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Abstract: We use the biorthogonal multiwavelets related by differentiation constructed in
previous work to construct compactly supported biorthogonal multiwavelet bases for the
space of vector fields on the upper half plane R? such that the reconstruction wavelets
are divergence-free and have vanishing normal components on the boundary of R?. Such
wavelets are suitable to study the Navier—Stokes equations on a half plane when imposing a
Navier boundary condition.
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1. Introduction

Wavelets have proved useful for the numerical analysis of an incompressible flow fluid that can
be modeled by the Navier—Stokes equations. The incompressibility requires the wavelets to be
divergence-free, at least in dimension three or greater.

Battle and Federbush [1] first constructed an orthogonal basis of divergence-free wavelets for the
space of divergence-free vector fields on R". The Battle-Federbush divergence-free wavelets are
globally supported, and therefore unsuitable for numerical analysis on domains with boundary. It
was shown by Lemarié that if a continuous divergence-free wavelet basis is orthogonal, the wavelets
cannot be compactly supported [2]. Lemarié [3] also showed that this obstacle does not necessarily
arise in the biorthogonal case. He used the existence of biorthogonal MRAs related by differentiation to

construct compactly supported divergence-free wavelets. Lemarié’s method can be extended to higher
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dimensional spaces by using tensor products of univariate functions. His approach was then modified and
extended in various works by Urban [4,5]. Those divergence-free wavelets have been used effectively
for the numerical simulation of the Stokes equations on rectangular domains [6], and for the analysis of
incompressible turbulent flows [7].

A velocity field ' defined on a domain 2 C R? is said to satisfy Navier boundary conditions if
¥-1=0and 2D(¥)7 - T+ av -7 = 0 on OS2 where D denotes the strain tensor D(v) = [V&+ (V5)T]/2
and 77 and 7 are the unit normal and tangent vectors respectively. We will call the condition v - 7 = 0
the vanishing normal boundary condition. When () is the upper half plane R, 7 = €; and 7 = —¢é)
where €] and é, are the standard basis vectors. The study of the Navier—Stokes equations on half spaces
with the Navier boundary condition remains a field of intensive research, e.g., [8]. Here we will adapt
Lemarié’s technique to provide a construction for a multiwavelet basis of the divergence-free vector fields
on the upper half plane ]Ri that satisfies the vanishing normal boundary condition using the biorthogonal
multiwavelets on R introduced in [9]. This approach can easily be extended to higher dimensions, but
we will work exclusively in R? to minimize notational complexity.

Strela’s two-scale transform [10] plays a crucial role in extending Lemarié’s divergence-free
construction to multiwavelets by providing certain commutation relations between oblique MRA
projections and differentiation under suitable conditions on Strela’s transition matrix. To carry out the
construction on the upper half plane R?, it is necessary that the wavelet bases of L?(R, ) adapted from
those of L?(R) are also related by differentiation and inherit the commutation relation between oblique
projections and differentiation. These constraints plus the vanishing normal boundary conditions force
the wavelet bases of L?(R) to have an appropriate combination of biorthogonality, symmetry, regularity,
support and boundary behavior. We will see that this can all be accomplished using the biorthogonal

multiwavelet bases of L?(R) constructed in [9].

2. Biorthogonal Multiwavelets of L*(R)

We review here in some detail the construction of biorthogonal multiwavelets related by
differentiation introduced in [9]. The main tools for the construction are fractal interpolation
functions [11] and Strela’s two-scale transform [10].

2.1. Some Preliminaries

Denote by V, = V(®) the L?-closure of the finite shift invariant space spanned by the integer
translates {¢'(- — k) : i = 0,...,7 —1; k € Z} of ¢*,...,¢", and let ® denote the vector function
¢ = (¢',...,¢"). Itis standard to denote V; = {f(27) : f € Vo}. If Vi C V; then @ is called a
scaling vector. If, in addition, N;czV; = {0}, UjezV; = L?(R), and the integer shifts of ¢, ..., ¢,
form a Riesz basis for V;, then the nested family {V;},cz is called a multiresolution analysis of L*(R)
of multiplicity 7.

The vector function ® = (¢°,... ¢ ') is called a scaling vector and is said to generate the

multiresolution analysis {V}. ® satisfies a matrix—vector dilation equation

d(x) = % > (22 — k) (1)

keZ
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for some sequence of r x r matrices (Cy), called scaling coefficients.
We define the Fourier transform of a function f € L'(R) by

ﬂww=/ff&miWﬁ

Taking the Fourier transform of the dilation Equation (1), we obtain

b(w) = H(%)@(%) H(w) = % Y Cre )
kEZ

in which A is an r X r matrix of 27 periodic functions, called a scaling filter; in addition
$=[0d ... g,

A vector function U = (¢°, ... 9" 1) is called a multiwavelet associated with the scaling vector ® if
the integer translates {¢)'(- — k) : k € Z} are linearly independent and

{¢"(-—k):i=0,....r =1L, ke ZYU{'(-—k): i=0,....,r—1; k€ Z}
is a Riesz basis of ;. Let W; be the closed linear span of {¢)*(2/ - —k): i =0,...,7—1; k € Z}. Then
Vil =V; & W

where the symbol & denotes the internal direct sum, not necessarily orthogonal. The wavelet vector ¥
can be represented by the following equation

1
V() =3 > Dy®(2z — k) 3)
kEZ

for some sequence of r x r matrices (Dy), called wavelet coefficients. In the Fourier domain,
T W\ =2 (W 1 —ikw
B(w) = F(§)®<§>, F(w) = 5%1),@

where F'is an r X r matrix of 27 periodic functions, called a wavelet filter.
The scaling functions and wavelets will have finite support if and only if there are finitely many
non-zero coefficients C}, and Dy,.

