
Axioms 2013, 2, 100-121; doi:10.3390/axioms2020100
OPEN ACCESS

axioms
ISSN 2075-1680

www.mdpi.com/journal/axioms
Article

Divergence-Free Multiwavelets on the Half Plane
Joseph Lakey 1,* and Phan Nguyen 2

1 Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM, USA
2 Hanoi Institute of Mathematics, 18 Hoang Quoc Viet, Hanoi, Vietnam;

E-Mail: nnphan@nmsu.edu

* Author to whom correspondence should be addressed; E-Mail: jlakey@nmsu.edu;
Tel.: +1-575-646-3901; Fax: +1-575-646-1064.

Received: 24 December 2012; in revised form: 16 March 2013 / Accepted: 18 March 2013 /
Published: 11 April 2013

Abstract: We use the biorthogonal multiwavelets related by differentiation constructed in
previous work to construct compactly supported biorthogonal multiwavelet bases for the
space of vector fields on the upper half plane R2

+ such that the reconstruction wavelets
are divergence-free and have vanishing normal components on the boundary of R2

+. Such
wavelets are suitable to study the Navier–Stokes equations on a half plane when imposing a
Navier boundary condition.
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1. Introduction

Wavelets have proved useful for the numerical analysis of an incompressible flow fluid that can
be modeled by the Navier–Stokes equations. The incompressibility requires the wavelets to be
divergence-free, at least in dimension three or greater.

Battle and Federbush [1] first constructed an orthogonal basis of divergence-free wavelets for the
space of divergence-free vector fields on Rn. The Battle–Federbush divergence-free wavelets are
globally supported, and therefore unsuitable for numerical analysis on domains with boundary. It
was shown by Lemarié that if a continuous divergence-free wavelet basis is orthogonal, the wavelets
cannot be compactly supported [2]. Lemarié [3] also showed that this obstacle does not necessarily
arise in the biorthogonal case. He used the existence of biorthogonal MRAs related by differentiation to
construct compactly supported divergence-free wavelets. Lemarié’s method can be extended to higher
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dimensional spaces by using tensor products of univariate functions. His approach was then modified and
extended in various works by Urban [4,5]. Those divergence-free wavelets have been used effectively
for the numerical simulation of the Stokes equations on rectangular domains [6], and for the analysis of
incompressible turbulent flows [7].

A velocity field ~v defined on a domain Ω ⊂ R2 is said to satisfy Navier boundary conditions if
~v ·~n = 0 and 2D(~v)~n ·~τ +α~v ·~τ = 0 on ∂Ω where D denotes the strain tensor D(v) = [∇~v+ (∇~v)T ]/2

and ~n and ~τ are the unit normal and tangent vectors respectively. We will call the condition ~v · ~n = 0

the vanishing normal boundary condition. When Ω is the upper half plane R2
+, ~τ = ~e1 and ~n = −~e2

where ~e1 and ~e2 are the standard basis vectors. The study of the Navier–Stokes equations on half spaces
with the Navier boundary condition remains a field of intensive research, e.g., [8]. Here we will adapt
Lemarié’s technique to provide a construction for a multiwavelet basis of the divergence-free vector fields
on the upper half plane R2

+ that satisfies the vanishing normal boundary condition using the biorthogonal
multiwavelets on R introduced in [9]. This approach can easily be extended to higher dimensions, but
we will work exclusively in R2 to minimize notational complexity.

Strela’s two-scale transform [10] plays a crucial role in extending Lemarié’s divergence-free
construction to multiwavelets by providing certain commutation relations between oblique MRA
projections and differentiation under suitable conditions on Strela’s transition matrix. To carry out the
construction on the upper half plane R2

+, it is necessary that the wavelet bases of L2(R+) adapted from
those of L2(R) are also related by differentiation and inherit the commutation relation between oblique
projections and differentiation. These constraints plus the vanishing normal boundary conditions force
the wavelet bases of L2(R) to have an appropriate combination of biorthogonality, symmetry, regularity,
support and boundary behavior. We will see that this can all be accomplished using the biorthogonal
multiwavelet bases of L2(R) constructed in [9].

2. Biorthogonal Multiwavelets of L2(R)

We review here in some detail the construction of biorthogonal multiwavelets related by
differentiation introduced in [9]. The main tools for the construction are fractal interpolation
functions [11] and Strela’s two-scale transform [10].

2.1. Some Preliminaries

Denote by V0 = V (Φ) the L2-closure of the finite shift invariant space spanned by the integer
translates {φi(· − k) : i = 0, . . . , r − 1; k ∈ Z} of φ1, . . . , φr, and let Φ denote the vector function
Φ = (φ1, . . . , φr). It is standard to denote Vj = {f(2j·) : f ∈ V0}. If V0 ⊂ V1 then Φ is called a
scaling vector. If, in addition, ∩j∈ZVj = {0}, ∪j∈ZVj = L2(R), and the integer shifts of ϕ1, . . . , ϕr

form a Riesz basis for V0, then the nested family {Vj}j∈Z is called a multiresolution analysis of L2(R)

of multiplicity r.
The vector function Φ = (φ0, . . . , φr−1) is called a scaling vector and is said to generate the

multiresolution analysis {Vj}. Φ satisfies a matrix–vector dilation equation

Φ(x) =
1

2

∑
k∈Z

CkΦ(2x− k) (1)
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for some sequence of r × r matrices (Ck), called scaling coefficients.
We define the Fourier transform of a function f ∈ L1(R) by

f̂(ω) =

∫ ∞
−∞

f(t)e−itωdt

Taking the Fourier transform of the dilation Equation (1), we obtain

Φ̂(ω) = H
(ω

2

)
Φ̂
(ω

2

)
; H(ω) =

1

2

∑
k∈Z

Cke
−ikω (2)

in which H is an r × r matrix of 2π periodic functions, called a scaling filter ; in addition
Φ̂ = [φ̂0 φ̂1 . . . φ̂r−1]T .

A vector function Ψ = (ψ0, . . . , ψr−1) is called a multiwavelet associated with the scaling vector Φ if
the integer translates {ψi(· − k) : k ∈ Z} are linearly independent and

{φi(· − k) : i = 0, . . . , r − 1; k ∈ Z} ∪ {ψi(· − k) : i = 0, . . . , r − 1; k ∈ Z}

is a Riesz basis of V1. Let Wj be the closed linear span of {ψi(2j ·−k) : i = 0, . . . , r−1; k ∈ Z}. Then

Vj+1 = Vj ⊕Wj

where the symbol ⊕ denotes the internal direct sum, not necessarily orthogonal. The wavelet vector Ψ

can be represented by the following equation

Ψ(x) =
1

2

∑
k∈Z

DkΦ(2x− k) (3)

for some sequence of r × r matrices (Dk), called wavelet coefficients. In the Fourier domain,

Ψ̂(ω) = F
(ω

2

)
Φ̂
(ω

2

)
, F (ω) =

1

2

∑
k∈Z

Dke
−ikω

where F is an r × r matrix of 2π periodic functions, called a wavelet filter.
The scaling functions and wavelets will have finite support if and only if there are finitely many

non-zero coefficients Ck and Dk.
A multi scaling function Φ(t) is said to have approximation order m if each polynomial tj,

j = 0, . . . ,m− 1, is a linear combination of integer translates Φ(t− k) :

tj =
∑
k∈Z

y
(j)
k Φ(t− k) a.e.

for j = 0, . . . ,m− 1, where the yk’s are constant row-vectors of length r.
We say that a pair of vector functions Φ = (φ0, . . . , φr−1) and Φ̃ = (φ̃0, . . . , φ̃r−1) is biorthogonal if

