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Abstract: Boundary functions for wavelets on a finite interval are often constructed as linear
combinations of boundary-crossing scaling functions. An alternative approach is based on
linear algebra techniques for truncating the infinite matrix of the Discrete Wavelet Transform
to a finite one. In this article we show how an algorithm of Madych for scalar wavelets can be
generalized to multiwavelets, given an extra assumption. We then develop a new algorithm
that does not require this additional condition. Finally, we apply results from a previous paper
to resolve the non-uniqueness of the algorithm by imposing regularity conditions (including
approximation orders) on the boundary functions.
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1. Introduction and Overview

The Discrete Wavelet Transform (DWT) is designed to act on infinitely long signals. For finite
signals, the algorithm breaks down near the boundaries. This can be dealt with by constructing special
boundary functions [1–3], or by extending the data by zero padding, extrapolation, symmetry, or other
methods [4–7].

Two approaches to constructing boundary functions were compared in a previous paper of the
authors [8]. The first approach is based on forming linear combinations of standard scaling functions
that cross the boundary. The second approach is based on boundary recursion relations.
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A third approach is based on linear algebra. The infinite banded Toeplitz matrix representing the
DWT is replaced by a finite matrix by suitable end-point modifications. A particular such method for
scalar wavelets is presented in Madych [4].

In this paper, we first show that the Madych approach can be generalized to multiwavelets under an
additional assumption, which may or may not be satisfied for a given multiwavelet. We then present a
modified method that does not require this extra assumption.

Linear algebra completions are not unique; they all include multiplication by an arbitrary orthogonal
matrix. A random choice of matrix does not in general produce coefficients that correspond to any actual
boundary function. Random choice also does not provide any approximation order at the boundary.

We show how to impose approximation order constraints in the algorithm, and in the process remove
much or all of the non-uniqueness.

2. Review of Wavelet Theory

In this section we provide a brief background on the theory of wavelets. We primarily focus on the
basic definitions and results that will be used throughout this article. For a more detailed treatment, we
refer the reader to the many excellent articles and books published on this subject [6,9–12].

We will state everything in terms of multiwavelets, which includes scalar wavelets as a special case,
and restrict ourselves to the orthogonal case.

2.1. Multiresolution Approximation

A multiresolution approximation (MRA) of L2(R) is a chain of closed subspaces {Vn}, n ∈ Z,

· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ L2(R)

satisfying

(i) Vn ⊂ Vn+1 for all n ∈ Z;
(ii) f(x) ∈ Vn ⇐⇒ f(2x) ∈ Vn+1 for all n ∈ Z;

(iii) f(x) ∈ Vn =⇒ f(x− 2−nk) ∈ Vn for all n, k ∈ Z;
(iv)

⋂
n∈Z Vn = {0};

(v)
⋃
n∈Z Vn = L2(R);

(vi) there exists a function vector

φ(x) =

φ1(x)
...

φr(x)

 , φi ∈ L2(R)

such that {φj(x− k) : 1 ≤ j ≤ r, k ∈ Z} is an orthonormal basis for V0 [11].

The function φ is called the multiscaling function of the given MRA. r is called the multiplicity.
Condition (ii) gives the main property of an MRA. Each Vn consists of the functions in V0 compressed

by a factor of 2n. Thus, an orthonormal basis of Vn is given by

{φj,nk := 2n/2φj(2
nx− k) : 1 ≤ j ≤ r, k ∈ Z}
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Since V0 ⊂ V1, φ can be written in terms of the basis of V1 as

φ(x) =
∑
k

Hkφ1k(x) =
√

2
∑
k

Hkφ(2x− k)

for some r × r coefficient matrices Hk. This is called a two-scale refinement equation, and φ is called
refinable. We consider in this paper only compactly supported functions, for which the refinement
equation is a finite sum.

The orthogonal projection Pn of a function s ∈ L2 into Vn is given by

Pns =
∑
k∈Z

〈s,φnk〉φnk

This is interpreted as an approximation to s at scale 2−n.
Here the inner product is defined as

〈f, g〉 =

∫
f(x) g(x)∗ dx

where ∗ denotes the complex conjugate transpose.
The main application of an MRA comes from considering the difference between approximations to

s at successive scales 2−n and 2−n−1.
Let Qn = Pn+1 − Pn. Qn is also an orthogonal projection onto a closed subspace Wn, which is the

orthogonal complement of Vn in Vn+1:

Vn+1 = Vn ⊕Wn

Qns is interpreted as the fine detail in s at resolution 2−n.
An orthonormal basis of W0 is generated from the integer translates of a single function vector

ψ ∈ L2(R), called a multiwavelet function. Since W0 ⊂ V1, the multiwavelet function ψ can be
represented as

ψ(x) =
√

2
∑
n

Gnφ(2x− n) (1)

for some coefficient matrices Gn.
We have

L2(R) =
⊕
n∈Z

Wn

and {ψj,nk : 1 ≤ j ≤ r, n, k ∈ Z} produces an orthonormal basis for L2(R).

