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Abstract: The mollification obtained by truncating the expansion in wavelets is studied,
where the wavelets are so chosen that noise is reduced and the Gibbs phenomenon does not
occur. The estimations of the error of approximation of the mollification are given for the
case when the fractional derivative of a function is calculated. Noting that the estimations
are applicable even when the orthogonality of the wavelets is not satisfied, we study
mollifications using unorthogonalized wavelets, as well as those using orthogonal wavelets.
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1. Introduction

The problem of calculating the derivative of a function is an ill-posed problem, in the sense that, when
a function involving noise, fϵ(x), is given instead of a smooth function f(x) and the derivative f ′

ϵ(x) is
calculated, the error is enhanced. In the numerical solution of an ill-posed problem, Murio [1] proposed
the method of mollification. In that method, we calculate the mollified function Mfϵ(x) by

Mfϵ(x) = (fϵ ∗ µ)(x) :=

∫ ∞

−∞
fϵ(x − t)µ(t)dt (1)

and we adopt (Mfϵ)
′(x) as an approximate of f ′(x). As the mollifier µ(t), Murio [1] uses a Gaussian

probability density function. Hào et al. [2] proposed to use the de la Vallée Poussin kernel for the
mollifier, in the calculation of fractional derivative.
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In a preceding paper [3], the present authors proposed to use the expansion in the orthogonal set of the
rapidly decaying harmonic wavelets (rdH-wavelets), which were developed in [4,5]. The wavelets are
characterized by a scaling function that we denote by ϕ1. When the expansion in wavelets is truncated
at a stage, the truncated expansion is expressed by an expansion in a system of {ϕν(x − n

ν
)}n∈Z, where

ϕν(x) is the scaled scaling function given by ϕν(x) = ν · ϕ1(νx) for ν > 0, and Z denotes the set of
all integers. Here ν is the scale at the stage of truncation. In [3], it was shown that an average of the
expansion is expressed as Equation (1) if we put µ(x) = µν(x) where

µν(x) =

∫ ∞

−∞
ϕν(y − x)ϕν(y)dy (2)

In [3], a series of Meyer’s wavelets ([6] [p. 49]), which are special ones of the rdH-wavelets, are studied.
It was shown that the use of the simplest of Meyer’s wavelets agrees with the use of de la Vallée Poussin
kernel adopted by Hào et al. [2].

In [2,3], the calculation of fractional derivative Dλf(x) for λ > 0 was studied, which is generally an
ill-posed problem. When fϵ involving noise is given in place of smooth f , we calculate Dλ[Mfϵ](x),
which approximates Dλf(x). In [2,3], we estimate how the error of this approximation can be reduced
by the choice of the scale on which µ depends.

In [3], numerical examples of calculations are given, where we note that the Gibbs phenomenon is
observed. In [7], seeking the wavelets for which noise is reduced and the Gibbs phenomenon is not
observed, we studied this problem in the standpoint of Fourier series, where we know various attempts
suppressing the Gibbs phenomenon. We took up Fejer’s sum ([8] [p. 111]) and the method of Lanczos’
σ-factor ([8] [p. 109ff]) and its extensions ([8] [p. 132]). Noting that Fejer’s sum can be regarded as the
mollification based on a special one of the rdH-wavelets, we found one desired example. Noting that the
use of the Haar wavelet is regarded as an extension of the method of Lanczos’ σ-factor, we found another
desired example. For those choices, the estimations of the error of approximation (EA) given in [3] do
not apply. The primary purpose of the present paper is to give new estimations which apply to them.

When we look the estimations given in [3] and those given below, we find that the condition of
orthogonality of the wavelets, which was used in deriving the mollification based on wavelets, is not
necessary. Hence we now consider also examples of non-orthogonal set of wavelets.