〈φi, φ̃j(· − l)〉 = δi,jδ0,l

for all i, j = 0, . . . , r − 1 and l ∈ Z, where 〈, 〉 denotes the usual inner product in L2(R). If the
MRAs {Vj} and {Ṽj} are generated by the scaling vectors Φ and Φ̃, respectively, then {Vj} and {Ṽj}
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are said to be a pair of biorthogonal MRAs if Φ and Φ̃ are biorthogonal. If Ψ = (ψ0, . . . , ψr−1) and
Ψ̃ = (ψ̃0, . . . , ψ̃r−1) are the multiwavelets associated with the scaling vectors Φ and Φ̃ respectively, then
Ψ and Ψ̃ are biorthogonal multiwavelets if

〈φi, ψ̃j(· − l)〉 = 〈φ̃i, ψj(· − l)〉 = 0 and 〈ψi, ψ̃j(· − l)〉 = δi,jδ0,l

for i, j = 0, . . . , r − 1 and l ∈ Z. In this case, Vj ⊥ W̃j and Ṽj ⊥ Wj . If Ψ = (ψ0, . . . , ψr−1) and
Ψ̃ = (ψ̃0, . . . , ψ̃r−1) are biorthogonal multiwavelets then for f ∈ L2(R),

f =
r−1∑

j, k∈Z; i=0

〈f, ψij,k〉ψ̃ij,k =
r−1∑

j, k∈Z; i=0

〈f, ψ̃ij,k〉ψij,k

2.2. Biorthogonal Multiwavelets from Fractal Interpolation

The parametric family of biorthogonal wavelets described here uses ideas similar to those developed
by Massopust [12]. Let

u0(x) = (1− x)χ[0,1](x), u1(x) = xχ[0,1](x), and q(x) = u0(x)u1(x)

Fix s ∈ (−1, 1). The unique solution w(x) = ws of the inhomogeneous equation

w(x) = q(2x)− q(2x− 1) + sw(2x) + sw(2x− 1) (4)

is called a fractal interpolation function. We will denote w̃ = ws̃ for a certain related value s̃ ∈ (−1, 1).
Define

vi = ui −
〈w̃, ui〉w
〈w, w̃〉

− 〈q, ui〉q
〈q, q〉

, i = 0, 1

and let ṽi be defined in the same way with w replaced by w̃. Set

φ0 = αq, φ1 = βw, φ2 =


γv0 if x ∈ [0, 1]

γv1(·+ 1) if x ∈ [−1, 0)

and define φ̃i, i = 0, 1, 2 in the same way with vi replaced by ṽi and the normalization parameters α, β, γ
replaced by corresponding parameters α̃, β̃, γ̃. Set Φ = (φ0, φ1, φ2) and

Vj = clL2(R) span {φi(2j · −k) : i = 0, 1, 2; j, k ∈ Z}

and define Φ̃ and Ṽj similarly. We proved in [9] that

Theorem 2.1. For −1
2
< s̃ < 0 and s = 1+2s̃

2(3s̃−1)
,

1. {Vj} and {Ṽj} form a pair of biorthogonal MRAs of L2(R).
2. Φ and Φ̃ are piecewise C1 biorthogonal multiscaling functions. Their components φ0, φ̃0 are

supported on [0, 1] and symmetric about 1/2; φ1, φ̃1 are supported on [0, 1] and antisymmetric
about 1/2; φ2, φ̃2 are supported on [−1, 1] and symmetric about 0.

3. Φ and Φ̃ have approximation order 3.



Axioms 2013, 2 104

Let H and H̃ be the scaling filter of Φ and Φ̃, respectively. As in [9], to construct biorthogonal
multiwavelets related by differentiation via Strela’s two-scale transform, one needs H(0) and H̃(0) to be
symmetric. For this reason, we chose α = α̃ =

√
30, β = β̃ =

√
260/9, γ = γ̃ =

√
6.

The biorthogonal scaling vectors Φ and Φ̃ are represented by the scaling equations

Φ(x) =
1

2

1∑
k=−2

CkΦ(2x− k), Φ̃(x) =
1

2

1∑
k=−2

C̃kΦ̃(2x− k) (5)

The biorthogonal multiwavelets Ψ = (ψ0, ψ1, ψ2) and Ψ̃ = (ψ̃0, ψ̃1, ψ̃2) associated with the
respective scaling vectors Φ and Φ̃ are represented by corresponding equations

Ψ(x) =
1

2

1∑
k=−2

DkΦ(2x− k), Ψ̃(x) =
1

2

1∑
k=−2

D̃kΦ̃(2x− k) (6)

With appropriate choice of coefficients the multiwavelets are also supported on [−1, 1] and possess
corresponding symmetry properties. The scaling coefficients and wavelet coefficients for the parameter
choices s = −1/6, s̃ = −2/9 can be found in Appendix A. The components of the scaling and wavelet
vectors are plotted in Figure 1.

Figure 1. Scaling vectors Φ (solid) and Φ̃ (dashed) and multiwavelets Ψ and Ψ̃, s = −1/6.
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2.3. Biorthogonal Multiwavelets via Strela’s Two-Scale Transform

Strela’s two-scale transform is a method to derive a new scaling filter from a given scaling filter by
a transform Hold(ω) 7→ Hnew(ω) = 1

2
M(2ω)Hold(ω)M−1(ω) in which the relative properties of Hold
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and Hnew are encoded in the transition matrix M . Strela proved that if detM is linear in eiω with a
unique zero at ω = 0 and if the kernel of M(0) is the 1-eigenvector of Hold(0) then the scaling vector of
Hnew will have one more order of approximation and regularity than Hold has. Using Strela’s two-scale
transform [10], we obtained in [9] new biorthogonal multiwavelets related by differentiation to the ones
we constructed from fractal interpolation functions, as explained below.

2.3.1. Smoothing Procedure

The transition matrix and two-scale transform filter

H̃+(ω) =
1

2
M(2ω)H̃(ω)M−1(ω); M =


1 + eiω 0 −2

√
5

0 1 0

1− eiω 0 0

 (7)

have the properties just indicated. H̃+(ω) then is the filter of a new scaling vector Φ̃+ having one
more approximation order and regularity than the original scaling vector Φ̃ whose components appear in
Figure 1. By Theorem 2.1, Φ̃+ is piecewise C2 and has approximation order 4. One associates to Φ̃+ the
multiwavelet vector Ψ̃+ defined by the filter F̃+ defined by (see Lakey and Pereyra [13])

̂̃Ψ+(ω) = F+
(ω

2

)̂̃Φ+
(ω

2

)
; F+(ω) = −1

2
F̃ (ω)M−1(ω) (8)

where F̃ is the filter of the multiwavelet Ψ̃ derived from Equation (6).
The transition matrix M induces an operator symbol matrix

TM =


I + S−1 0 −2

√
5 I

0 I 0

I − S−1 0 0

 (9)

Here I denotes the identity operator and S is the shift operator Sf = f(· − 1), so S−1f = f(·+ 1). We
proved in [9] that the smoothed scaling vector and the associated multiwavelet are related to the original
ones by the following differentiation relations

DΦ̃+ = TM Φ̃, DΨ̃+ = −Ψ̃ (10)

where Df denotes the distributional derivative of f . The components φ̃i,+ and ψ̃i,+, i = 0, 1, 2 of Φ̃+

and Ψ̃+ satisfy the following.