2.2. Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) takes a function s ∈ Vn for some n and decomposes it into a
coarser approximation at level m < n, plus the fine detail at the intermediate levels.

s = Pns = Pms+
n−1∑
k=m

Qns

It suffices to describe the step from level n to level n− 1.
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Since the signal s ∈ Vn = Vn−1 ⊕Wn−1, we can represent it by its coefficients {s∗nk} = {〈s,φnk〉},
{d∗nk} = {〈s,ψnk〉} as

s =
∑
k

s∗nkφnk =
∑
j

s∗n−1,jφn−1,j +
∑
j

d∗n−1,jψn−1,j

We find that
sn−1,j =

∑
k

Hk−2jsnk, dn−1,j =
∑
k

Gk−2jsnk

If we interleave the coefficients at level n− 1

(sd)n−1 =



...
sn−1,0

dn−1,0

sn−1,1

dn−1,1

...


the DWT can be written as (sd)n−1 = ∆sn, where

∆ =


· · · · · · · · ·
· · · T0 T1 T2 · · ·

· · · T0 T1 T2 · · ·
· · · T0 T1 T2 · · ·

· · · · · · · · ·

 , Tk =

(
H2k H2k+1

G2k G2k+1

)
(2)

The matrix ∆ is orthogonal. Signal reconstruction corresponds to sn = ∆∗(sd)n−1.

2.3. Approximation Order

A multiscaling function φ has approximation order p if all polynomials of degree less than p can
be expressed locally as linear combinations of integer shifts of φ. That is, there exist row vectors c∗jk,
j = 0, . . . , p− 1, k ∈ Z, so that

xj =
∑
k

c∗jkφ(x− k) (3)

For orthogonal wavelets

c∗jk =

j∑
`=0

(
j

`

)
kj−`µ∗` (4)

where µj is the jth continuous moment of φ.
A high approximation order is desirable in applications. A minimum approximation order of 1 is a

required condition in many theorems.
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3. Wavelets on an Interval

Standard wavelet theory only considers functions on the entire real line. In practice we often deal
with functions on a finite interval I . One way to deal with this problem is to introduce special boundary
basis functions. These functions need to be refinable in order to support a DWT algorithm.

The main approaches construct boundary functions from

• recursion relations; or
• linear combinations of shifts of the underlying scaling functions; or
• linear algebra techniques.

Details on these approaches, and the connections between them, will be given later in this section.
The linear combination approach has been the most commonly used technique (see e.g., [1,3,13,14]).

The recursion relation approach, and its relationship to linear combinations, was studied in more detail
in [8]. The linear algebra approach is used in [4,6].

3.1. Basic Assumptions and Notation

We do not aim for complete generality but make the following simplifying assumptions, which cover
most cases of practical interest.

• The underlying multiwavelet is orthogonal, continuous, with multiplicity r and approximation
order p ≥ 1, and has recursion coefficients H0, . . . , HN , G0, . . . , GN . This means the support of
φ and ψ is contained in the interval [0, N ].
• The interval I is [0,M ] with M large enough so that the left and right endpoint functions do not

interfere with each other.
• The boundary functions have support on [0, N − 1] and [M − N + 1,M ], respectively (that is,

smaller support than the interior functions).

The interior multiscaling functions are those integer shifts of φ whose support fits completely inside
[0,M ]. These are φ0, . . . ,φM−N , where φk(x) = φ(x − k). All interior functions have value 0 at the
endpoints, by continuity.

The interior functions satisfy the usual recursion relations

φ(x) =
√

2
∑
k

Hkφ(2x− k)

ψ(x) =
√

2
∑
k

Gkφ(2x− k)
(5)

The boundary-crossing multiscaling functions are those shifts of φ whose support contains 0 or M in
its interior. At the left endpoint, these are φ−N+1 through φ−1.

The support of φ could be strictly smaller than [0, N ]. In this case, some of the functions that appear
to be boundary-crossing are actually interior, but this causes no problems.

