \\ 0 & 2 r_{11} & 0 \\ r_{31} & r_{32} & 0\end{array}\right)\left(r_{11} \neq 0\right)$	$\begin{aligned} & r_{31}=0, A_{1} \\ & r_{31} \neq 0, A_{5} \end{aligned}$
$\left(B_{12}\right)\left\{\begin{array}{c} e_{1} e_{1}=e_{2} \\ e_{1} e_{3}=e_{3} e_{1}=e_{1} \\ e_{2} e_{3}=e_{3} e_{2}=e_{2} \\ e_{3} e_{3}=e_{3} \end{array}\right.$	$\left(\begin{array}{ccc}0 & r_{12} & 0 \\ 0 & 0 & 0 \\ 0 & r_{32} & 0\end{array}\right)$	$\begin{gathered} r_{12} \neq 0, A_{5} \\ r_{12}=0, r_{32} \neq 0, A_{2} \\ r_{12}=0, r_{32}=0, A_{1} \end{gathered}$
	$\left(\begin{array}{ccc}0 & r_{12} & 0 \\ 0 & 0 & 0 \\ 2 r_{12} & r_{32} & 0\end{array}\right)\left(r_{12} \neq 0\right)$	A_{7}

Proof. $\quad B_{3}, e_{2} e_{2}=e_{1}, e_{3} e_{3}=e_{1}$ and $R=\left(\begin{array}{ccc}0 & 0 & 0 \\ r_{21} & r_{22} & \pm \sqrt{-1} r_{22} \\ r_{31} & \mp \sqrt{-1} r_{33} & r_{33}\end{array}\right)$ are proved as follows.

1. If $r_{22} r_{33} \neq 0, \mathrm{ZA}(B, *)$, the nonzero product, is attained.

$$
\begin{aligned}
& e_{2} * e_{2}=e_{2} R\left(e_{2}\right)=e_{2}\left(r_{21} e_{1}+r_{22} e_{2}+r_{23} e_{3}\right)=r_{22} e_{1}, \\
& e_{2} * e_{3}=e_{2} R\left(e_{3}\right)=e_{2}\left(r_{31} e_{1}+r_{32} e_{2}+r_{33} e_{3}\right)=r_{32} e_{1}=\mp r_{33} e_{1}, \\
& e_{3} * e_{2}=e_{3} R\left(e_{2}\right)=e_{3}\left(r_{21} e_{1}+r_{22} e_{2}+r_{23} e_{3}\right)=r_{23} e_{1}= \pm r_{22} e_{1}, \\
& e_{3} * e_{3}=e_{3} R\left(e_{3}\right)=e_{3}\left(r_{31} e_{1}+r_{32} e_{2}+r_{33} e_{3}\right)=r_{33} e_{1} .
\end{aligned}
$$

Let $e_{3}^{\prime}=e_{2} \pm \sqrt{-1} e_{3}$. Then, for $e_{1}, e_{2}, e_{3}^{\prime}$, the subsequent results are attained.

$$
\begin{aligned}
e_{3}^{\prime} * e_{3}^{\prime} & =\left(e_{2} \pm \sqrt{-1} e_{3}\right) *\left(e_{2} \pm \sqrt{-1} e_{3}\right) \\
& =r_{22} e_{1}+r_{33} e_{1}-r_{22} e_{1}-r_{33} e_{1} \\
& =0 \\
e_{3}^{\prime} * e_{2} & =\left(e_{2} \pm \sqrt{-1} e_{3}\right) * e_{2} \\
& =r_{22} e_{1}-r_{22} e_{1} \\
& =0
\end{aligned}
$$

Then the nonzero product is as follows:

$$
e_{2} * e_{2}=r_{22} e_{1}, e_{2} * e_{3}^{\prime}=2 r_{22} e_{1}
$$

Let $e_{2}^{\prime}=\frac{1}{\sqrt{r_{22}}} e_{2}$ and $e_{3}^{\prime \prime}=\frac{1}{2 \sqrt{r_{22}}} e_{3}^{\prime}$. Then the nonzero product is as follows:

$$
e_{2}^{\prime} * e_{2}^{\prime}=e_{1}, e_{2}^{\prime} * e_{3}^{\prime \prime}=e_{1} .
$$

When $e_{2}^{\prime \prime}=e_{2}^{\prime}-e_{3}^{\prime \prime}$ is taken, then the subsequent result is attained.

$$
\begin{aligned}
e_{2}^{\prime \prime} * e_{2}^{\prime \prime} & =\left(e_{2}^{\prime}-e_{3}^{\prime \prime}\right) *\left(e_{2}^{\prime}-e_{3}^{\prime \prime}\right)=e_{1}-e_{1}=0 \\
e_{2}^{\prime \prime} * e_{3}^{\prime \prime \prime} & =\left(e_{2}^{\prime}-e_{3}^{\prime \prime}\right) * e_{3}^{\prime \prime \prime}=e_{1} \\
e_{3}^{\prime \prime} * e_{2}^{\prime \prime} & =e_{3}^{\prime \prime \prime} *\left(e_{2}^{\prime}-e_{3}^{\prime \prime}\right)=0
\end{aligned}
$$