A multi scaling function ®(t) is said to have approximation order m if each polynomial #/,

j=0,...,m—1,is a linear combination of integer translates ®(t — k) :
t = Zy,&j)@(t — k) ae.
keZ
for j =0,...,m — 1, where the y;’s are constant row-vectors of length 7.

We say that a pair of vector functions ® = (¢°,...,¢" ") and ® = (¢°,..., ¢"") is biorthogonal if

(@, (- — 1)) = 6360,

forall 4,7 = 0,...,7 — 1 and [ € Z, where (,) denotes the usual inner product in L*(R). If the
MRAs {V;} and {V;} are generated by the scaling vectors ® and ®, respectively, then {V;} and {V;}
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are said to be a pair of biorthogonal MRAs if ® and P are biorthogonal. If ¥ = (¢°, ... ¢"1) and
U = (1;0, ceey &T_l) are the multiwavelets associated with the scaling vectors ® and ® respectively, then
¥ and U are biorthogonal multiwavelets if

(@' (= 0)) = (" (- —1)=0 and (@ (- —1)) = 00

fori,j = 0,...,r —land [ € Z. In this case, V; L. W and V; L W,. If & = (¢°,... ,4""!) and
U = (¢°,... ¢"1) are biorthogonal multiwavelets then for f € L2(R),

r—1 r—1
F= D (L= > (fulav,
Jyk€Z;i=0 g,k €Z;i=0

2.2. Biorthogonal Multiwavelets from Fractal Interpolation

The parametric family of biorthogonal wavelets described here uses ideas similar to those developed
by Massopust [12]. Let

up(z) = (1 —x)xp1(x), wi(z)=2zxp1(z), and g¢(z) = uo(z)ui(z)
Fix s € (—1,1). The unique solution w(z) = w; of the inhomogeneous equation
w(x) = q(2z) — ¢(2x — 1) + sw(2z) + sw(2x — 1) 4)

is called a fractal interpolation function. We will denote @ = w; for a certain related value § € (—1,1).

Define ~
v = u; — <U),UZ~>'(U . <q7ul>q7 i = 07 1
(w, W) (¢,q)

and let v; be defined in the same way with w replaced by w. Set

Yo ifz €[0,1]
¢’ =aq, ¢'=puw, ¢*=
yoi(-+1) ifx e [-1,0)

and define ¢, i = 0, 1,2 in the same way with v; replaced by v; and the normalization parameters «, (3, 7y
replaced by corresponding parameters &, 8, 5. Set ® = (¢°, ¢!, ¢?) and

V; = clp2(w) span {¢"(27 - —k): i=0,1,2; j,k € Z}

and define ® and f/J similarly. We proved in [9] that

1425

Theorem 2.1. For —3 < 5 < 0and s = 5555,

1. {V;} and {V;} form a pair of biorthogonal MRAs of L*(R).

2. & and O are piecewise C* biorthogonal multiscaling functions. Their components ¢°, q;o are
supported on [0, 1] and symmetric about 1/2; ¢, @' are supported on [0, 1] and antisymmetric
about 1/2; ¢, $* are supported on [—1,1] and symmetric about 0.

3. ® and ® have approximation order 3.
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Let H and H be the scaling filter of ® and D, respectively. As in [9], to construct biorthogonal
multiwavelets related by differentiation via Strela’s two-scale transform, one needs H (0) and H(0) to be
symmetric. For this reason, we chose o = a = V30, 0= B =4/260/9,v =7 = /6.

The biorthogonal scaling vectors ® and ® are represented by the scaling equations

1 1
1 - 1 -~
b(z) = 5 > Co2r—k), ()= 5 > Cud(2x — k) (5)
k=—2 k=—2
The biorthogonal multiwavelets U = (4°,¢!,¢?) and U = (¢°, 4", 4?) associated with the
respective scaling vectors ® and ® are represented by corresponding equations

W(z) = % S Deb(r— k), U(r) = % S Db (20— k) ©)

k=—2 k=—2

With appropriate choice of coefficients the multiwavelets are also supported on [—1,1] and possess
corresponding symmetry properties. The scaling coefficients and wavelet coefficients for the parameter
choices s = —1/6, § = —2/9 can be found in Appendix A. The components of the scaling and wavelet
vectors are plotted in Figure 1.

Figure 1. Scaling vectors ® (solid) and P (dashed) and multiwavelets ¥ and \i/, s =—1/6.
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2.3. Biorthogonal Multiwavelets via Strela’s Two-Scale Transform

Strela’s two-scale transform is a method to derive a new scaling filter from a given scaling filter by

a transform H°(w) — H™%(w) = M (2w)H(w)M ' (w) in which the relative properties of F°
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and H™" are encoded in the transition matrix M. Strela proved that if det M is linear in e with a
unique zero at w = 0 and if the kernel of M (0) is the 1-eigenvector of H°'4(0) then the scaling vector of
H™" will have one more order of approximation and regularity than H°'¢ has. Using Strela’s two-scale
transform [10], we obtained in [9] new biorthogonal multiwavelets related by differentiation to the ones
we constructed from fractal interpolation functions, as explained below.