We assume that we have L left endpoint scaling functions, which we group together into a single
vector φL. We stress that we mean L scalar functions, not function vectors, and that L is not necessarily
a multiple of r.
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Likewise, we assume R right endpoint functions with support contained in [M −N + 1,M ], grouped
into a vector φR, with recursion relations similar to (6). We will show later that L and R are uniquely
determined by φ.

Most of the rest of the paper will only address the calculations at the left end in detail. Calculations
at the right end are identical, with appropriate minor changes.

3.2. Recursion Relations

The left endpoint functions satisfy recursion relations

φL(x) =
√

2AφL(2x) +
√

2
N−2∑
k=0

Bkφ(2x− k)

ψL(x) =
√

2EφL(2x) +
√

2
N−2∑
k=0

Fkφ(2x− k)

(6)

Here

A = 〈φLn−1,φ
L
n〉, Bk = 〈φLn−1,φn,k〉, E = 〈ψL

n−1,φ
L
n〉, Fk = 〈ψL

n−1,φn,k〉

where φLn(x) = 2n/2φL(2nx). A and E are of size L× L, Bk and Fk are of size L× r.
The recursion relation approach constructs boundary functions by finding suitable recursion

coefficients A, B.
We are interested in regular solutions of (6), that is, φL that are continuous, have approximation order

at least 1, and φL(0) 6= 0.
It is shown in [8] that a sufficient condition for regularity is that A has a simple largest eigenvalue of

1/
√

2, and that φL has approximation order at least 1. Conditions for verifying boundary approximation
order p are given in Section 6.

3.3. Linear Combinations

If the boundary functions are linear combinations of boundary-crossing functions, then

φL(x) =
−1∑

k=−N+1

Ckφ(x− k) for x > 0 (7)

Each Ck is of size L× r.
The linear combination approach to constructing boundary function tries to construct a suitable C.

A random choice of Ck will not produce refinable functions. It is shown in [8] that if the boundary
functions are both refinable and linear combinations, the coefficients must be related by

CV = AC

CW = B
(8)

where
B =

(
B0 B1 · · · BN−2

)
, C =

(
C−N+1 C−N+2 · · · C−1

)
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and

(
V W

)
=


HN−1 HN 0 · · · · · · 0 0 · · · · · · · · · · · · 0

HN−3 HN−2 HN−1 HN 0 0
... . . . . . . . . . . . . ...

... . . . . . . . . . . . . H3 H4 · · · · · · HN 0 0

0 · · · · · · 0 H0 H1 H2 · · · · · · HN−2 HN−1 HN


Both V and W are of size (N − 1)r × (N − 1)r.

Relations (8) are a kind of eigenvalue problem. For any given φ there is only a small number of
possibilities for boundary functions that are both refinable and linear combinations.

Note that the recursion relations are necessary. Without coefficients A, B there is no discrete wavelet
transform. On the other hand, the existence of C as in (7) is optional. It was shown in [8] that there are
regular refinable boundary functions that are not linear combinations.

3.4. Linear Algebra

We can assume that N = 2K + 1 is odd, by introducing an extra recursion coefficient HN = 0 if
necessary. The resulting structure for the decomposition matrix is

∆M =



L0 L1 · · · LK 0 · · · · · · 0 0

0 T0 T1 · · · TK 0 · · · 0 0
... 0 T0 T1

. . . TK 0
...

...
...

... . . . . . . . . . . . . . . . ...
...

0 0 · · · 0 T0 T1 · · · TK 0

0 0 · · · · · · 0 R0 R1 · · · RK


(9)

This corresponds to a segment of the infinite matrix ∆ in (2) with some end point modifications.
Here the Tk are as in (2), and

L0 =

(
A

E

)
, Lk =

(
B2k−2 B2k−1

F2k−2 F2k−1

)
, k = 1, . . . , K (10)

with A, B, E, F as in (6).
The linear algebra approach tries to construct suitable endpoint blocks Lk, Rk by linear

algebra methods.

3.5. Uniqueness Results

We assume initially that there are only four recursion coefficients, and therefore only two
block matrices

T0 =

(
H0 H1

G0 G1

)
, T1 =

(
H2 H3

G2 G3

)
Since the infinite matrix ∆ in (2) is orthogonal, we know that

T0T
∗
0 + T1T

∗
1 = I

T0T
∗
1 = 0

(11)
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or equivalently

T ∗0 T0 + T ∗1 T1 = I

T ∗0 T1 = 0
(12)

These relations lead to some interesting properties that we use in the following. More detail is given
in [8,15], but for convenience we give at least an outline of the proofs here.