In Section 2, we give a brief review of the derivation of the mollification based on orthogonal wavelets,
and then give revised estimations of EA applicable to the mollifications based on the rdH-wavelets
and the Haar wavelet, which are studied in [7]. In Section 3, we study these mollifications, and
then mollifications based on unorthogonalized system of B-splines, in particular unorthogonalized
Franklin’s wavelet ([6] [p. 40]). In Section 4, we study the derivative of a function involving noise.
Numerical calculations are performed by using discrete Fourier transform (DFT), which is explained in
Appendix B.

We use notation R to represent the sets of all real numbers. We also use

R>a :={x ∈ R | x > a}, R≥a := {x ∈ R | x ≥ a}, R(a,b] := {x ∈ R | a < x ≤ b}
Z>k :={n ∈ Z | n > k}, Zk,l := {n ∈ Z | k ≤ n ≤ l}
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for a, b ∈ R and k, l ∈ Z. For p ∈ Z>0, the space of those functions f that f(x) and |f(x)|p are locally
integrable and integrable, respectively, on R, is denoted by Lp(R). The Fourier transform of function
g(x) ∈ L1(R) is denoted by ĝ(w) or ĝ (w) so that

ĝ(w) = ĝ (w) =

∫ ∞

−∞
g(x)e−iwxdx (3)

and ||g|| and ||g||1 are used to denote the norms in the space L2(R) and L1(R), respectively. We denote
the Heaviside step function by H(x), so that H(0) = 1

2
, H(−x) = 0 and H(x) = 1 for x ∈ R>0.

2. Basis of Mollification Based on Wavelets

2.1. Expansion in Orthogonal Wavelets

In two recent papers [3,7], the problem of mollification is studied by using the expansion in orthogonal
wavelets. We assume that ϕ1 is a scaling function of wavelets, so that (i) ϕ1(x) ∈ L2(R), and (ii) if Vk

for k ∈ Z is the space spanned by {2k/2ϕ1(2
kx− n)}n∈Z, then (a) Vk ⊂ Vk+1 for k ∈ Z, (b) ∩k∈ZVk = 0

and (c) ∪k∈ZVk = L2(R).
We choose a scale ν ∈ R>0, and construct ϕν(x) so that its Fourier transform is given by

ϕ̂ν(w) = ϕ̂1(
w
ν
), and hence

ϕν(x) = ν · ϕ1(νx), ||ϕν ||2 = ν||ϕ1||2 (4)

If ϕ1(x) ∈ L1(R), we also have ||ϕν ||1 = ||ϕ1||1.
We now assume that ϕ1 satisfies the following condition.

Condition 1 {ϕ1(x − n)}n∈Z is an orthonormal system of functions in L2(R).

Then ||ϕ1||2 = 1, and {ϕν(x − b − n
ν
)}n∈Z for fixed b ∈ R is an orthogonal system of functions.

In [3,7], we consider the following average with respect to b, of the expansion of a function g ∈ L2(R)

in this system,

Mνg(x) := ν

∫ 1/ν

0

[ ∞∑
n=−∞

1

ν

∫ ∞

−∞
ϕν(t − b − n

ν
)g(t)dt · ϕν(x − b − n

ν
)
]
db (5)

We confirm that this is expressed as

Mνg(x) = (g ∗ µν)(x) =

∫ ∞

−∞
g(x − y)µν(y)dy, (Mνg)̂ (w) = ĝ(w)µ̂ν(w) (6)

where µν(x) is given by Equation (2), and hence µ̂ν(w) = |ϕ̂ν(w)|2 = |ϕ̂1(
w
ν
)|2, and also ||µν ||1 ≤

(||ϕν ||1)2 if ϕ1 ∈ L1(R). We define µ1 by µ̂1(w) = |ϕ̂1(w)|2, and hence µ̂ν(w) = µ̂1(
w
ν
). Corresponding

to Equation (4), we have µν(x) = ν · µ1(νx), and ||µν ||1 = ||µ1||1 if µ1 ∈ L1(R).

Lemma 1 When Condition 1 is satisfied, |ϕ̂1(0)| = 1.