2.3.1. Smoothing Procedure

The transition matrix and two-scale transform filter

1+ev 0 =245
ﬁmw):%M(zw)ﬁ(w)Ml(w); M=| 0o 1 o0 %

have the properties just indicated. H *(w) then is the filter of a new scaling vector ®+ having one
more approximation order and regularity than the original scaling vector $ whose components appear in
Figure 1. By Theorem 2.1, & is piecewise C? and has approximation order 4. One associates to ®* the
multiwavelet vector U+ defined by the filter F* defined by (see Lakey and Pereyra [13])

Urw) = FH(2)a+(2); Prw) =~

5 5 F(w)M ™ (w) (8)

1
2
where F is the filter of the multiwavelet U derived from Equation (6).

The transition matrix M induces an operator symbol matrix

I+S71 0 —2V51
Ty = 0 I 0 )
I-510 0
Here I denotes the identity operator and S is the shift operator Sf = f(- —1),s0 S7'f = f(- +1). We

proved in [9] that the smoothed scaling vector and the associated multiwavelet are related to the original
ones by the following differentiation relations

DT =T),,9, DYt = - (10)

where D f denotes the distributional derivative of f. The components ¢* and ¢/**, i = 0,1,2 of &+

and U™ satisfy the following.
Theorem 2.2. [9] Let & and U be defined as above. Then

1. The components of Ot and Ut are piecewise C? and have approximation order 4.

2. ¢t is supported on [—1, 1] and antisymmetric about 0; o> is supported on [0, 1] and symmetric
about 1/2; ¢* is supported on [—1, 1] and symmetric about .

3. %" is supported on [0,1] and antisymmetric about 1/2; """ is supported on [—1,1] and

antisymmetric about 0; 7;2“’ is supported on [—1, 1| and symmetric about 0.
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The smoothed scaling and wavelet filter matrices have the form
1 ¢ 1 ¢
rT+ _ N+ —ikw [+ _ A+ —ikw
H"(w) = 3 kzg_Q Cle and F"(w) = 5 ké_Q D/e (11)

with values determined by Equations (7) and (8). The matrices C,j and D,j corresponding to the
parameter choices s = —1/6, § = —2/9 are given in Appendix A. The components of the smoothed
scaling and wavelet vectors are plotted in Figure 2.

Figure 2. Smoothed scaling vector ®* and multiwavelet U

Scaling function #0 Scaling function #1 Scaling function #2

1
0.4 0.8

0.5
0.3 0.6

0
0.2 0.4

-0.5
0.1 0.2

-1
0 0

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Wavelet function #0 Wavelet function #1 Wavelet function #2

1.5 15
1 0.5 1
0.5 0.5
0 0 0
-0.5 -0.5
-1 -0.5 -1
-1.5

-1.5

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

2.3.2. Roughening Procedure

Following Strela, the scaling vector @~ of the filter 4~ defined by
—1l—ew 0 —14eWw
H (W) =2N"'2w)H(w)N(w); N(w) = —M*(w) = 0 ~1 0 (12)
25 0 0

has one less approximation order and regularity than the old scaling vector ®. Hence, &~ is piecewise
continuous and of approximation order 2. An associated multiwavelet ¥~ can be defined by (see Lakey
and Pereyra [13])

() = F~ (g)q? (g) F~(w) = 2F(w)N(w) (13)
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It can also be verified that, with 7 the symbol matrix corresponding to /N as in Equation (9), the

roughened and original scaling vectors and multiwavelets are related by

DO =Tyd, DV = v~ (14)
Denote by ¢*~ and 1>, i = 0, 1, 2 the components of ®~ and ¥~ respectively.
Theorem 2.3. [9] Let &, Cifr, U~ and U+ be defined as above. Then, in the exact order given, a

component of ®~ or U~ and the corresponding component of ®* or Ut have the same support and

symmetry. In addition,

¢O’_X[o,1} = ¢2’_X[0,1] and ¢0’_X[71,0] = —¢2’_X[71,0]

The values of the coefficients C,. and D, of the roughened scaling and wavelet filters

2 2
_ 1 — —ik - 1 — —ik
H(w):EZC’ke“" and F(W):gszelw (15)
k=-2 k=—2
with the same parameter values s = —1/6, § = —2/9 are determined by Equations (12) and (13) and
are given in Appendix A. The components of the roughened scaling and wavelet vectors are plotted in
Figure 3.
Figure 3. Roughened scaling vector @~ and multiwavelet W™
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Theorem 2.4. [9] The scaling vectors ®* and ®~ generate a pair of biorthogonal MRAs of L*(R). In
addition, Ut and U~ are biorthogonal multiwavelets.

The old and new biorthogonal multiwavelet bases of L?*(R) satisfy commutation relations between
oblique MRA projections and differentiation. The commutation relations are crucial in the construction
of divergence-free wavelets on R2 .

Denote the oblique projections ]5j and 15]* from L?(IR) onto the respective approximation spaces f/J
and V;" by

Pif =Y ([ b BEF=) (f 050000 (16)

Define the oblique projections @j and Qj from L?(R) onto the corresponding detail spaces Wj and

+ . .
W, similarly,

Qif =D (f )0, QFf =) (ful)dh (17)

Notice that for a fixed value x € R, the sums in Equations (16) and (17) are finite sums with respect
to k due to the finiteness of the support of the scaling and wavelet functions.

Proposition 2.1. [9] For f € H'(R), the following commutation relations hold
P;D=DPf,  Q;D=DQf
3. Divergence-Free Multiwavelets on R?