Lemma 3.1 If T0, T1 are square matrices of size 2r × 2r that satisfy relations (11), then

(a) ρ0 := rank(T0) and ρ1 := rank(T1) satisfy

ρ0 + ρ1 = 2r

(b) The ranges and nullspaces of T0 and T1 are mutually orthogonal and complementary, that is,

R(T0)⊕R(T1) = R2r

N(T0)⊕N(T1) = R2r

(c) There exist orthogonal matrices U , V with

T0 = U

(
Iρ0 0

0 0

)
V ∗, T1 = U

(
0 0

0 Iρ1

)
V ∗ (13)

where Iρ denotes an identity matrix of size ρ× ρ.

Proof.
(a) The first equation in (11) implies ρ0 + ρ1 ≥ 2r. The second equation implies ρ0 + ρ1 ≤ 2r.
(b) The relation T ∗0 T1 = 0 implies that R(T1) is contained in N(T ∗0 ) = R(T0)

⊥. The dimension count
shows that they are identical.

(c) We start with separate singular value decompositions (SVD) of T0 and T1

T0 = U0

(
Σ0 0

0 0

)
V ∗0 , T1 = U1

(
0 0

0 Σ1

)
V ∗1

where the usual ordering of singular values has been reversed for T1.
Since ranges and nullspaces are orthogonal, we can construct matrices U and V by taking the first ρ0

columns of U0, V0 and last ρ1 columns of U1, V1, respectively, which provide a common SVD. The fact
that Σ0 = I , Σ1 = I follows from

(T0 + T1) (T ∗0 + T ∗1 ) =

(
Σ2

0 0

0 Σ2
1

)
= I

To investigate the possible sizes of the endpoint blocks in ∆M , it suffices to consider

∆3 =

L0 L1 0 0

0 T0 T1 0

0 0 R0 R1

 (14)

of size 6r × 6r. ∆M for larger M simply has more rows of T0, T1 in the middle.
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Theorem 3.2 If ∆3 is orthogonal and has the structure given in (14), then L0, L1, R0, R1 must have
sizes 2ρ1 × ρ1, 2ρ1 × 2r, 2ρ0 × 2r, and 2ρ0 × ρ0, respectively.

Theorem 3.3 Assume that ∆3, ∆̃3 are two orthogonal matrices of form (14). Then there exist orthogonal
matrices QL, QR so that

∆̃3 =

QL 0 0

0 I 0

0 0 QR

∆3 (15)

The proofs are given in [8].
If there are more than two matrices Tj , we form block matrices. For example if we have T0, . . . , T3,

we use

T̂0 =

T0 T1 T2

0 T0 T1

0 0 T0

 , T̂1 =

T3 0 0

T2 T3 0

T1 T2 T3

 (16)

4. Madych Approach for Scalar Wavelets

This is a particular implementation of the matrix completion approach for scalar orthogonal wavelets.
Madych [4] started from a periodized version of the infinite matrix (2), and modified it into the
desired form by orthogonal matrices. We will show in this section that this also works for orthogonal
multiwavelets, given an additional condition.

To explain the Madych algorithm, and simultaneously extend it to multiwavelets, we again assume
initially that we only have T0 and T1, and begin with

∆̃3 =

T0 T1 0

0 T0 T1

T1 0 T0

 (17)

Our objective is to find orthogonal matrices U , V so that

∆3 = U∆̃3V =

L0 L1 0 0

0 T0 T1 0

0 0 R0 R1


has the desired structure and is orthogonal.

We let

S0 = (H0 H1) , S1 = (H2 H3) , W0 = (G0 G1) , W1 = (G2 G3)

From (11) it follows that
T0S

∗
1 = T0W

∗
1 = T1S

∗
0 = T1W

∗
0 = 0

Definition 4.1 A multiscaling function based on four recursion coefficients satisfies Condition M if(
S0

S1

)
=

(
H0 H1

H2 H3

)
has full rank.
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This condition is automatic in the scalar case, because S0 and S1 are non-zero orthogonal row vectors
satisfying S0S

∗
1 = 0.

For multiwavelets this condition may not hold. For example, the Chui–Lian CL(2) multiwavelet [16]
has only three recursion coefficients

H0 =
1

4
√

2

(
2 2

−
√

7 −
√

7

)
, H1 =

1

4
√

2

(
4 0

0 2

)
, H2 =

1

4
√

2

(
2 −2√
7 −

√
7

)
and S1 only has rank 1.