Namely, $(B, *)$ with the nonzero product is $e_{2} * e_{3}=e_{1}$. By changing e_{3} to $-e_{3}$ and swapping $-e_{3}$ and $e_{1}, e_{2} * e_{1}=-e_{3}$ is attained, which means $(B, *)$ is of type A_{5}.
2. $\quad r_{22}=0, r_{33} \neq 0$. The following nonzero product is attained:

$$
e_{2} * e_{3}=\mp \sqrt{-1} e_{1}, e_{3} * e_{3}=r_{33} e_{1}
$$

Let $e_{1}^{\prime}=r_{33} e_{1}$. Then,

$$
e_{2} * e_{3}=\mp \sqrt{-1} e_{1}^{\prime}, e_{3} * e_{3}=r_{33} e_{1}^{\prime}
$$

where $e_{3}^{\prime}=e_{3} \mp \sqrt{-1} e_{2}$. It follows that

$$
\begin{aligned}
& e_{2} * e_{3}^{\prime}=\mp \sqrt{-1} e_{1}^{\prime} \\
& e_{3}^{\prime} * e_{3}^{\prime}=0 \\
& e_{3}^{\prime} * e_{2}=0
\end{aligned}
$$

Then, $(B, *)$ is of type A_{5} by simply reordering and tuning coefficients.
The cases $r_{22} \neq 0, r_{33}=0$ and $r_{22}=0, r_{33} \neq 0$ are symmetric. So, if $r_{22} \neq 0, r_{33}=0$, $(B, *)$ is of type A_{5}. If $r_{22}=r_{33}=0,(B, *)$ is of type A_{1}.

For $B_{3}, e_{2} e_{2}=e_{1}, e_{3} e_{3}=e_{1}$ and $=\left(\begin{array}{ccc}r_{11} & 0 & 0 \\ r_{21} & r_{22}^{ \pm} & r_{23} \\ r_{31} & r_{23} & r_{33}^{ \pm}\left(\text {orr }_{33}^{\mp}\right)\end{array}\right)\left(r_{11} \neq 0\right)$, where $r_{22}^{ \pm}=r_{33}^{ \pm}=r_{11} \pm\left(r_{11}^{2}-r_{23}^{2}\right)^{\frac{1}{2}}$.

For $r_{33}^{ \pm}$, the subsequent equality is attained.

$$
e_{2} * e_{2}=r_{22}^{ \pm} e_{1}, e_{2} * e_{3}=r_{23} e_{1}, e_{3} * e_{2}=r_{23} e_{1}, e_{3} * e_{3}=r_{33}^{ \pm} e_{1}
$$

The others are zero. Let $e_{2}^{\prime}=e_{2}-e_{3}, e_{3}^{\prime}=e_{2}+e_{3}$. Then,

$$
\begin{aligned}
& e_{2}^{\prime} * e_{3}^{\prime}=e_{3}^{\prime} * e_{2}^{\prime}=0, \\
& e_{2}^{\prime} * e_{2}^{\prime}=\left(r_{22}^{ \pm}+r_{33}^{ \pm}-2 r_{23}\right) e_{1}, \\
& e_{3}^{\prime} * e_{3}^{\prime}=\left(r_{22}^{ \pm}+r_{33}^{ \pm}+2 r_{23}\right) e_{1}
\end{aligned}
$$

The others are zero.
The following cases are observable:
(1) $r_{22}+r_{33}=r_{23}=0$. So, $(B, *)$ is obviously of type A_{1}.
(2) $r_{22}^{ \pm}+r_{33}^{ \pm}=2 r_{23}, r_{22}^{ \pm}+r_{33}^{ \pm} \neq-2 r_{23}$. So, $(B, *)$ is of type A_{2}.
(3) $\quad r_{22}^{ \pm}+r_{33}^{ \pm} \neq 2 r_{23}, r_{22}^{ \pm}+r_{33}^{ \pm}=-2 r_{23}$. So, $(B, *)$ is of type A_{2}.
(4) ${ }^{ \pm} r_{22}+{ }^{ \pm} r_{33} \neq 2 r_{23}, r_{22}^{ \pm}+r_{33}^{ \pm} \neq-2 r_{23}$. In this case, $(B, *)$ is of type A_{3}.

If the same argument is applied to r_{33}^{\mp}, similar outcomes are attained as above, so $r_{33}^{ \pm}$is replaced by r_{33}^{\mp}.

For the other CAAs, B_{i}, the results can be similarly attained.
Remark 2. The ZAs of the types A_{4} and A_{6} cannot be attained from three-dimensional $C A A s$ and their RBOs through Equation (2).