To construct divergence-free multiwavelets on the upper half plane R?, we first need to adapt the

biorthogonal multiwavelets related by differentiation on R to the half line R, .

3.1. Biorthogonal Multiwavelet Bases of L*(R )

We construct a pair of biorthogonal multiwavelet bases of L?(IR, ) using the original multiwavelet
systems (®, U), (&, ¥) and the derived systems (&1, ¥t), (d~, W) of L*(R). Divergence-free wavelets
satisfying vanishing normal boundary conditions can then be constructed through tensor products from a
basis of L?(R_.) generated from the smoothed multiwavelet system (&, ") vanishing on the boundary
of its support.

Our procedure for constructing biorthogonal multiwavelet bases of L*(R,) adapted from those of
L?(R) can be described as follows:

e Keep the functions that are originally supported on [0, o),

e For the functions belonging to the original biorthogonal systems of L?(R) whose support straddles
the boundary point 0, truncate the symmetric ones to [0, co0) and normalize them by /2, and shift
the antisymmetric ones to [0, co).

e For the functions belonging to the smoothed and roughened systems of L?*(R) whose support
straddles the boundary point 0, truncate the antisymmetric ones to [0, co) and normalize them by
/2, and shift the symmetric ones to 0, 00).
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Precisely, for j, k£ > 0, we define

V2¢% X ifk=0

Gp, ip =0, fi=0,1,  ¢p, .= (18)
R+a.7ak Jvk R+’]7k ?7k lf]{: Z 1
and
v e ifi=0 L ﬂiﬁ},mo,m) ifk=0 (19)
o Wiy 00 =2, o ! ith>1

Use the same formulation for ggﬁg% ;. and zﬁﬁ'h’ i Let
Vi(Ry) = clpa,y span{ ¢, ;5 1 i =0,1,2; j,k > 0}

Wi(Ry) = clpae,yspan{tg, 0 i =0,1,2; j, k> 0}
and similarly for f/j(RJr), Wj(R+) in terms of g)ﬁhmk’ zﬁ]}'§+7j7k, respectively. We obtain a pair of
biorthogonal MRAs {V;(R,)} and {V}(R,)} of L*(R,) such that
Vin(Ry) = Vi(Ry) & W;(R4), Vin(Ry) = V;(Ry) @ Wy(Ry)

and , just as in the case of the whole real line,

LA(Ry) = Vo(®y) D W, (R,) = Th(Ry) D W, (R,)
>0 3>0
We perform a similar procedure for the construction of the biorthogonal multiwavelet bases of L?(IR )
generated from the new systems (&, U*) and (®~, ¥~) of L?(R) except that the roles of symmetric
and antisymmetric components whose support overlaps 0 are switched. Explicitly, for j, £ > 0, let

¢ q;;:;: ifi = 70,+ o \/_ ¢] k X [0,00) ifk=0 (20)
Redk = Sty ifi=2, I ifhk>1
and
i ifi= - V24953 Xpee) iR =0
wR‘F]k 71,4+ e - R+7j7k - 71,4+ . (21)
wjjkﬂ if7 = , wj;k if k& >1

We define similarly for gzﬁfé; ;1 and wﬁgl - Let
f/j.*(]RJr) = clem,) span{éﬁg’j’k :1=0,1,2; j,k > 0}

W (Ry) = clpa,) span{epg’ ;i =0,1,2; 5,k > 0}

and similarly for V" (R ), W; (R, ) in terms of qﬁﬁé; ik 1[)%3; i.»» Tespectively. We get another pair of
biorthogonal MRAs {V;* (R, )} and {V;” (R)} of L*(R.) such that

VinRy) =V Ry @ WS (RL), Vin(Ry) =V (Ry) @ W, (Ry)

and
L(Ry) = V5" (R P W;H(Ry) = Vi (Ry) D WS (R)

7=>0 720
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To adapt the differentiation and integration relations between the scaling vectors and multiwavelets
on R to ones on R, we separate the scaling vectors and multiwavelets on R, into boundary and interior
components. We define the boundary scaling vectors and multiwavelets, which correspond to the integer

translate k = 0, as follows

oY =[on, oh, op ) =1[8" &' V26 xpe0)"

\IIEI]M WIM wﬂlh wHZM]T - [wo \/§¢1X[0700) wz( - 1)]T

QL =[0I G871 =[V20" e 6 S -1

\i,]%j [ 0+ 1/;]11@1 éij]T — [1/;0,+ \/51;1,+X[0700) 1;2,+(, _ 1>]T

We define &)?R+, @%w @%: and \D%’ similarly to &g, Ug (fl%j_r and \Tfl%’j_r, respectively. The interior

components, formulated as below, are the scaling vectors and multiwavelets on R, with the integer
translates £ > 1, which live completely inside [0, c0). Let

(I)]R+ [¢R+ 0,k Cb]%h,o,k Qﬁh,o,k]T = [¢8,k Cb(l),k ¢(2),k:]T
k
\IIRJr W’J}h 0,k @/)]%h 0,k wﬂzh 0 k]T = [@Dg,k ¢é,k @bg k+1]T
k,+ 70,+ 71,4+
(bRJr [ ]R+ 0,k ¢R+ 0,k ¢R+ 0, k] - [ 0,k 0,k ¢0 k+1]
= [

70,4+ 1+
]R+Ol~c 1/)R+0k ¢R+0k] = [ 0,k 0,k %k+1]

and similarly for <i>f§+, ﬁfﬂ’fh, @%’; and \Ifllfh_
From Equations (10) and (14), and Equations (19) and (21) the multiwavelets on R, inherit the same
differentiation and integration relations as the multiwavelets on R. Precisely,