The row spans of S0, S1 are mutually orthogonal, so we can orthonormalize them separately. We can
find r × r nonsingular matrices R0, R1 so that (

R0S0

R1S1

)
is an orthogonal matrix.

We now let

V =

(
(R0S0)

∗ 0 (R1S1)
∗

0 I 0

)
then

∆̃3V =

T0(R0S0)
∗ T1 0 T0(R1S1)

∗

0 T0 T1 0

T1(R0S0)
∗ 0 T0 T1(R1S1)

∗

 =

T0(R0S0)
∗ T1 0 0

0 T0 T1 0

0 0 T0 T1(R1S1)
∗


This already has the desired form. Multiply ∆̃3V from the left by

U =

UL 0 0

0 I 0

0 0 UR


where UL, UR are arbitrary orthogonal matrices, to obtain

∆3 = U∆̃3V =

L0 L1 0 0

0 T0 T1 0

0 0 R0 R1


with

L0 = ULT0S
∗
0R
∗
0

L1 = ULT1

R0 = URT0

R1 = URT1S
∗
1R
∗
1

This completes the algorithm in the case of up to four recursion coefficients. In the general case we
form block matrices again, as in (16).
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5. A New Approach to Multiwavelet Endpoint Modification

For a more general algorithm, we again begin with ∆̃3 as in (17).
Let U and V be the orthogonal matrices from the joint SVD of T0 and T1 in (13). Consider

U∗3 =

U∗ 0 0

0 U∗ 0

0 0 U∗

 , V3 =

V 0 0

0 V 0

0 0 V


We obtain

U∗3 ∆̃3V3 =



Iρ0 0 0 0 0 0

0 0 0 Iρ1 0 0

0 0 Iρ0 0 0 0

0 0 0 0 0 Iρ1
0 0 0 0 Iρ0 0

0 Iρ1 0 0 0 0


(18)

By inspection, a technique that produces the correct structure is to move the first ρ0 columns to the
end, and then interchange the first ρ0 rows with the last ρ1 rows. That amounts to multiplying from the
right with

PR =

(
0 Iρ0

I6r−ρ0 0

)
and from the left with

PL =

 0 0 Iρ0
0 I4r 0

Iρ1 0 0


so that

PLU
∗
3 ∆̃3V3PR =



Iρ1 0 0 0 0 0

0 0 Iρ1 0 0 0

0 Iρ0 0 0 0 0

0 0 0 0 Iρ1 0

0 0 0 Iρ0 0 0

0 0 0 0 0 Iρ0


(19)

Now let QL, QR be arbitrary orthogonal matrices of size 2ρ1 × 2ρ1, 2ρ0 × 2ρ0, respectively. We
multiply (19) from the left with

UL =

QL 0 0

0 U 0

0 0 QR


and from the right with

UR =


Iρ1 0 0 0

0 V ∗ 0 0

0 0 V ∗ 0

0 0 0 Iρ0
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then

∆3 = ULPLU
∗
3 ∆̃3V3PRUR =

L0 L1 0 0

0 T0 T1 0

0 0 R0 R1


where

L0 = QL,0

L1 = QL,1V
∗
1

R0 = QR,0V
∗
0

R1 = QR,1

Here
QL = (QL,0 |QL,1), QR = (QR,0 |QR,1), V = (V0 |V1) (20)

with QL,0, QL,1 of size 2ρ1 × ρ1, QR,0, QR,1 of size 2ρ0 × ρ0, and V0, V1 of size 2r × ρ0,
2r × ρ1, respectively.

There is one important observation that follows from Theorem 3.3. Suppose that Q̃L, Q̃R are
orthogonal matrices, and instead of (15) we define

∆̃3 = ∆3

Q̃L 0 0

0 I 0

0 0 Q̃R


Then ∆̃3 has the form (14) and is orthogonal. By Theorem 3.3, there are other orthogonal matrices QL,
QR so that the same ∆̃3 can also be written in the form (15). For this reason, it is not necessary to
consider arbitrary orthogonal components in the matrix UR.

As before, in the case of more than four recursion coefficients we apply the algorithm to
block matrices.