Theorem 2.2. [9] Let Φ̃+ and Ψ̃+ be defined as above. Then

1. The components of Φ̃+ and Ψ̃+ are piecewise C2 and have approximation order 4.
2. φ̃0,+ is supported on [−1, 1] and antisymmetric about 0; φ̃1,+ is supported on [0, 1] and symmetric

about 1/2; φ̃2,+ is supported on [−1, 1] and symmetric about 0.
3. ψ̃0,+ is supported on [0, 1] and antisymmetric about 1/2; ψ̃1,+ is supported on [−1, 1] and

antisymmetric about 0; ψ̃2,+ is supported on [−1, 1] and symmetric about 0.
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The smoothed scaling and wavelet filter matrices have the form

H̃+(ω) =
1

2

1∑
k=−2

C̃+
k e−ikω and F̃+(ω) =

1

2

1∑
k=−2

D̃+
k e−ikω (11)

with values determined by Equations (7) and (8). The matrices C+
k and D+

k corresponding to the
parameter choices s = −1/6, s̃ = −2/9 are given in Appendix A. The components of the smoothed
scaling and wavelet vectors are plotted in Figure 2.

Figure 2. Smoothed scaling vector Φ̃+ and multiwavelet Ψ̃+.
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2.3.2. Roughening Procedure

Following Strela, the scaling vector Φ− of the filter H− defined by

H−(ω) = 2N−1(2ω)H(ω)N(ω); N(ω) = −M∗(ω) =


−1− e−iω 0 −1 + e−iω

0 −1 0

2
√

5 0 0

 (12)

has one less approximation order and regularity than the old scaling vector Φ. Hence, Φ− is piecewise
continuous and of approximation order 2. An associated multiwavelet Ψ− can be defined by (see Lakey
and Pereyra [13])

Ψ̂−(ω) = F−
(ω

2

)
Φ̂−
(ω

2

)
; F−(ω) = 2F (ω)N(ω) (13)
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It can also be verified that, with TN the symbol matrix corresponding to N as in Equation (9), the
roughened and original scaling vectors and multiwavelets are related by

DΦ = TNΦ−, DΨ = Ψ− (14)

Denote by φi,− and ψi,−, i = 0, 1, 2 the components of Φ− and Ψ− respectively.

Theorem 2.3. [9] Let Φ−, Φ̃+, Ψ− and Ψ̃+ be defined as above. Then, in the exact order given, a
component of Φ− or Ψ− and the corresponding component of Φ̃+ or Ψ̃+ have the same support and
symmetry. In addition,

φ0,−χ[0,1] = φ2,−χ[0,1] and φ0,−χ[−1,0] = −φ2,−χ[−1,0]

The values of the coefficients C−k and D−k of the roughened scaling and wavelet filters

H−(ω) =
1

2

2∑
k=−2

C−k e−ikω and F−(ω) =
1

2

2∑
k=−2

D−k e−ikω (15)

with the same parameter values s = −1/6, s̃ = −2/9 are determined by Equations (12) and (13) and
are given in Appendix A. The components of the roughened scaling and wavelet vectors are plotted in
Figure 3.

Figure 3. Roughened scaling vector Φ− and multiwavelet Ψ−.
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Theorem 2.4. [9] The scaling vectors Φ̃+ and Φ− generate a pair of biorthogonal MRAs of L2(R). In
addition, Ψ̃+ and Ψ− are biorthogonal multiwavelets.

The old and new biorthogonal multiwavelet bases of L2(R) satisfy commutation relations between
oblique MRA projections and differentiation. The commutation relations are crucial in the construction
of divergence-free wavelets on R2

+.
Denote the oblique projections P̃j and P̃+

j from L2(R) onto the respective approximation spaces Ṽj
and Ṽ +

j by
P̃jf =

∑
i,k

〈f, φij,k〉φ̃ij,k, P̃+
j f =

∑
i,k

〈f, φi,−j,k 〉φ̃
i,+
j,k (16)

Define the oblique projections Q̃j and Q̃+
j from L2(R) onto the corresponding detail spaces W̃j and

W̃+
j similarly,

Q̃jf =
∑
i,k

〈f, ψij,k〉ψ̃ij,k, Q̃+
j f =

∑
i,k

〈f, ψi,−j,k 〉ψ̃
i,+
j,k (17)

Notice that for a fixed value x ∈ R, the sums in Equations (16) and (17) are finite sums with respect
to k due to the finiteness of the support of the scaling and wavelet functions.

Proposition 2.1. [9] For f ∈ H1(R), the following commutation relations hold

P̃jD = DP̃+
j , Q̃jD = DQ̃+

j

3. Divergence-Free Multiwavelets on R2
+

To construct divergence-free multiwavelets on the upper half plane R2
+, we first need to adapt the

biorthogonal multiwavelets related by differentiation on R to the half line R+.

3.1. Biorthogonal Multiwavelet Bases of L2(R+)

We construct a pair of biorthogonal multiwavelet bases of L2(R+) using the original multiwavelet
systems (Φ,Ψ), (Φ̃, Ψ̃) and the derived systems (Φ̃+, Ψ̃+), (Φ−,Ψ−) ofL2(R). Divergence-free wavelets
satisfying vanishing normal boundary conditions can then be constructed through tensor products from a
basis of L2(R+) generated from the smoothed multiwavelet system (Φ̃+, Ψ̃+) vanishing on the boundary
of its support.

Our procedure for constructing biorthogonal multiwavelet bases of L2(R+) adapted from those of
L2(R) can be described as follows:

• Keep the functions that are originally supported on [0,∞),
• For the functions belonging to the original biorthogonal systems of L2(R) whose support straddles

the boundary point 0, truncate the symmetric ones to [0,∞) and normalize them by
√

2, and shift
the antisymmetric ones to [0,∞).
• For the functions belonging to the smoothed and roughened systems of L2(R) whose support

straddles the boundary point 0, truncate the antisymmetric ones to [0,∞) and normalize them by√
2, and shift the symmetric ones to [0,∞).
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Precisely, for j, k ≥ 0, we define

φiR+,j,k
= φij,k if i = 0, 1, φ2

R+,j,k
=


√

2φ2
j,kχ[0,∞) if k = 0

φ2
j,k if k ≥ 1

(18)

and

ψiR+,j,k
=

ψij,k if i = 0

ψij,k+1 if i = 2,
ψ1

R+,j,k
=


√

2ψ1
j,kχ[0,∞) if k = 0

ψ1
j,k if k ≥ 1

(19)

Use the same formulation for φ̃iR+,j,k
and ψ̃iR+,j,k

. Let

Vj(R+) = clL2(R+) span{φiR+,j,k
: i = 0, 1, 2; j, k ≥ 0}

Wj(R+) = clL2(R+) span{ψiR+,j,k
: i = 0, 1, 2; j, k ≥ 0}

and similarly for Ṽj(R+), W̃j(R+) in terms of φ̃iR+,j,k
, ψ̃iR+,j,k

, respectively. We obtain a pair of
biorthogonal MRAs {Vj(R+)} and {Ṽj(R+)} of L2(R+) such that

Vj+1(R+) = Vj(R+)⊕Wj(R+), Ṽj+1(R+) = Ṽj(R+)⊕ W̃j(R+)

and , just as in the case of the whole real line,

L2(R+) = V0(R+)
⊕
j≥0

Wj(R+) = Ṽ0(R+)
⊕
j≥0

W̃j(R+)

We perform a similar procedure for the construction of the biorthogonal multiwavelet bases ofL2(R+)

generated from the new systems (Φ̃+, Ψ̃+) and (Φ−,Ψ−) of L2(R) except that the roles of symmetric
and antisymmetric components whose support overlaps 0 are switched. Explicitly, for j, k ≥ 0, let