DUyt = —Tf | DUy, =Wy~ (22)

for both interior and boundary components £ = 0 and £ > 1.
The boundary and interior scaling vectors on R are less straightforward. From Equations (9) and
(10) and Equations (18) and (20) that define the scaling functions on R, we obtain

DYT =Ty, 0%, and DOGT =Ty, F (k=1 (23)
for the respective boundary and interior scaling vectors, where
V21 0 =251 I+5 0 =251
Ty, = 0 I 0 and Ty, = 0 1 0
S—1 0 0 S—1 0 0

To establish an analogue of Proposition 2.1 on R, we define oblique projections P R 15@’ ; from
L?(R,) onto the respective approximation spaces V;(IR. ) and f/j*(RJr) and Qg, Q@ ; from L*(R,)
onto the corresponding detail spaces 1; (R ) and V~V]-+(R+) as follows:

Progf = Y (F 0k ja)0bgw Pyl = Zf’%wk o
ik

Qﬂh,jf = Z<fa wﬁ'h,j,k)&ﬁ@,j,ka QR+]f Z f wﬂh]k wR+Jk

ik
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For an interval 2 C R, possibly unbounded, the Sobolev space H'(2) is the Hilbert space defined by

HY(Q) ={feL*(Q): Dfe >0}, [Iflling = 11720 + 1Dz

Define
Hy(Q) = el C2(Q) (= el C(9))
where C!(Q) is the space of continuously differentiable functions compactly supported in 2. Note that
if f € H'(Q) then f € H}(Q) if and only if Df = 0 on 99 .
Proposition 3.1. On the Sobolev space Hj(R.), the following commutation relations hold
Pp,;D=DPF ., Qr,;D=DQ}_;

The proof of Proposition 3.1 can be found in Appendix B.

3.2. Construction of Divergence-Free Multiwavelets

The following are some basic notions of flux spaces and divergence-free vector fields. Denote
R2 = {(z.y) €R*: y >0}
the upper half plane, and
LR ={F=(F,F): Fecl*R%),i=12}
The divergence operator V : L*(R%)? — L*(IR?) is defined as usual by
- O0F O0F,
VF = — + —
ox * dy
where the partial derivatives are understood in the distributional sense. The divergence operator induces
the flux space
H(div,R?) = {F € [*(R2)?: VF € [}(R?)}
and its divergence-free subspace
H(div,R?) = {F € H(div,R?) : VF =0}
The two spaces of vector fields are Hilbert spaces under the norm
||FH§{(div,R§r) = ||F||%2(R3)2 + ||VF||2L2(R1)
where

2
1E 2z 2 = D IEl 22
=1

We have found biorthogonal multiwavelet systems related by differentiation for both L?(R) and
L*(Ry) so that the commutation relations between oblique projections and differentiation are all
satisfied. We are now able to construct a wavelet basis for the vector space H°(div,R?) satisfying
the vanishing normal boundary condition ¥ - 77 = 0, where 77 = —éj is the unit outward normal vector to
the boundary axis {(z,0) : = € R}.

We have utilized many notations so far. To avoid confusion, we recall the notations and relations that

are necessary for the construction.
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e Biorthogonal scaling vectors (®, ®) and (&, ®~) and wavelets (¥, ¥) and (U+, U~) on R,
related by Equation (10).

e Biorthogonal boundary scaling vectors (®F, @%J and (i)]%j, @%;) and wavelets (U3, \i/]?h)
and (\If?jo, \If?Rg;) on R, related by related by Equations (22) and (23).

e Biorthogonal interior scaling vectors (®f,, @k )and (éﬂz’j, @%’;) and wavelets (U5, Uk ) and
(\If]%:“, \I/Hk{’;), k > 1 on R, related by Equations (22) and (23). These multiwavelet systems
establish the commutation relations as in Propositions 2.1 and 3.1.

Our construction of biorthogonal bases of compactly supported multiwavelets on ]Ri such that the
reconstruction wavelets are divergence-free will be divided into the following steps.

Step 1. Compose biorthogonal multiwavelet bases in L*(R?.) by tensor products.

We use the standard basis vectors €; = (1,0) and &> = (0, 1) to index a smoothing direction for tensor
wavelets on R :

ViR = VO R = VN R) @ V(R4
V2 (RE) = VPV (RE) = Vi(R) @ V;F(Ry)
Wi (R2) = [V (R) ® W;(R,)] & [W; (R) ® V;(R,)] & [} (R) @ W;(R.)]
W (RY) = [V;(R) @ W, (Ry)] @ [;(R) ® V' (Ry)] @ [W;(R) ® W (Ry)]
Then
R?) = Vi O ®2) P WO R = v (R @ (RY) (24)

Similarly, we use negated standard basis vectors to index roughening directions for dual tensor scaling
and wavelet spaces on R :

VAR = VITORY) =V (R) @ Vi(Ry)
Ve (RY) = VOTU(RE) = Vi(R) ® V(R

W RY) = [V (R) @ Wj(RL)] @ W) (R) @ V;(Ry)] & W) (R) @ Wj(R,)]

J J

W%(RL) = Vi(R) ® Wy (Ry)] & [Wy(R) ® Vi (Re)] @ W;(R) © Wy (R4)]

The decomposition corresponding to Equation (24) holds for the respective indices —e; and —é5.