If we reconsider Madych’s approach in our notation, we find that it amounts to moving the second set
of columns in (18) to the end, so that we end up with

Iρ0 0 0 0 0 0

0 0 Iρ1 0 0 0

0 Iρ0 0 0 0 0

0 0 0 0 Iρ1 0

0 0 0 Iρ0 0 0

0 0 0 0 0 Iρ1


This only yields matrices of the correct size if ρ0 = ρ1, which is equivalent to Condition M.

6. Imposing Regularity Conditions

The algorithm in this section will only be described in detail for the left boundary. Calculations at the
right boundary work the same way.
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Given a completion ∆M we can read off the recursion coefficients A, B from L0, L1. During
numerical experiments with the algorithm described above we discovered that a random choice for the
matrix QL did not usually correspond to actual boundary functions. This section will describe how
to make a canonical choice for QL which produces recursion coefficients that correspond to regular
boundary functions, and which imposes some approximation orders. The groundwork for this was laid
in [8].

6.1. Approximation Order for Boundary Functions

In [8] it was shown that if the interior multiscaling function φ has approximation order ≥ p, then
approximation order p for the boundary scaling functions is equivalent to the existence of row vectors
`∗j , j = 0, . . . , p− 1 so that

`∗j

(√
2A
)

= 2−j `∗j

`∗j

(√
2Bm

)
= γ∗jm, m = 0, . . . , N − 2

(21)

where the γ∗jm are known row vectors:

γ∗jm = 2−jc∗jm −
√

2

bm/2c∑
k=0

c∗jkHm−2k

Here bxc = greatest integer ≤ x, and c∗jk are defined in (3).
If we let

γ∗j =
(
γ∗j0, . . . ,γ

∗
j,N−2

)
, Γ =

 γ∗0
...

γ∗p−1

 , Λ =

 `∗0
...

`∗p−1


the approximation order conditions can be written as

Λ
(√

2A
)

=


1 0 · · · 0

0 1/2
. . . ...

... . . . . . . 0

0 · · · 0 2−p+1

Λ

Λ
(√

2B
)

= Γ

(22)

After applying the algorithm from Section 5 with initial multiplier QL = I , we end up with

(
L0 L1

)
=

(
I 0

0 V ∗1

)

with V1 as in (20). After pre-multiplying by a general QL, we get

QL

(
L0 L1

)
=

(
Q11 Q12

Q21 Q22

)(
I 0

0 V ∗1

)
=

(
Q11 Q12V

∗
1

Q21 Q22V
∗
1

)
=

(
A B

D E

)
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so A = Q11, B = Q12V
∗
1 .

The second condition in (22) is

Λ
(√

2B
)

= Λ
(√

2Q12V
∗
1

)
= Γ

We recall that V ∗1 V1 = I and multiply by V1 to get

Λ
√

2Q12 = Λ
√

2Q12V
∗
1 V1 = ΓV1 =: G

where G is a known matrix with rows g∗j .
Conditions (22) reduce to

Λ
(√

2Q11

)
=


1 0 · · · 0

0 1/2
. . . ...

... . . . . . . 0

0 · · · 0 2−p+1

Λ

Λ
(√

2Q12

)
= G

Q11Q
∗
11 +Q12Q

∗
12 = I

(23)

6.2. Simplifying the Problem

It is easy to see that if we replace the boundary function vectorφL byMφL for an invertible matrixM ,
the new boundary functions still span the same space, and remain refinable. They also remain orthogonal
if M is orthogonal.

The effect of M on the coefficients A, B, C and the matrix Λ is

A→ Ã = MAM−1

B → B̃ = MB

C → C̃ = MC

Λ→ Λ̃ = ΛM−1

The key observation is that by using a suitable M , we can assume that Λ is lower triangular.

6.3. Deriving the Algorithm

We will now satisfy conditions (23) row by row.
NOTE: The vectors `∗j , γ

∗
j , g
∗
j are naturally numbered j = 0, . . . , p− 1. To keep the notation readable, in this

section we will number the elements of vectors and matrices starting with index 0 instead of 1.

We start with row 0. The assumptions `∗0 = (l00, 0, . . . , 0) and `∗0(
√

2Q11) = `∗0 lead to

Q11 =


1/
√

2 0 . . . 0

∗ . . . . . . ∗
...