Proof. Because of the properties (i) and (ii) of ϕ1, when Condition 1 is satisfied and ν is tended to ∞,
Mνg given by Equation (5) must converge to g. The second Equation of (6) shows that this requires
limν→∞ µ̂ν(w) = |ϕ̂1(0)|2 = 1. �
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Definition 1 Let µ1 ∈ L1(R) satisfy µ̂1(0) = 1. Let ν ∈ R>0, and µν be given by µ̂ν(w) = µ̂1(
w
ν
). Then

the scale-dependent mollification Mνg is defined by Equation (6), and µ1 and µν represent the mollifiers
of unit scale and of scale ν, respectively.

Definition 2 Let ϕ1 be the scaling function of a wavelet satisfying |ϕ̂1(0)| = 1. Let µ̂1(w) = |ϕ̂1(w)|2,
ν ∈ R>0, and µν be given by µ̂ν(w) = µ̂1(

w
ν
). Then we call Mνg given by Equation (6) the mollification

based on the wavelet, and µ1 and µν the mollifiers based on the wavelet.

Lemma 2 Mνg defined by Definition 1 as well as by Definition 2 approaches g as ν → ∞.

Proof. By Equation (6), (Mνg)̂ (w) = ĝ(w)µ̂1(
w
ν
). This approaches ĝ(w) as ν → ∞. �

We note here that Lemma 2 holds even when Definition 2 is adopted and the orthogonality condition
given by Condition 1 is not satisfied.

2.2. Main Results

In the present section, we are concerned with the fractional derivative Dλf of a function f ∈ L1(R)

for λ ∈ R>0. In defining it, we use the fractional integral D−λf for λ ∈ R(0,1], by

D−λf(x) =
1

Γ(λ)

∫ x

−∞
(x − t)λ−1f(t)dt (7)

We then define the fractional derivative Dλf for λ ∈ R>0 by

Dλf(x) = Dλ−mf (m)(x) (8)

when f (m)(x) = dm

dxm f(x) exists for m = ⌈λ⌉. Here ⌈λ⌉ is the least integer not less than λ, and
D0f(x) := f(x),

Remark 1 When f (m) does not exist, but f (m−1) and D[Dλ−mf (m−1)(x)] exist, we put Dλf(x) =

D[Dλ−mf (m−1)(x)], [9].

In the present subsection, we assume that Mνg is defined by Definition 1.
We are interested in calculating Dλf of a function f for λ ∈ R>0. When the given data is fϵ, which

involves noise, we mollify it as Mνfϵ = fϵ ∗ µν and calculate Dλ[Mνfϵ] as an approximation to Dλf .
We estimate the error of this approximation (EA) by ||Dλf − Dλ[Mνfϵ]||.

In [3], we considered the case where the following condition is satisfied for l1 = 2
3
.

Condition 2 There exists l1 ∈ R>0, for which µ1 satisfies

µ̂1(w) = 1, |w| < l1π (9)

In [7], we considered the case where Condition 2 is not satisfied, but the following one is satisfied.

Condition 3 There exist α ∈ R≥0 and β, l1 ∈ R>0, for which µ1 satisfies

1 − α|w|β ≤ µ̂1(w) ≤ 1, |w| < l1π (10)
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By using Condition 3 instead of Condition 2, we obtain the following propositions, in place of the
propositions given in [3]. In describing them, we use the norm in the Sobolev space Hs(R) of order
s ∈ R>0. When g ∈ Hs(R), the norm ||g||Hs is defined by

||g||Hs =
( 1

2π

∫ ∞

−∞
(1 + w2)s|ĝ(w)|2dw

)1/2

(11)

Proposition 1 Let Condition 3 be satisfied. Let s, λ ∈ R>0 satisfy s > λ + β > 0, where β is the one
in Condition 3. Let f , fϵ and Dsf belong to L1(R) and L2(R), and µ1 and Dλµ1 belong to L1(R). If
||f − fϵ|| < ϵ||f ||Hs for ϵ ∈ R>0, then there exist constants C1 and C2, and a value of ν, such that the
EA is estimated as

||Dλf − Dλ[Mνfϵ]|| < (C1ϵ
1−λ/s + αC2ϵ

β/s)||f ||Hs (12)