φ̃i,+R+,j,k
=

φ̃
i,+
j,k if i = 1

φ̃i,+j,k+1 if i = 2,
φ̃0,+

R+,j,k
=


√

2 φ̃0,+
j,k χ[0,∞) if k = 0

φ̃0,+
j,k if k ≥ 1

(20)

and

ψ̃i,+R+,j,k
=

ψ̃
i,+
j,k if i = 0

ψ̃i,+j,k+1 if i = 2,
ψ̃1,+

R+,j,k
=


√

2 ψ̃1,+
j,k χ[0,∞) if k = 0

ψ̃1,+
j,k if k ≥ 1

(21)

We define similarly for φi,−R+,j,k
and ψi,−R+,j,k

. Let

Ṽ +
j (R+) = clL2(R+) span{φ̃i,+R+,j,k

: i = 0, 1, 2; j, k ≥ 0}

W̃+
j (R+) = clL2(R+) span{ψ̃i,+R+,j,k

: i = 0, 1, 2; j, k ≥ 0}

and similarly for V −j (R+), W−
j (R+) in terms of φi,−R+,j,k

, ψi,−R+,j,k
, respectively. We get another pair of

biorthogonal MRAs {Ṽ +
j (R+)} and {V −j (R+)} of L2(R+) such that

Ṽ +
j+1(R+) = Ṽ +

j (R+)⊕ W̃+
j (R+), V −j+1(R+) = V −j (R+)⊕W−

j (R+)

and
L2(R+) = Ṽ +

0 (R+)
⊕
j≥0

W̃+
j (R+) = V −0 (R+)

⊕
j≥0

W−
j (R+)
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To adapt the differentiation and integration relations between the scaling vectors and multiwavelets
on R to ones on R+, we separate the scaling vectors and multiwavelets on R+ into boundary and interior
components. We define the boundary scaling vectors and multiwavelets, which correspond to the integer
translate k = 0, as follows

Φ0
R+

= [φ0
R+

φ1
R+

φ2
R+

]T = [φ0 φ1
√

2φ2χ[0,∞)]
T

Ψ0
R+

= [ψ0
R+

ψ1
R+

ψ2
R+

]T = [ψ0
√

2ψ1χ[0,∞) ψ2(· − 1)]T

Φ̃0,+
R+

= [φ̃0,+
R+

φ̃1,+
R+

φ̃2,+
R+

]T = [
√

2 φ̃0,+χ[0,∞) φ̃1,+ φ̃2,+(· − 1)]T

Ψ̃0,+
R+

= [ψ̃0,+
R+

ψ̃1,+
R+

ψ̃2,+
R+

]T = [ψ̃0,+
√

2 ψ̃1,+χ[0,∞) ψ̃2,+(· − 1)]T

We define Φ̃0
R+
, Ψ̃0

R+
, Φ0,−

R+
and Ψ0,−

R+
similarly to Φ0

R+
, Ψ0

R+
, Φ̃0,+

R+
and Ψ̃0,+

R+
, respectively. The interior

components, formulated as below, are the scaling vectors and multiwavelets on R+ with the integer
translates k ≥ 1, which live completely inside [0,∞). Let

Φk
R+

= [φ0
R+,0,k

φ1
R+,0,k

φ2
R+,0,k

]T = [φ0
0,k φ1

0,k φ2
0,k]

T

Ψk
R+

= [ψ0
R+,0,k

ψ1
R+,0,k

ψ2
R+,0,k

]T = [ψ0
0,k ψ1

0,k ψ2
0,k+1]T

Φ̃k,+
R+

= [φ̃0,+
R+,0,k

φ̃1,+
R+,0,k

φ̃2,+
R+,0,k

]T = [φ̃0,+
0,k φ̃1,+

0,k φ̃2,+
0,k+1]T

Ψ̃k,+
R+

= [ψ̃0,+
R+,0,k

ψ̃1,+
R+,0,k

ψ̃2,+
R+,0,k

]T = [ψ̃0,+
0,k ψ̃1,+

0,k ψ̃2,+
0,k+1]T

and similarly for Φ̃k
R+
, Ψ̃k

R+
,Φk,−

R+
and Ψk,−

R+
.

From Equations (10) and (14), and Equations (19) and (21) the multiwavelets on R+ inherit the same
differentiation and integration relations as the multiwavelets on R. Precisely,

DΨ̃k,+
R+

= −Ψ̃k
R+
, DΨk

R+
= Ψk,−

R+
(22)

for both interior and boundary components k = 0 and k ≥ 1.
The boundary and interior scaling vectors on R+ are less straightforward. From Equations (9) and

(10) and Equations (18) and (20) that define the scaling functions on R+ we obtain

DΦ̃0,+
R+

= TM∂
Φ̃0

R+
and DΦ̃k,+

R+
= TMintΦ̃

k
R+

(k ≥ 1) (23)

for the respective boundary and interior scaling vectors, where

TM∂
:=


√

2 I 0 −2
√

5 I

0 I 0

S − I 0 0

 and TMint :=


I + S−1 0 −2

√
5 I

0 I 0

S − I 0 0


To establish an analogue of Proposition 2.1 on R+, we define oblique projections P̃R+,j , P̃

+
R+,j

from
L2(R+) onto the respective approximation spaces Ṽj(R+) and Ṽ +

j (R+) and Q̃R+,j , Q̃
+
R+,j

from L2(R+)

onto the corresponding detail spaces W̃j(R+) and W̃+
j (R+) as follows:

P̃R+,jf =
∑
i,k

〈f, φiR+,j,k
〉φ̃iR+,j,k

, P̃+
R+,j

f =
∑
i,k

〈f, φi,−R+,j,k
〉φ̃i,+R+,j,k

Q̃R+,jf =
∑
i,k

〈f, ψiR+,j,k
〉ψ̃iR+,j,k

, Q̃+
R+,j

f =
∑
i,k

〈f, ψi,−R+,j,k
〉ψ̃i,+R+,j,k
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For an interval Ω ⊂ R, possibly unbounded, the Sobolev space H1(Ω) is the Hilbert space defined by

H1(Ω) = {f ∈ L2(Ω) : Df ∈ L2(Ω) }, ‖f‖2
H1(Ω) = ‖f‖2

L2(Ω) + ‖Df‖2
L2(Ω)

Define
H1

0 (Ω) = clH1(Ω)C
1
c (Ω) (= clH1(Ω)C

∞
c (Ω))

where C1
c (Ω) is the space of continuously differentiable functions compactly supported in Ω. Note that

if f ∈ H1(Ω) then f ∈ H1
0 (Ω) if and only if Df = 0 on ∂Ω .

Proposition 3.1. On the Sobolev space H1
0 (R+), the following commutation relations hold

P̃R+,jD = DP̃+
R+,j

, Q̃R+,jD = DQ̃+
R+,j

The proof of Proposition 3.1 can be found in Appendix B.