We define the boundary generators of Lz(Ri) to be components of the matrices

&1 1,0 T, T, . €1 _ -1,0 A\

05 (2,y) = D50 (@ y) = O (2) 708, (y): Tp5 (2y) = D5 (@, y) = U (2)7 0 (y)
€ 170 T, T —é - 70 -

L5y (2, y) = T3 (2,y) = U (@) 7Y (y): Tp5 (2,y) = Thy(x,y) = U~ (2)70Y, (y)
e1 1,0 T T, . P—¢€

T8y (2,y) = 53 (2,y) = &+ ()79, (y); T ®

Here ng} is biorthogonal to Fgfy, that is, f f Fgfj (Fgl)aT,l, = d,.,1. We have another set of boundary
biorthogonal generators of L?(IR?) given by
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T2 (x,y) = T (2,y) = W) 05T (y); To(e,y) = T55 (e, y) = W(2)T0y (y)
2 0,1 = 4 = 0,—1 _

Ty (z,y) = Thy (z,y) = (@) 0% (y); To5(x,y) =Thy V(z,y) = U(2) Y (1)
& 0,1 3 T . €2 0,—1 — -

T2, y) = Ty (2.y) = &) T IR (y); T2 (x,y) =Ty Vay) = o(2)T 0y ()

We define similarly biorthogonal interior generators of L?(IR?): (Ff&t,g, Fi;f}) and (Fifw, F;fj),
¢ = 1,2, 3, where each boundary scaling vector or multiwavelet is replaced by the corresponding interior

one. For instance,
& 1,0 = =
I (@y) = TRl (z,y) = U (2) 0, ()

Along with the boundary generators, they constitute two biorthogonal bases of L?(IR?) as listed below:

1. T, Tfh , with the duals T, ¢, T} €= 1,2,3
2. I'%,, Ti% , with the duals T2, [ %: ¢ = 1,2, 3.

nt

Step 2. Compose biorthogonal bases of L*(R?)* componentwise.

The biorthogonal bases of L*(R%) induce biorthogonal bases of L?(R?)? componentwise. In
fact, {I'G}, €1, Ik, €1, T2 éh, T2, )13 with the dual components {I';5 é1, T}, éy, I') é,
[;.72 €} o123 form biorthogonal bases of L*(R%)2. The following is the list of the boundary matrix
generators. The interior generators and their duals are formulated similarly using the appropriate

substitution of the boundary vector by the interior vector. Explicitly,

Lo (z,y)ér = (U ()" 0% (),0); Tp0(z,y)ér = (U (2)" ¥ (y),0)
Doy (z,y) e = (U ()" 0p, (1),0); Tp5 (z,y) & = (¥ (x) D, (),0)
Tos(a,y)ér = (% ()"0, (y),0); T8 (x,y)é1 = (@ (2)"¥Y, (1),0)
T3 (z,y) & = (0, 0(x) 0yt (y); T2 (@) & = (0,¥(2) Ty (1))
T2, y) & = (0, ¥(2) B (1)); Tp% (x,y) & = (0, ¥(2)" Y, (y))
D% (2,y) & = (0,2(2) VT (y)); T3 (@,y) & = (0, (2) g (y))

Step 3. Compose the biorthogonal bases in H°(div, R2).

We can obtain a biorthogonal basis in H°(div, R?) from the linear combinations of the vector fields

listed above and their integer translates. The following are the reconstruction boundary multiwavelets of

the basis:
Toa(ay) = (U @) B, (), —¥()" B3 ()
Toa(w,y) = (V@) Tay 88, (1), ¥(@)" B ()
Toala.y) = (&% (@) B4, (), T, @) U5 ()
Because each component of é]%j and of \i/?jo vanishes continuously at ¥y = 0, these boundary

multiwavelets satisfy the vanishing normal condition, that is, their normal component vanishes

continuously at the boundary.
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We formulate the reconstruction interior multiwavelets ‘ijim’g, ¢ = 1,2,3 similarly, where T}, and
the boundary component are substituted respectively by 7}, and the corresponding interior component.
For instance,

—

Wina(2,y) = (U (2)" Tag, P, (), V()" O (y))

The vectors \f’a’g and lflim,g, ¢ = 1,2,3, belong to the divergence-free vector space H 0(div,]RfL)
because of the commutation relations between oblique projections and differentiation on both R and
R, specified by Propositions 2.1 and 3.1. We prove below that the reconstruction wavelets \T/a,g and
\f[im,g, ¢ = 1,2,3, constitute a basis for H O(diV,Ri). Their biorthogonal duals, which serve as the
decomposition wavelets, are

Uoi(z,y) = (¥ (x)" UL, (y), 0)
Tyo(z,y) = (0, T(x)" o (y))
Uos(z,y) = (€ (z)T TR, (). 0)

for the boundary components. The interior components \i}im’g, ¢ = 1,2,3, are defined similarly.
For instance

\I_}im,l(fray) = (\P_(‘r)T \IJI%&JF (y)v O)

Notice that the decomposition multiwavelets are not divergence-free.

Theorem 3.1. For ' € H%(div,R?), the expansion of F in terms of {(T', re é'p, Fiftj “€p)s (ngp :

—

€p, Fl;fz €): p=1,2; 0 =1,2,3} agrees with its expanszon in terms of{(\Ifa 0 \Ilm,,g), (Toe, Uinre) :
¢ = 1,2,3}. Thus, the translates and dilates of {(\I/a ‘, \Ifmt,g) : 0 = 1,2,3} form a basis for the

divergence-free subspace of LZ(Ri) whose boundary components satisfy the vanishing normal

boundary condition.