Proposition 2 Let Condition 3 be satisfied. Let s, λ ∈ R>0 satisfy s > λ + β > 0, where β is the one
in Condition 3. Let f , fϵ, Dλf , f∗, and Dsf ∗ belong to L1(R) and L2(R), and µ1 and Dλµ1 belong to
L1(R). If ||f − fϵ|| < ϵ||f ||Hs , ||f − f ∗|| < ϵ′||f ||Hs and ||Dλf − Dλf∗|| < ϵ′||f ||Hs for ϵ, ϵ′ ∈ R>0,
then there exist constants C1 and C2, and a value of ν, such that the EA is estimated as

||Dλf − Dλ[Mνfϵ]|| < [ϵ′ + C1(ϵ + ϵ′)1−λ/s + αC2(ϵ + ϵ′)β/s]||f ||Hs (13)

Proofs of these propositions are given in next subsection.

Remark 2 If we put α = 0 in Condition 3, this reduces to Condition 2, and hence Propositions 1 and 2
are valid when Condition 3 is replaced by Condition 2 and α = β = 0. Those are the propositions
presented in [3].

2.3. Proofs of Propositions 1 and 2

In the following proofs, we use the following lemma, which is given, e.g., in ([10] [p. 125]).

Lemma 3 If µ ∈ L1(R) and g ∈ L2(R), then ||µ ∗ g|| ≤ ||µ||1||g||.

Proof of Proposition 1. The EA is estimated as follows:

||Dλf − Dλ[Mνfϵ]|| ≤ T1 + T2 + T3 + T4 (14)

where

T1 = ||Dλf − Dλ[ΦShf ]||, T2 = ||Dλ[ΦShf ] − Dλ[Mν [ΦShf ]]||
T3 = ||Dλ[Mν [ΦShf ]] − Dλ[Mνf ]||, T4 = ||Dλ[Mνf ] − Dλ[Mνfϵ]|| (15)

Here ϕ̂Sh(w) = H(l1πν − |w|), and ΦShf = f ∗ ϕSh. In [3], T1, T3 and T4 are estimated as

T1 =
( 1

2π

∫ ∞

−∞
|w|2λ(1 − ϕ̂Sh(w))(1 + w2)−s · (1 + w2)s |f̂(w)|2dw

)1/2

≤ 1

(l1πν)s−λ
||f ||Hs

T3≤||µ||1 · T1, T4 < νλϵ · ||Dλµ1||1 · ||f ||Hs (16)
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In obtaining the above estimations for T3 and T4, Lemma 3 is used. In a similar way to the above
evaluation of T1, T2 is estimated by using Equation (10), as

T2 =
( 1

2π

∫ ∞

−∞

∣∣∣wλ
[
1 − µ̂1(

w

ν
)
]
ϕ̂Sh(w)f̂(w)

∣∣∣2dw
)1/2

≤
( 1

2π

∫ l1πν

−l1πν

|w|2λ α2|w|2β

ν2β
(1 + w2)−s · (1 + w2)s |f̂(w)|2dw

)1/2

≤ α

νβ
||f ||Hs (17)

By using Equations (16) and (17) in Equation (14), we obtain

||Dλf − Dλ[Mνfϵ]||≤
( A

νs−λ
+

α

νβ
+ Bνλϵ

)
||f ||Hs (18)

where A = (1 + ||µ1||1)( 1
l1π

)s−λ and B = ||Dλµ1||1. The sum of the first and third terms in the right
hand side is minimized when

ν =
((s − λ)A

λBϵ

)1/s

(19)

Then we obtain Equation (12) with

C1 = s
(A

λ

)λ/s( B

s − λ

)1−λ/s

, C2 =
( λB

(s − λ)A

)β/s

(20)

�
Proof of Proposition 2. The EA is expressed as

||Dλf − Dλ[Mνfϵ]|| ≤ ||Dλf − Dλf ∗|| + ||Dλf∗ − Dλ[Mνfϵ]|| (21)