3.2. Construction of Divergence-Free Multiwavelets

The following are some basic notions of flux spaces and divergence-free vector fields. Denote

R2
+ = {(x, y) ∈ R2 : y ≥ 0}

the upper half plane, and

L2(R2
+)2 = {~F = (F1, F2) : Fi ∈ L2(R2

+), i = 1, 2}

The divergence operator∇ : L2(R2
+)2 → L2(R2

+) is defined as usual by

∇~F =
∂F1

∂x
+
∂F2

∂y

where the partial derivatives are understood in the distributional sense. The divergence operator induces
the flux space

H(div,R2
+) = {~F ∈ L2(R2

+)2 : ∇~F ∈ L2(R2
+)}

and its divergence-free subspace

H0(div,R2
+) = {~F ∈ H(div,R2

+) : ∇~F = 0}

The two spaces of vector fields are Hilbert spaces under the norm

‖~F‖2
H(div,R2

+) = ‖~F‖2
L2(R2

+)2 + ‖∇~F‖2
L2(R2

+)

where

‖~F‖2
L2(R2

+)2 =
2∑
i=1

‖Fi‖2
L2(R2

+)

We have found biorthogonal multiwavelet systems related by differentiation for both L2(R) and
L2(R+) so that the commutation relations between oblique projections and differentiation are all
satisfied. We are now able to construct a wavelet basis for the vector space H0(div,R2

+) satisfying
the vanishing normal boundary condition ~v · ~n = 0, where ~n = −~e2 is the unit outward normal vector to
the boundary axis {(x, 0) : x ∈ R}.

We have utilized many notations so far. To avoid confusion, we recall the notations and relations that
are necessary for the construction.
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• Biorthogonal scaling vectors (Φ, Φ̃) and (Φ̃+, Φ−) and wavelets (Ψ, Ψ̃) and (Ψ̃+, Ψ−) on R,
related by Equation (10).
• Biorthogonal boundary scaling vectors (Φ0

R+
, Φ̃0

R+
) and (Φ̃0,+

R+
, Φ0,−

R+
) and wavelets (Ψ0

R+
, Ψ̃0

R+
)

and (Ψ̃0,+
R+
, Ψ0,−

R+
) on R+, related by related by Equations (22) and (23).

• Biorthogonal interior scaling vectors (Φk
R+
, Φ̃k

R+
) and (Φ̃k,+

R+
, Φk,−

R+
) and wavelets (Ψk

R+
, Ψ̃k

R+
) and

(Ψ̃k,+
R+
, Ψk,−

R+
), k ≥ 1 on R+, related by Equations (22) and (23). These multiwavelet systems

establish the commutation relations as in Propositions 2.1 and 3.1.

Our construction of biorthogonal bases of compactly supported multiwavelets on R2
+ such that the

reconstruction wavelets are divergence-free will be divided into the following steps.

Step 1. Compose biorthogonal multiwavelet bases in L2(R2
+) by tensor products.

We use the standard basis vectors ~e1 = (1, 0) and ~e2 = (0, 1) to index a smoothing direction for tensor
wavelets on R2

+:

V ~e1
j (R2

+) = V
(1,0)
j (R2

+) = Ṽ +
j (R)⊗ Ṽj(R+)

V ~e2
j (R2

+) = V
(0,1)
j (R2

+) = Ṽj(R)⊗ Ṽ +
j (R+)

W ~e1
j (R2

+) = [Ṽ +
j (R)⊗ W̃j(R+)]⊕ [W̃+

j (R)⊗ Ṽj(R+)]⊕ [W̃+
j (R)⊗ W̃j(R+)]

W ~e2
j (R2

+) = [Ṽj(R)⊗ W̃+
j (R+)]⊕ [W̃j(R)⊗ Ṽ +

j (R+)]⊕ [W̃j(R)⊗ W̃+
j (R+)]

Then
L2(R2

+) = V
(1,0)

0 (R2
+)
⊕
j≥0

W
(1,0)
j (R2

+) = V
(0,1)

0 (R2
+)
⊕
j≥0

W
(0,1)
j (R2

+) (24)

Similarly, we use negated standard basis vectors to index roughening directions for dual tensor scaling
and wavelet spaces on R2

+:

V −~e1j (R2
+) = V

(−1,0)
j (R2

+) = V −j (R)⊗ Vj(R+)

V −~e2j (R2
+) = V

(0,−1)
j (R2

+) = Vj(R)⊗ V −j (R+)

W−~e1
j (R2

+) = [V −j (R)⊗Wj(R+)]⊕ [W−
j (R)⊗ Vj(R+)]⊕ [W−

j (R)⊗Wj(R+)]

W−~e2
j (R2

+) = [Vj(R)⊗W−
j (R+)]⊕ [Wj(R)⊗ V −j (R+)]⊕ [Wj(R)⊗W−

j (R+)]

The decomposition corresponding to Equation (24) holds for the respective indices −~e1 and −~e2.
We define the boundary generators of L2(R2

+) to be components of the matrices

Γ~e1∂,1(x, y) = Γ
(1,0)
∂,1 (x, y) = Ψ̃+(x)T Ψ̃0

R+
(y); Γ−~e1∂,1 (x, y) = Γ

(−1,0)
∂,1 (x, y) = Ψ−(x)TΨ0

R+
(y)

Γ~e1∂,2(x, y) = Γ
(1,0)
∂,2 (x, y) = Ψ̃+(x)T Φ̃0

R+
(y); Γ−~e1∂,2 (x, y) = Γ

(−1,0)
∂,2 (x, y) = Ψ−(x)TΦ0

R+
(y)

Γ~e1∂,3(x, y) = Γ
(1,0)
∂,3 (x, y) = Φ̃+(x)T Ψ̃0

R+
(y); Γ−~e1∂,3 (x, y) = Γ

(−1,0)
∂,3 (x, y) = Φ−(x)TΨ0

R+
(y)

Here Γ−~e1∂,µ is biorthogonal to Γ~e1∂,ν , that is,
∫∫

Γ−~e1∂,µ (Γ~e1)T∂,ν = δµ,νI . We have another set of boundary
biorthogonal generators of L2(R2

+) given by
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Γ~e2∂,1(x, y) = Γ
(0,1)
∂,1 (x, y) = Ψ̃(x)T Ψ̃0,+

R+
(y); Γ−~e2∂,1 (x, y) = Γ

(0,−1)
∂,1 (x, y) = Ψ(x)TΨ0,−

R+
(y)

Γ~e2∂,2(x, y) = Γ
(0,1)
∂,2 (x, y) = Ψ̃(x)T Φ̃0,+

R+
(y); Γ−~e2∂,2 (x, y) = Γ

(0,−1)
∂,2 (x, y) = Ψ(x)TΦ0,−

R+
(y)

Γ~e2∂,3(x, y) = Γ
(0,1)
∂,3 (x, y) = Φ̃(x)T Ψ̃0,+

R+
(y); Γ−~e2∂,3 (x, y) = Γ

(0,−1)
∂,3 (x, y) = Φ(x)TΨ0,−

R+
(y)

We define similarly biorthogonal interior generators of L2(R2
+): (Γ~e1int,`, Γ−~e1int,`) and (Γ~e2int,`, Γ−~e2int,`),

` = 1, 2, 3, where each boundary scaling vector or multiwavelet is replaced by the corresponding interior
one. For instance,

Γ~e1int,1(x, y) = Γ
(1,0)
int,1 (x, y) = Ψ̃+(x)T Ψ̃1

R+
(y)

Along with the boundary generators, they constitute two biorthogonal bases of L2(R2
+) as listed below:

1. Γ~e1∂,`, Γ~e1int,` with the duals Γ−~e1∂,` , Γ−~e1int,`; ` = 1, 2, 3

2. Γ~e2∂,`, Γ~e2int,` with the duals Γ−~e2∂,` , Γ−~e2int,`; ` = 1, 2, 3.

Step 2. Compose biorthogonal bases of L2(R2
+)2 componentwise.