...
∗ . . . . . . ∗
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where ∗ denotes as yet undetermined entries.
The condition

`∗0
√

2Q12 = g∗0

leads to

Q12 =
1√
2l00

(
g∗0
∗

)
The 00-entry of Q11Q

∗
11 +Q12Q

∗
12 is

1

2
+

1

2l200

‖g∗0‖2 = 1

which leads to
l00 = ±‖g∗0‖

It follows from the results in [8] that l00 6= 0.
We have found the 0th row of QL, as well as `∗0.
For the induction step, assume that rows 0, . . . , k − 1 of Λ, QL have already been determined. We

partition the matrix QL as follows:

QL =

 Q11,k 0 0∗ Q12,k

qk,0 · · · qk,k−1 qk,k qk,k+1 . . . qk,ρ1−1 qk,ρ1 · · · qk,2∗ρ1−1

∗ ∗ ∗ ∗



=

 Q11,k 0 0∗ Q12,k

α∗k qk,k ζ∗k β∗k
∗ ∗ ∗ ∗


where Q11,k is lower triangular, and likewise

`∗k =
(
lk0 · · · lk,k−1 lkk 0 · · · 0

)
=
(
λ∗k lkk 0∗

)
Note that

Q11,kQ
∗
11,k +Q12,kQ

∗
12,k = I

by induction. We now satisfy the conditions for the kth row in (23) one by one.
Assuming lkk 6= 0, the condition `∗k(

√
2Q11) = 2−k`∗k leads to

ζ∗k = 0∗

α∗k =
1√
2lkk

λ∗k

(
2−kI −

√
2Q11,k

)
qk,k = 2−k−1/2

(24)

The condition `∗k(
√

2Q12) = g∗k leads to

β∗k =
1√
2lkk

(
g∗k −

√
2λ∗kQ12,k

)
(25)
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The new row k of Q must be orthogonal to the rows of Q11,k

0∗ =
(
α∗k qk,k 0∗

)Q∗11,k

0

0∗

+ β∗kQ
∗
12,k

= α∗kQ
∗
11,k + β∗kQ

∗
12,k.

We substitute (24) and (25) and simplify to get

λ∗k = g∗kQ
∗
12,k

(√
2I − 2−kQ∗11,k

)−1

(26)

Note that the matrix in parentheses is upper triangular with non-zero diagonal entries, and
therefore non-singular.

Finally, we normalize the new row k

1 = α∗kαk + q2
kk + β∗kβk

which leads to

l2kk =
1

2(1− 2−2k−1)

[
λ∗k

(
2−kI −

√
2Q11,k

)(
2−kI −

√
2Q∗11,k

)
λk

+
(
g∗k −

√
2λ∗kQ12,k

)(
gk −

√
2Q∗12,kλk

)] (27)

The actual calculations go in the following order: First we calculate λ∗k and lkk from (26) and (27).
Then we can calculate α∗k, β∗k and qkk from (24) and (25). Everything is unique, except for the choice of
sign in lkk.

The only way in which the algorithm could fail is if lkk = 0. This is conceivable, but has not been
observed in practice.

With this algorithm we can impose boundary approximation orders up to the number of boundary
functions L, or the interior approximation order p, whichever is smaller. If L < p, the boundary functions
will have a lower approximation order than the interior functions. If L > p, only the top p rows of A, B
will be determined, and we have to make some arbitrary choices about the rest.

This will be illustrated by examples in the next section.

7. Examples

To keep the subscripting manageable, we assume that for left endpoint calculations we are working on
the interval [0,M ]. For right endpoint calculations we instead use [−M, 0]. The right-endpoint formulas
corresponding to (6) and (7) are

φR(x) =
√

2
0∑

k=−N+2

Ykφ(2x− k) +
√

2ZφR(2x)

φR(x) =
N−1∑
k=1

Xkφ(x− k) for x < 0

The examples only show the calculations for φL, φR. The recursion coefficients for the wavelet
functions ψL, ψR are found by completing the orthogonal matrices QL and QR.
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7.1. Example 1: Daubechies D2

As a very simple scalar example we consider the Daubechies scaling functions with two
vanishing moments.

The recursion coefficients are

h0 =
1 +
√

3

4
√

2
, h1 =

3 +
√

3

4
√

2
, h2 =

3−
√

3

4
√

2
, h3 =

1−
√

3

4
√

2

The approximation order is 2, but there is only a single boundary function at each end. We can impose
approximation order 1 at each end.

At the left end, we find

a =
1

2

√
2, b∗ =

(√
6

4
, −
√

2

4

)
, c∗ =

(√
3 + 1,

√
3 + 1

)
At the right end, we get

z =
1

2

√
2, y∗ =

(√
6

4
,

√
2

4

)
, x∗ =

(√
3− 1,

√
3− 1

)
These are the same boundary functions derived in [8]. They are shown in Figure 1.