The first term on the right hand side is less than ϵ′ · ||f ||Hs by assumption, and the second term is
estimated as in Proposition 1 by replacing f with f ∗, except in ||f ||Hs , and ϵ by ϵ+ ϵ′, since ||f ∗−fϵ|| <

(ϵ + ϵ′) · ||f ||Hs . Hence we obtain Equation (13). �

3. Mollifiers Based on Wavelets

We use the following three requirements in judging whether the mollifier µν is desirable or not. The
first two were mentioned in [7], as Criterions 1 and 2.

Requirement 1 µ̂1(w) is essentially zero for |w| higher than a threshold frequency.

If this is satisfied, noise reduction is expected, since high frequency contribution is important in noise.
This is concluded from Equation (6).

Requirement 2 µ1(x) is nonnegative for all x ∈ R.

If this is satisfied, the Gibbs phenomenon does not appear.

Requirement 3 The region where µν(x) takes nonzero values is narrow.
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If the region is narrower, the mollified function is less smeared.
In discussing the Gibbs phenomenon, we now use the function f0(x) given by

f0(x) =


−1, −1 ≤ x < 0

1, 0 < x ≤ 1

0, (x = 0 or |x| > 1)

(22)

Requirement 2 is concluded by using the first Equation of (6) for g = f0 when µ1(x) is always
nonnegative, since it follows that |Mνf0(x)| ≤ 1.

Figures 1–3 show the graphs of µ̂1(w), µ1(x) and M8f0(x), for the µ1 that we consider in the
present paper.

Figure 1. µ̂1(w) and µ1(x) for the mollifiers based on the rdH-wavelets with l = 1. The
three curves for up(w) with p = 1, 2, and 3, are shown by thin solid, thick solid, and dashed
lines, respectively.
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Figure 2. (a) M8f0(x) for the mollifiers based on the rdH-wavelet with l = 1, and (b) those
based on the scaled B-spline wavelets of order m = 1, 2. In (a), the three curves for up(w)

with p = 1, 2, and 3, are shown by thin solid, thick solid, and dashed lines, respectively. In
(b), two curves almost overlap. f0(x) is also drawn both in (a) and in (b).
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Figure 3. µ̂1(w) and µ1(x) for the mollifiers based on the scaled B-spline wavelets of order
m = 1, 2, 4, ∞. The curves take greater values as m increases at w = 5 in (a), and at x = 0.2

and x = 1.2 in (b).
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Lemma 4 If Requirement 2 is satisfied for µ1, which appears in Definition 1, then ||µ1||1 = µ̂1(0) = 1

and hence µ1 ∈ L1(R).

3.1. Rapidly Decaying Harmonic Wavelets

We consider rapidly decaying harmonic (rdH-) wavelets, which were presented in [4,5]. We assume
that l ∈ R(0,1], and that ϕ̂1(w) is given by

ϕ̂1(w) =


1, |w| < π − lπ

u(|w| − π), π − lπ ≤ |w| ≤ π + lπ

0, |w| > π + lπ

(23)

Here u(w) ∈ L2([−lπ, lπ]) is assumed to satisfy the conditions that u(0) = 1√
2
, u(−lπ) = 1, u(lπ) = 0

and |u(w)|2 + |u(−w)|2 = 1 for w ∈ R(0,lπ].

Lemma 5 ϕ1 thus defined satisfies Condition 1.

A proof of this lemma is given in Appendix A.
As u(w) for |w| ≤ lπ, we use up(w) for p ∈ Z>0, which are given by

u1(w) =

√
1

2
− 1

2lπ
w , up+1(w) = sin

(π

2
[up(w)]2

)
, p ∈ Z>0 (24)

Lemma 6 For the mollifiers based on the rdH-wavelets, Requirement 1 is satisfied.

Proof. This follows from µ̂1(w) = |ϕ̂1(w)|2 and Equation (23). �

Remark 3 In [3], Meyer’s wavelets were studied, where l = 1
3

and p = 1, 2 and 3. In [3,7], the Gibbs
phenomenon is observed in these cases.