The biorthogonal bases of L2(R2
+) induce biorthogonal bases of L2(R2

+)2 componentwise. In
fact, {Γ~e1∂,` ~e1, Γ~e1int,` ~e1, Γ~e2∂,` ~e2, Γ~e2int,` ~e2}`=1,2,3 with the dual components {Γ−~e1∂,` ~e1, Γ−~e1int,` ~e1, Γ−~e2∂,` ~e2,

Γ−~e2int,` ~e2}`=1,2,3 form biorthogonal bases of L2(R2
+)2. The following is the list of the boundary matrix

generators. The interior generators and their duals are formulated similarly using the appropriate
substitution of the boundary vector by the interior vector. Explicitly,

Γ~e1∂,1(x, y)~e1 =
(
Ψ̃+(x)T Ψ̃0

R+
(y), 0

)
; Γ−~e1∂,1 (x, y)~e1 =

(
Ψ−(x)TΨ0

R+
(y), 0

)
Γ~e1∂,2(x, y)~e1 =

(
Ψ̃+(x)T Φ̃0

R+
(y), 0

)
; Γ−~e1∂,2 (x, y)~e1 =

(
Ψ−(x)TΦ0

R+
(y), 0

)
Γ~e1∂,3(x, y)~e1 =

(
Φ̃+(x)T Ψ̃0

R+
(y), 0

)
; Γ−~e1∂,3 (x, y)~e1 =

(
Φ−(x)TΨ0

R+
(y), 0

)
Γ~e2∂,1(x, y)~e2 =

(
0, Ψ̃(x)T Ψ̃0,+

R+
(y)
)
; Γ−~e2∂,1 (x, y)~e2 =

(
0,Ψ(x)TΨ0,−

R+
(y)
)

Γ~e2∂,2(x, y)~e2 =
(
0, Ψ̃(x)T Φ̃0,+

R+
(y)
)
; Γ−~e2∂,2 (x, y)~e2 =

(
0,Ψ(x)TΦ0,−

R+
(y)
)

Γ~e2∂,3(x, y)~e2 =
(
0, Φ̃(x)T Ψ̃0,+

R+
(y)
)
; Γ−~e2∂,3 (x, y)~e2 =

(
0,Φ(x)TΨ0,−

R+
(y)
)

Step 3. Compose the biorthogonal bases in H0(div,R2
+).

We can obtain a biorthogonal basis in H0(div,R2
+) from the linear combinations of the vector fields

listed above and their integer translates. The following are the reconstruction boundary multiwavelets of
the basis:

~̃Ψ∂,1(x, y) =
(
Ψ̃+(x)T Ψ̃0

R+
(y), −Ψ̃(x)T Ψ̃0,+

R+
(y)
)

~̃Ψ∂,2(x, y) =
(
Ψ̃+(x)T TM∂

Φ̃0
R+

(y), Ψ̃(x)T Φ̃0,+
R+

(y)
)

~̃Ψ∂,3(x, y) =
(
Φ̃+(x)T Ψ̃0

R+
(y), TM∂

Φ̃(x)T Ψ̃0,+
R+

(y)
)

Because each component of Φ̃0,+
R+

and of Ψ̃0,+
R+

vanishes continuously at y = 0, these boundary
multiwavelets satisfy the vanishing normal condition, that is, their normal component vanishes
continuously at the boundary.
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We formulate the reconstruction interior multiwavelets ~̃Ψint,`, ` = 1, 2, 3 similarly, where TM∂
and

the boundary component are substituted respectively by TMint and the corresponding interior component.
For instance,

~̃Ψint,2(x, y) =
(
Ψ̃+(x)T TMintΦ̃

1
R+

(y), Ψ̃(x)T Φ̃1,+
R+

(y)
)

The vectors ~̃Ψ∂,` and ~̃Ψint,`, ` = 1, 2, 3, belong to the divergence-free vector space H0(div,R2
+)

because of the commutation relations between oblique projections and differentiation on both R and
R+ specified by Propositions 2.1 and 3.1. We prove below that the reconstruction wavelets ~̃Ψ∂,` and
~̃Ψint,`, ` = 1, 2, 3, constitute a basis for H0(div,R2

+). Their biorthogonal duals, which serve as the
decomposition wavelets, are

~Ψ∂,1(x, y) =
(
Ψ−(x)T Ψ0

R+
(y), 0

)
~Ψ∂,2(x, y) =

(
0, Ψ(x)T Φ0,−

R+
(y)
)

~Ψ∂,3(x, y) =
(
Φ−(x)T Ψ0

R+
(y), 0

)
for the boundary components. The interior components ~Ψint,`, ` = 1, 2, 3, are defined similarly.
For instance

~Ψint,1(x, y) =
(
Ψ−(x)T Ψ1

R+
(y), 0

)
Notice that the decomposition multiwavelets are not divergence-free.

Theorem 3.1. For F ∈ H0(div,R2
+), the expansion of F in terms of {(Γ~ep

∂,` · ~ep, Γ
~ep

int,` · ~ep), (Γ
−~ep

∂,` ·
~ep, Γ

−~ep

int,` · ~ep) : p = 1, 2; ` = 1, 2, 3} agrees with its expansion in terms of {(~̃Ψ∂,`,
~̃Ψint,`), (~Ψ∂,`, ~Ψint,`) :

` = 1, 2, 3}. Thus, the translates and dilates of {(~̃Ψ∂,`,
~̃Ψint,`) : ` = 1, 2, 3} form a basis for the

divergence-free subspace of L2(R2
+)2 whose boundary components satisfy the vanishing normal

boundary condition.

Proof. It suffices to verify the boundary case. One shows that if a vector field lies in the divergence-free
subspace, then its expansion in terms of a complete set of vector wavelets for L2(R2

+)2 agrees with its
sum of its components in the divergence-free wavelets.

Let F = (F1, F2) ∈ H0(div,R2
+). Its boundary expansion in terms of the biorthogonal bases {(Γ~ep

∂,` ·
~ep, Γ

~ep

int,` ·~ep), (Γ
−~ep

∂,` ·~ep, Γ
−~ep

int,` ·~ep) : p = 1, 2; ` = 1, 2, 3}, of L2(R2
+)2 is represented by the six following

vector fields and the components of their shifts and dilates:

A1 = 〈F1(x, y),Ψ−(x)TΨ0
R+

(y)〉
(
Ψ̃+(x)T Ψ̃0

R+
(y), 0

)
A2 = 〈F1(x, y),Ψ−(x)TΦ0

R+
(y)〉

(
Ψ̃+(x)T Φ̃0

R+
(y), 0

)
A3 = 〈F1(x, y),Φ−(x)TΨ0

R+
(y)〉

(
Φ̃+(x)T Ψ̃0

R+
(y), 0

)
A4 = 〈F2(x, y),Ψ(x)TΨ0,−

R+
(y)〉

(
0, Ψ̃(x)T Ψ̃0,+

R+
(y)
)

A5 = 〈F2(x, y),Ψ(x)TΦ0,−
R+

(y)〉
(
0, Ψ̃(x)T Φ̃0,+

R+
(y)
)

A6 = 〈F2(x, y),Φ(x)TΨ0,−
R+

(y)〉
(
0, Φ̃(x)T Ψ̃0,+

R+
(y)
)
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On the other hand, the boundary expansion of F in terms of the divergence-free wavelets
{(~̃Ψ∂,`,

~̃Ψint,`), (~Ψ∂,`, ~Ψint,`) : ` = 1, 2, 3} is represented by the following fields and the components
of their translates and dilates:

B1 = 〈F1(x, y),Ψ−(x)TΨ0
R+

(y)〉
(
Ψ̃+(x)T Ψ̃0

R+
(y), 0

)
B2 = 〈F1(x, y),Ψ−(x)TΨ0

R+
(y)〉

(
0,−Ψ̃(x)T Ψ̃0,+

R+

)
B3 = 〈F2(x, y),Ψ(x)TΦ0,−

R+
(y)〉

(
Ψ̃+(x)TTM∂

Φ̃0
R+
, 0
)

B4 = 〈F2(x, y),Ψ(x)TΦ0,−
R+

(y)〉
(
0, Ψ̃(x)T Φ̃0,+

R+
(y)
)

B5 = 〈F1(x, y),Φ−(x)TΨ0
R+

(y)〉
(
Φ̃+(x)T Ψ̃0

R+
(y), 0

)
B6 = 〈F1(x, y),Φ−(x)TΨ0

R+
(y)〉

(
0, TM∂

Φ̃(x)T Ψ̃0,+
R+

(y)
)

Under the hypothesis that F is divergence-free, we show that
∑6

i=1 Ai =
∑6

i=1Bi. By definition, we
have A1 = B1, A3 = B5 and A5 = B4. Using the differentiation relations between the scaling vectors
and multiwavelets on R and R+, and the commutation relations in Propositions 2.1 and 3.1, we show
that A2 = B3, A4 = B2 and A6 = B6.

Since the y-coordinates of ~̃Ψ∂,` are equal to 0 for ` = 1, 2, 3, we can assume that F2(x, 0) = 0.
Furthermore, all scaling and wavelet functions on R vanish on the boundary of their support. Thus,

〈F2(x, y),Ψ(x)TΨ0,−
R+

(y)〉 = 〈F2,Ψ(x)TDΨ0
R+

(y)〉 =
〈
− ∂

∂y
F2,Ψ(x)TΨ0

R+
(y)
〉

=
〈 ∂
∂x
F1,Ψ(x)TΨ0

R+
(y)
〉

= 〈F1,−DΨ(x)TΨ0
R+

(y)〉

= 〈F1,−Ψ−(x)TΨ0
R+

(y)〉

This implies A4 = B2. In addition,

B3 = 〈F2(x, y),Ψ(x)TΦ0,−
R+

(y)〉
(
Ψ̃+(x)TTM∂

Φ̃0
R+
, 0
)

= 〈F2,Ψ(x)TΦ0,−
R+

(y)〉
(
Ψ̃+(x)TDΦ̃0,+

R+
, 0
)

=
〈 ∂
∂y
F2,Ψ(x)TΦ0

R+
(y)
〉(

Ψ̃+(x)T Φ̃0
R+
, 0
)

=
〈
− ∂

∂x
F1,Ψ(x)TΦ0

R+
(y)
〉(

Ψ̃+(x)T Φ̃0
R+
, 0
)

= 〈F1, DΨ(x)TΦ0
R+

(y)〉
(
Ψ̃+(x)T Φ̃0

R+
, 0
)

= 〈F1,Ψ
−(x)TΦ0

R+
(y)〉

(
Ψ̃+(x)T Φ̃0

R+
, 0
)

= A2

The verification for A6 = B6 is similar.

Each one of the divergence-free multiwavelets ~̃Ψ∂,`,
~̃Ψint,`, ` = 1, 2, 3, consists of nine components.

Figure 4 plots some of the components of ~̃Ψint,1.
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Figure 4. Some components of ~̃Ψint,1.

4. Conclusions

We have constructed vector wavelet families on the upper half plane R2
+ such that the reconstructing

wavelets are divergence-free and piecewise C1 and form a basis for the closed subspace H0(div,R2
+).

In contrast to previous constructions, the boundary components satisfy a vanishing normal boundary
condition desirable for applications. The boundary constraints and desire for short supports suggest
the use of wavelets built on fractal interpolation functions. To build in the divergence-free property we
use certain commutation conditions made possible through Strela’s two-scale transform. Because these
wavelets are built via tensor products, analogues can be built in dimensions of three and higher.
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A. Scaling and Wavelet Coefficient Matrices

The matrices Ck in Equation (5) under the parameter assignments s = −1/6, s̃ = −2/9

corresponding to Figure 1 in Section 2.2 are

C−2 =


0 0 0

0 0 0

7
240

√
5 − 1

960

√
390 0

 C−1 =


0 0 0

0 0 0

23
240

√
5 − 31

960

√
390 −1

8



C0 =


7
8

− 1
32

√
78 0

1
9

√
78 −1

6
0

23
240

√
5 31

960

√
390 1

 C1 =


7
8

1
32

√
78 1

4

√
5

−1
9

√
78 −1

6
0

7
240

√
5 1

960

√
390 −1

8



C̃−2 =


0 0 0

0 0 0

5
144

√
5 − 7

2808

√
390 0

 C̃−1 =


0 0 0

0 0 0

13
144

√
5 − 97

2808

√
390 −1

8



C̃0 =


7
8

− 5
156

√
78 0

1
9

√
78 −2

9
0

13
144

√
5 97

2808

√
390 1

 C̃1 =


7
8

5
156

√
78 1

4

√
5

−1
9

√
78 −2

9
0

5
144

√
5 7

2808

√
390 −1

8


The matrices Dk in Equation (6) under the parameter assignments s = −1/6, s̃ = −2/9

corresponding to Figure 1 in Section 2.2 are

D−2 =


0 0 0

7
23

− 1
92

√
78 0

7
960

√
5 − 1

3840

√
390 0

 D−1 =


0 0 0

1 −31
92

√
78 − 6

23

√
5

23
960

√
5 − 31

3840

√
390 − 1

32



D0 =


5

416

√
78 − 9

64
0

1 31
92

√
78 −48

23

√
5

− 23
960

√
5 − 31

3840

√
390 0

 D1 =


5

416

√
78 9

64
− 5

208

√
390

7
23

1
92

√
78 − 6

23

√
5

− 7
960

√
5 − 1

3840

√
390 1

32



D̃−2 =


0 0 0

115
6912

− 161
134784

√
78 0

5
18

√
5 − 7

351

√
390 0

 D̃−1 =


0 0 0

299
6912

− 2231
134784

√
78 − 23

1920

√
5

13
18

√
5 − 97

351

√
390 −1



D̃0 =


1
12

√
78 −1 0

299
6912

2231
134784

√
78 − 23

240

√
5

−13
18

√
5 − 97

351

√
390 0

 D̃1 =


1
12

√
78 1 −1

6

√
390

115
6912

161
134784

√
78 − 23

1920

√
5

− 5
18

√
5 − 7

351

√
390 1


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The smoothed scaling and wavelet filters in Equation (11) corresponding to Figure 2 for the same
values are determined by Equations (7) and (8) and have the values

C̃+
−2 =


0 − 5

1404

√
78 0

0 0 0

0 5
312

√
78 0

 C̃+
−1 =


−1

8
265
1404

√
78 − 7

18

0 0 0

1
16
− 5

312

√
78 1

2



C̃+
0 =


1
2
− 265

1404

√
78 0

0 −1
9

0

0 − 5
312

√
78 1

 C̃+
1 =


−1

8
5

1404

√
78 7

18

0 −1
9

− 1
18

√
78

− 1
16

5
312

√
78 1

2



D̃+
−2 =


0 0 0

0 161
269568

√
78 0

0 7
702

√
390 0

 D̃+
−1 =


0 0 0

− 23
7680

2231
269568

√
78 23

4320

− 1
20

√
5 97

702

√
390 4

45

√
5



D̃+
0 =


0 1

2
0

− 23
960
− 2231

269568

√
78 0

0 97
702

√
390 2

5

√
5

 D̃+
1 =


− 1

24

√
78 −1

2
0

− 23
7680

− 161
269568

√
78 − 23

4320
1
20

√
5 7

702

√
390 4

45

√
5


The roughened scaling and wavelet filters in Equation (15) corresponding to Figure 3 for the same

values are determined by Equations (12) and (13) and the matrices C−k and D−k have the values