Proof. Tt suffices to verify the boundary case. One shows that if a vector field lies in the divergence-free
subspace, then its expansion in terms of a complete set of vector wavelets for L?(IR?)? agrees with its
sum of its components in the divergence-free wavelets.

Let F = (I, F>) € H°(div, R%). Its boundary expansion in terms of the biorthogonal bases {(F?:e :
€, Fifi”t7£~€p), (Fazp €, mez €,): p=1,2; £=1,2,3}, of L*(R?)? is represented by the six following
vector fields and the components of their shifts and dilates:

Ay = (Fi(z,y), U (2)" 0 () (T (2)" L, (y),0)
Ay = (Fi(z,y), U (2)" 0% (1) (T (2)" L, (y),0)
Az = (Fi(z,y), @ (z)"05 () (2 (2)" g, (y),0)
Ay = (Fy(w,y), W(x) Wy (1)) (0, U (2) g (y))
As = (Fy(x,y), ¥(2)T®5 (1)) (0, U (z) 0T (y))
Ag = (Fy(z,y), ®(x) U5 (1) (0, &(2) U5 (1))
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On the other hand, the boundary expansion of F' in terms of the divergence-free wavelets
{(\ifab \ifim,g), (\173,@, \I_}im’g) : ¢ = 1,2,3} is represented by the following fields and the components
of their translates and dilates:

By = (Fi(z,y), ¥ (2) W, () (T (2)" g, (y),0)
By = (Fi(z,y), ¥~ (2)" 0%, (1)) (0, —¥(2)" TyT)

Bs = (Fy(z,y), U(z) % () (U ()" Thy, D, , 0)
By = (Fy(w,y), () 05 () (0, () 05T (v))

Bs = (Fi(z,y), o (2)" Wy, () (&7 (x)" V3, (y),0)
Bs = (Fi(z,y), 0 (2)" W, (1)) (0, Tar, ®(2) " U7 (1))

Under the hypothesis that F' is divergence-free, we show that Zf’:l A= 2?21 B;. By definition, we
have A, = By, A3 = Bs and A5 = B,. Using the differentiation relations between the scaling vectors
and multiwavelets on R and R, and the commutation relations in Propositions 2.1 and 3.1, we show
that Ay = B3, Ay = By and A64: Bg

Since the y-coordinates of \ifag are equal to O for / = 1,2,3, we can assume that F(z,0) = 0.

Furthermore, all scaling and wavelet functions on R vanish on the boundary of their support. Thus,

(Fule, ). ¥() W (1) = (Fa V(o) DY, () = (=5 Fo W) 02, )

_ <% Fu W)W, (1)) = (DU (@)™ (1)
= (F, =V (2)" Wy, (1))

This implies Ay = Bs. In addition,

By = (Fy(z,y), W(x) g () (U (2) Ta, B, , 0)
= (B, V()" () (W (2)" DD, 0)
9 )T +(2)T
_ <a—yF2,\I/( Y, (y >( 2)7®Y,0)
0 T 0 T 0
= (g ¥ O () (¥ ()88 0)
= (F1, D¥(x )T<I>%+( )>(¢’ ()" P, ,0)
= (F}, 0 ()" g (1)) (V" (2)" 05, ,0) = 4,
The verification for Ag = Bg is similar. ]

Each one of the divergence-free multiwavelets \i’a,e, \i!im,g, ¢ = 1,2, 3, consists of nine components.

Figure 4 plots some of the components of \Tfinm.
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Figure 4. Some components of Wiy ;.
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The boundary constraints and desire for short supports suggest

We have constructed vector wavelet families on the upper half plane ]Ri such that the reconstructing

wavelets are divergence-free and piecewise C* and form a basis for the closed subspace H"(div,R?).
In contrast to previous constructions, the boundary components satisfy a vanishing normal boundary

the use of wavelets built on fractal interpolation functions. To build in the divergence-free property we
use certain commutation conditions made possible through Strela’s two-scale transform. Because these

wavelets are built via tensor products, analogues can be built in dimensions of three and higher.

condition desirable for applications.

4. Conclusions
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A. Scaling and Wavelet Coefficient Matrices

The matrices C} in Equation (5) under the parameter assignments s = —1/6, § = —2/9
corresponding to Figure 1 in Section 2.2 are
[0 0 0 [0 0 0
C_o= 0 0 0 C., = 0 0 0
| % 5 _Wlom 0 2250\/_ 960\/_O _%
[ I AVB o I RV Vs
Co=| tv8 -1 0 Ch=| —sV18 -1 0
% 5 960 \/ﬂ 1 L ﬁ \/3 ﬁ 390 _%
[0 0 0 [0 0 0
Cy= 0 0 0 Cy= 0 0 0
L & 5 2808 \/ﬁ 0 % 5 2808 390 _%
B K P HVE A
Co=| tVv78 -2 0 Ci=|-tvi8 -2 0
L % 5 % \/@ 1 L % 5 2808 \/@ _%
The matrices Dy in Equation (6) under the parameter assignments s = —1/6, § = —2/9
corresponding to Figure 1 in Section 2.2 are
[0 0 0 0 0 0
Dy=| £ -5V 0| D= 1 -8V —EV5
ﬁ D _ﬁ V390 0 % D 3840 v/390 _é
R4 T 0 RN 2 —55-/390
Dy = 1 UV —BVh | D= = & VT8 > V5
_% 5 3840 v/390 0 _% V5 3840 v/390 3L2
[0 0 0 0 0 0
D_, = w5 e V78 0 Dy = g5 s VS —1o3 VD
Vb —35 V390 0 BVs —L /390 ~1
R 0 LV 1 —Lyam
Dy = to1s Taamsg V18 _% 5 D, = ) L VT8 — 005 V5
S5 9L/390 0 5 Vh —gg V390 1
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The smoothed scaling and wavelet filters in Equation (11) corresponding to Figure 2 for the same