Figure 1. Boundary functions for D2 with approximation order 1, at left and right ends.
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7.2. Example 2: CL(3) Multiwavelet

The Chui–Lian multiwavelet CL(3) [16] has recursion coefficients

H0 =
1

20
√

2

(
10− 3

√
10 5

√
6− 2

√
15

5
√

6− 3
√

15 5− 3
√

10

)
, H1 =

1

20
√

2

(
30 + 3

√
10 5

√
6− 2

√
15

−5
√

6− 7
√

15 15− 3
√

10

)

H2 =
1

20
√

2

(
30 + 3

√
10 −5

√
6 + 2

√
15

5
√

6 + 7
√

15 15− 3
√

10

)
, H3 =

1

20
√

2

(
10− 3

√
10 −5

√
6 + 2

√
15

−5
√

6 + 3
√

15 5− 3
√

10

)

It has approximation order 3.
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Here ρ0 = ρ1 = 2, so we need a vector of two boundary functions at each end. We can impose
approximation order 2.

The original completion is

∆3 =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 −
√

6/8− 7
√

15/40 3
√

10/40− 3/8
√

6/8− 3
√

15/40 3
√

10/40− 1/8

0 0 3
√

10/40− 3/8
√

6/8 + 7
√

15/40 1/8− 3
√

10/40
√

6/8− 3
√

15/40


After applying the algorithm in Section 6, we find that the top two rows of QL must be

QL =

( √
2/2 0 −

√
30/8 −

√
2/8

−
√

24
√

10 + 1559/
√

3848
√

2/4 −
√

7041− 36
√

10/
√

15392 −
√

191− 60
√

10/
√

15392

)
This leads to

A =

(
0.7071 0

−0.6518 0.3536

)
, B =

(
0.6980 −0.0796 0.0091 −0.0796

0.6613 0.0835 −0.0095 −0.0754

)
Only the numerical approximations of A, B are shown, since the exact expressions get very messy.

This is the same solution found in [8]. The boundary functions at the right end are the left end
functions reversed, due to the symmetry of CL(3). The graphs are shown in Figure 2.

Figure 2. Boundary functions for CL(3) with approximation order 2, at left and right ends.
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7.3. Example 3: DGHM Multiwavelet

The Donovan-Geronimo-Hardin-Massopust multiwavelet [17] has approximation order 2 with
recursion coefficients

H0 =
1

20
√

2

(
12 16

√
2

−
√

2 −6

)
, H1 =

1

20
√

2

(
12 0

9
√

2 20

)

H2 =
1

20
√

2

(
0 0

9
√

2 −6

)
, H3 =

1

20
√

2

(
0 0

−
√

2 0

)



Axioms 2013, 2 140

Its support is [0, 2] instead of the expected [0, 3], which causes some interesting effects.
We find ρ0 = 3, ρ1 = 1, so we have only a single boundary function at the left end, but three at the

right end.
At the left end we can only enforce approximation order 1. The boundary scaling function found by

our algorithm is the same one as in [8].
At the right end we can enforce approximation order 2. This determines two of the boundary

functions, corresponding to the orthonormalized combination of the first two basic solutions from [8].
The third function (determined by the third row of QR) is arbitrary, except that the diagonal entry in Z
should be smaller than

√
2/2 to ensure that the completion is regular.

As an example, we set the third column of Z to zero, and let the QR-factorization built into MATLAB
choose an appropriate third row of Y . The result was

Z =

 0.7071 0 0

−0.6250 0.3536 0

0 0 0

 , Y =

 0.4477 0.3015 0.2345 0.3920

0.3279 0.0533 0.2902 0.5383

−0.3711 0.2189 0.8638 −0.2613


The graphs are shown in Figure 3.

Figure 3. Boundary functions for DGHM. The single left boundary function has
approximation order 1. Three right boundary functions provide approximation order 2.
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8. Summary

Boundary functions for wavelets on a finite interval can be constructed from linear combinations
of boundary-crossing internal functions, or by finding recursion coefficients, or by linear algebra
techniques. The problem with the linear algebra approach is that it involves multiplication by arbitrary
orthogonal matrices. A random choice leads to boundary recursion coefficients that produce an invertible
transform but do not correspond to any actual boundary functions. Also, these coefficients do not provide
any approximation orders.

In this paper, we present a linear algebra algorithm that works for all multiwavelets and removes most
or all of the non-uniqueness while ensuring maximum possible boundary approximation orders.
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