5. Conclusions

In summary, we have obtained the RBO on a ZA that must be the one on its subadjacent algebra. We provide all the RBOs on two- and three-dimensional ZAs. Finally, ZAs are also realized in low dimensions of the RBOs of commutative associative algebras, and not all ZAs can be obtained in this way.

Author Contributions: Conceptualization, J.N.; methodology, J.G. and J.N.; formal analysis, J.N. and J.Y.; writing-original draft preparation, J.N. and J.Y.; writing—review and editing, J.G. All authors have read and agreed to the published version of the manuscript.

Funding: Jianhua Yu was partially supported by the NNSF of China (12171163). Jizhong Gao was partially supported by the Guangdong Scientific Research Promotion Project (2021ZDJS132) and Guangdong Engineering Technology Center (2021GCZX001).

Data Availability Statement: No new data were created or analyzed in this study.
Conflicts of Interest: The authors declared no conflict of interest.

References

1. Loday, J.-L.; Chapoton, F.; Frabetti, A.; Goichot, F. Dialgebras and Related Operads; Springer Science and Business Media LLC: Dordrecht, The Netherlands, 2001; ISBN 9781447148135.
2. Loday, J.-L. Cup-product for Leibnitz cohomology and dual Leibniz algebras. Math. Scand. 1995, 77, 189-196. [CrossRef]
3. Adashev, J.Q.; Khudoyberdiyev, A.K.; Omirov, B.A. Classifications of some classes of Zinbiel algebras. J. Gen. Lie Theory Appl. 2010, 4, 1-10. [CrossRef]
4. Camacho, L.M.; Karimjanov, I.; Kaygorodov, I.; Khudoyberdiyev, A. Central extensions of filiform Zinbiel algebras. Linear Multilinear Algebra 2022, 70, 1479-1495. [CrossRef]
5. Dzhumadil'daev, A.S. Identities for multiplications derived by Leibniz and Zinbiel multiplications. In Proceedings of the International Conference "Operator Algebras and Quantum Theory of Probability", Tashkent, Uzbekistan, 7-10 September 2005; Abstracts of Short Communications; pp. 76-77.
6. Dzhumadil'daev, A.S.; Tulenbaev, K.M. Nilpotency of Zinbiel algebras. J. Dyn. Control Syst. 2005, 11, 195-213. [CrossRef]
7. Ni, J. The centroids of Zinbiel algebras. Commun. Algebra 2014, 42, 1844-1853. [CrossRef]
8. Omirov, B.A. Classification of two-dimensional complex Zinbiel algebras. Uzbek Math. J. 2002, 2, 55-59.
9. Baxter, G. An analytic problem whose solution follows from a simple algebraic identity. Pac. J. Math. 1960, 10, 731-742. [CrossRef]
10. Atkinson, F. Some aspects of Baxter's functional equation. J. Math. Anal. Appl. 1963, 7, 1-30. [CrossRef]
11. Rota, G.-C. Baxter algebras and combinatorial identities. I. Bull. Am. Math. Soc. 1969, 75, 325-329. [CrossRef]
12. Rota, G.-C. Baxter algebras and combinatorial identities. II. Bull. Am. Math. Soc. 1969, 75, 330-334. [CrossRef]
13. Rota, G.C. Baxter operators, an introduction. Contemp. Math. 1995, 1, 504-512.
14. Rota, G.-C. Ten mathematics problems I will never solve. Mitteilungen Dtsch. Math. 1998, 6, 45-52. [CrossRef]
15. Semonov-Tian-Shansky, M.A. What is a classical R-matrix? Funct. Anal. Appl. 1982, 17, 259-272. [CrossRef]
16. Belavin, A.A.; Drinfel'D, V.G. Solutions of the classical Yang-Baxter equation for simple Lie algebras. Funct. Anal. Appl. 1982, 16, 159-180. [CrossRef]
17. Bolotina, T.A.; Gubarev, V.Y. Rota-Baxter operators on the simple Jordan superalgebra Dt. Sib. Math. J. 2022, 63, 637-650. [CrossRef]
18. Sheng, Y.; Zhao, J. Relative Rota-Baxter operators and symplectic structures on Lie-Yamaguti algebras. Commun. Algebra 2022, 50, 4056-4073. [CrossRef]
19. Li, X.; Hou, D.; Bai, C. Rota-Baxter operators on pre-Lie algebras. J. Nonlinear Math. Phys. 2007, 14, 269. [CrossRef]
20. Aguiar, M. Pre-Poisson algebras. Lett. Math. Phys. 2000, 54, 263-277. [CrossRef]
21. Ebrahimi-Fard, K. Loday-type algebras, and the Rota-Baxter relation. Lett. Math. Phys. 2002, 61, 139-147. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