C−−2 =


− 7

240
1

960

√
78 − 7

240

0 0 0

7
240

− 1
960

√
78 7

240

 C−−1 =


−3

8
31
960

√
78 − 1

15

0 0 0

3
8
− 31

960

√
78 1

15



C−0 =


217
120

− 31
960

√
78 0

2
9

√
78 −1

3
2
9

√
78

0 − 31
960

√
78 217

120



C−1 =


−3

8
− 1

960

√
78 1

15

0 −1
3

−4
9

√
78

−3
8
− 1

960

√
78 1

15

 C−2 =


− 7

240
0 7

240

−2
9

√
78 0 2

9

√
78

− 7
240

0 7
240


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and

D−−2 =


0 0 0

−14
23

1
46

√
78 −14

23

− 7
480

√
5 1

1920

√
390 − 7

480

√
5



D−−1 =


0 0 0

−180
23

31
46

√
78 −32

23

− 3
16

√
5 31

1920

√
390 − 1

30

√
5

 D−0 =


− 5

208

√
78 9

32
− 5

208

√
78

−1052
23

−31
46

√
78 0

0 31
1920

√
390 23

240

√
5



D−1 =


− 55

104

√
78 − 9

32
0

−180
23

− 1
46

√
78 32

23

3
16

√
5 1

1920

√
390 − 1

30

√
5

 D−2 =


− 5

208

√
78 0 5

208

√
78

−14
23

0 14
23

7
480

√
5 0 − 7

480

√
5


B. Proof of Proposition 3.1

Proof. Notice that if f ∈ H1
0 (R+), then f(0) = 0 and limx→∞ f(x) = 0. In addition, every component

of Φk
R+
, Ψk

R+
, Φ̃k

R+
and Ψ̃k

R+
is supported on a finite interval and vanishes at the right boundary point of

its support.
It suffices to verify the relations for j = 0. Let f ∈ H1

0 (R+), we have

P̃R+,0Df =
∑
i,k

〈Df, φiR+,0,k
〉φ̃iR+,0,k

=
1∑
i=0

∞∑
k=0

〈Df, φi0,k〉φ̃i0,k + 〈Df,
√

2φ2
0,0χ[0,∞)〉

√
2 φ̃2

0,0χ[0,∞) +
∞∑
k=1

〈Df, φ2
0,k〉φ̃2

0,k

=
1∑
i=0

∞∑
k=0

〈f,−Dφi0,k〉φ̃i0,k + 〈f,−D(
√

2φ2
0,0χ[0,∞))〉

√
2 φ̃2

0,0χ[0,∞) +
∞∑
k=1

〈f,−Dφ2
0,k〉φ̃2

0,k

For each k ≥ 0,

〈f,−Dφ0
0,k〉φ̃0

0,k = 〈f, φ0,−
0,k 〉φ̃

0
0,k + 〈f, φ0,−

0,k+1〉φ̃
0
0,k + 〈f, φ2,−

0,k 〉φ̃
0
0,k − 〈f, φ

2,−
0,k+1〉φ̃

0
0,k (25)

and

〈f,−Dφ1
0,k〉φ̃1

0,k = 〈f, φ1,−
0,k 〉φ̃

1
0,k. (26)

For each k ≥ 1,

〈f,−Dφ2
0,k〉φ̃2

0,k = 〈f,−2
√

5φ0,−
0,k 〉φ̃

2
0,k = −2

√
5 〈f, φ0,−

0,k 〉φ̃
2
0,k (27)

In addition,

〈f,−D(
√

2φ2
0,0χ[0,∞))〉

√
2 φ̃2

0,0χ[0,∞) = −2〈f, 2
√

5φ0,−
0,0 χ[0,∞))〉φ̃2

0,0χ[0,∞)

= −4
√

5 〈f, φ0,−
0,0 〉φ̃2

0,0χ[0,∞) (28)
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On the other hand,

DP̃+
R+,0

f =
∑
i,k

〈f, φi,−R+,0,k
〉Dφ̃i,+R+,0,k

= 〈f,
√

2φ0,−
0,0 χ[0,∞)〉D(

√
2 φ̃0,+

0,0 χ[0,∞)) +
∞∑
k=1

〈f, φ0,−
0,k 〉Dφ̃

0,+
0,k

+
∞∑
k=0

〈f, φ1,−
0,k 〉Dφ̃

1,+
0,k +

∞∑
k=1

〈f, φ2,−
0,k 〉Dφ̃

2,+
0,k

Since φ0,−χ[0,1] = φ2,−χ[0,1] and φ0,−χ[−1,0] = −φ2,−χ[−1,0] as in Theorem 2.3, then

〈f, φ0,−
0,0 χ[0,∞)〉 = 〈f, φ0,−

0,0 〉 = 〈f, φ2,−
0,0 〉

In addition,

D(φ̃0,+
0,0 χ[0,∞)) = (Dφ̃0,+

0,0 )χ[0,∞) =
(
φ̃0

0,0 + φ̃0
0,0(·+ 1)− 2

√
5 φ̃2

0,0

)
χ[0,∞)

= φ̃0
0,0 − 2

√
5 φ̃2

0,0χ[0,∞)

Therefore,

〈f,
√

2φ0,−
0,0 χ[0,∞)〉D(

√
2 φ̃0,+

0,0 χ[0,∞)) = 2〈f, φ0,−
0,0 〉φ̃0

0,0 − 4
√

5 〈f, φ0,−
0,0 〉φ̃2

0,0χ[0,∞)

= 〈f, φ0,−
0,0 〉φ̃0

0,0 + 〈f, φ2,−
0,0 〉φ̃0

0,0 − 4
√

5 〈f, φ0,−
0,0 〉φ̃2

0,0χ[0,∞) (29)

For each k ≥ 1,

〈f, φ0,−
0,k 〉Dφ̃

0,+
0,k = 〈f, φ0,−

0,k 〉φ̃
0
0,k + 〈f, φ0,−

0,k 〉φ̃
0
0,k−1 − 2

√
5 〈f, φ0,−

0,k 〉φ̃
2
0,k (30)

and

〈f, φ2,−
0,k 〉Dφ̃

2,+
0,k = 〈f, φ2,−

0,k 〉φ̃
0
0,k − 〈f, φ

2,−
0,k 〉φ̃

0
0,k−1 (31)

Finally, for each k ≥ 0,

〈f, φ1,−
0,k 〉Dφ̃

1,+
0,k = 〈f, φ1,−

0,k 〉φ̃
1
0,k (32)

Comparing Equations (25)–(28) with Equations (29)–(32), it is clear that

P̃R+,0Df = DP̃+
R+,0

f

The verification for the W0 case is obvious. Indeed, from the relations in Equation (22), we have

Q̃R+,0Df =
∑
i,k

〈Df, ψiR+,0,k
〉ψ̃iR+,0,k

=
∑
i,k

〈f,−DψiR+,0,k
〉ψ̃iR+,0,k

=
∑
i,k

〈f,−ψi,−R+,0,k
〉ψ̃iR+,0,k

=
∑
i,k

〈f, ψi,−R+,0,k
〉(−ψ̃iR+,0,k

)

=
∑
i,k

〈f, ψi,−R+,0,k
〉Dψ̃i,+R+,0,k

= DQ̃+
R+,0

f
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