values are determined by Equations (7) and (8) and have the values

éjQ -

o O

| 0

20

0
23
4320

4
= Vo

0 —2:V78 0] R IV p—

0 0 0 Cth=1 0 0 0
0 FHVE 0 |k VR
(1 -5V 0] [ 1 VT

0 -1 0 Cr=1 0 -5 -5
0 %V 1 -k %V

0 0 0 0 0

261965168 V78 0 D 5= _% 2§3§é8 8 %

73 V390 0 — V5 A5 V390 V5
0 1 0 V8 3
% _2§3§é8 %0 D = _% _261965168 VT8
0 X390 2V5 L5 L3900

The roughened scaling and wavelet filters in Equation (15) corresponding to Figure 3 for the same

values are determined by Equations (12) and (13) and the matrices C,_ and D, have the values

1

7 7 3 31 1
a5 o V'S Tap “5 e V'® i
0 0 0 C=1 0 0 0
7 1 7 3 31 1
w0 e VIS 3 5§ T VTS 1

217 31

AT B0
2 1 2/

31 217

0 3R o

3 1 1 7 7
—5 "oV 1 w U 3
0 -5 —3V78 Cy=| —2V78 0 278

3 1 1 7 7
—5 “w VS 1 w0 2
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and
) 0 0
D-, = - L VT8 -z
7 / 7
L~ 480 5 1920 390 480 5
0 0 0 —52-\/78 2 —52 /78
DIy =| -5 Vvl -2 Dy =| -2 -3 0
| —5VE o V390 —45 V5 0 2LV390  B5
i 9 5 5
-2 V78— 0 —5e V78 0 522 V78
Dy=| -8 —LvyB 2 Dy = -5 0 3
L 1%\/5 1920V390 _%\/S ﬁ\/g 0 _ﬁ\/g

B. Proof of Proposition 3.1

Proof. Notice that if f € H}(R, ), then f(0) = 0 and lim, .., f(z) = 0. In addition, every component
of ®f , Wk  ®F and UL is supported on a finite interval and vanishes at the right boundary point of

its support.
It suffices to verify the relations for j = 0. Let f € H}(R, ), we have

Pr, oDf = Z(va ¢ﬁa+,o,k>¢~5ﬁ+,o,k

ik
1 [e'e) 00

= ZZ Df,¢b)0b s + (DF V20 0X10.00)) V2 G0 0X10.00) T D (D 65 1) 00 1
=0 k k=1

1

f D%k ¢0k <fa_D(\/ﬁﬁbg,oX[Ow)))\/Ef%,ox[ooo +Z I D%k %k
k=1

|
oMg i

=0 k

For each k > 0,

(f, =D )80 = (f, 305 )04 + (f> Borsn) B0k + (f1 805 )00, — (f Poksn) 0 (25)
and

(f, =Dt ) Gox = (I S ) Do (26)
Foreach k > 1,

(f, =D3 ) Gos = (fs =2V5 007 )00 = —2V5 (£, 605 )0 27)
In addition,

(f, —=D(V2 85 g X10.00))) V2 5 0X0,00) = —2(f, 2V5 90’ X[0,00))) D0 X[0,00)
= —4V5 (£, 800 )Pt 0 X[0.0) (28)
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On the other hand,

DP{ of = Z £ 058, 0 DOEL o
= (£, V2005 X10.00)) D(V2 605 Xl0.00)) + D _{f> S0 ) Dy
k=1

Zf@bé;Z Dy +Zf¢0k Doy
k=
Since ¢”~ X[0.1] = ¢* X[o,] and ¢* x[_1,0) = —¢* X[-1,0] as in Theorem 2.3, then
(£, 600 X)) = (f b00) = (£, 650
In addition,

D(<5813X[o,oo>) = (D<5810+)X[o,oo> = (¢8,0 + ¢8,0(‘ +1) - 25 ¢8,0)X[0,oo)
= ¢8,0 —2v5 ¢3,0X[O,oo)

Therefore,

= (f, 000 )00 + (f+ 060 )60.0 — 45 (f, 860 ) 95 0X10,00)

Foreach k > 1,

(f, 005 ) Do = (f, 007 )P0 + (f, 005 )P0t — 2V5 (f, bk )Gt
and

(f, 005 ) DGR = (805 )00 — (f+ 0% )P
Finally, for each & > 0,

(f, 005 )Doox = ([ b0k ) Dok

Comparing Equations (25)—(28) with Equations (29)—(32), it is clear that

Pa.oDf = DPB{ of

The verification for the W case is obvious. Indeed, from the relations in Equation (22), we have

Qr. oDf = Z<Dfa ¢ﬁ§+,o,k>1;ﬁ§+,o,k = Z<fa —D¢§+,o,k>1%e+,o,k

ik

—Z — U o)Wk ok = D (F Ul k) (— Uk, o)

ik

= Z Fo%, on) DUE o = DQE, of

120

(29)

(30)

€29

(32)
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