Remark 4 If we put l = 0 in Equation (23), µ̂1(w) = |ϕ̂1(w)|2 = H(π − |w|), and then (Mνg)̂ (w) =

ĝ(w)H(νπ − |w|). This corresponds to truncation of Fourier series, and hence we expect the Gibbs
phenomenon to occur if ĝ(w) takes nonzero values at |w| = νπ.
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Figures 1 and 2a show the graphs for l = 1. In [7], it was argued that the use of l = 1 and
u(w) = u1(w) corresponds to the use of Fejer’s sum in the Fourier series, where the Gibbs phenomenon
does not appear but the convergence is not good. The curve for u1(w) in Figure 1b shows that
Requirement 2 is satisfied, and the corresponding curve in Figure 2a shows a poor convergence. The
last demerit is due to the bumps outside the main peak for this case in µ1(x) seen in Figure 1b.

Figures 1b and 2a show that, when l = 1 and u(w) = u2(w), Requirement 2 is not strictly satisfied
but is almost satisfied and the Gibbs phenomenon does not appear, and the convergence is good. These
figures show also that, when l = 1 and u(w) = u3(w), Requirement 2 is not satisfied and the Gibbs
phenomenon appears.

In [7], it was stated that the best choice is l = 1 and u(w) = u2(w), where noise is reduced and the
Gibbs phenomenon is not observed. In this case, µ1 is given by

µ̂1(w) = (cos2 w

4
)H(2π − |w|), µ1(x) =

1

8πx(1
4
− x2)

sin(2πx) (25)

and hence µ1 ∈ L1(R). Later in Section 4, we adopt this choice as Mollifier 1.

3.2. B-Splines

The scaling function of the Haar wavelet is given by

θ1(x) = H(x)H(1 − x), θ̂1(w) = e−iw/2 ·
sin w

2
w
2

(26)

We construct θm for m ∈ Z>1 from this θ1 by

θm = θm−1 ∗ θ1, θ̂m(w) = θ̂1(w)m, m ∈ Z>1 (27)

This m is shifted by 1 from ([6] [p. 48]). θm+1 is called the B-spline of order m.
Use of ϕ1 = θm for m = 1, m = 2 and m ≥ 2 corresponds to use the Haar, the unorthogonalized

(uo-) Franklin, and the uo-Battle–Lemarie wavelet ([6] [p. 40, p. 48]), respectively.
We here define a shifted Haar wavelet, by its scaling function given by

ρ1(x) = θ1(x +
1

2
) = H(

1

2
− |x|), ρ̂1(w) =

sin w
2

w
2

(28)

We now construct ρm for m ∈ Z>1 from ρ1 by

ρm = ρm−1 ∗ ρ1, ρ̂m(w) = ρ̂1(w)m, m ∈ Z>1 (29)

Adopting ϕ1 = θm, µ1 is given by

µ̂1(w) = ρ̂2m(w) =
(sin w

2
w
2

)2m

(30)

and hence µ1 = ρ2m. In particular, when m = 1, we have µ1 = ρ2, where

ρ̂2(w) =
(sin w

2
w
2

)2

, ρ2(x) = θ2(x + 1) =

{
1 − |x|, |x| ≤ 1

0, |x| > 1
(31)
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When m = 2, we have µ1 = ρ4, where

ρ̂4(w) =
(sin w

2
w
2

)4

, ρ4(x) = θ4(x + 2) =


1
6
[(2 − |x|)3 − 4(1 − |x|)3], |x| ≤ 1

1
6
(2 − |x|)3, 1 < |x| ≤ 2

0, |x| > 2

(32)

as seen in ([11] [Section 4.1]).

Lemma 7 For the mollifiers based on the B-splines, µ1 = ρ2m, for which Requirement 2 is satisfied.

Proof. This follows from the fact that ρm(x) ≥ 0 for all x ∈ R and m ∈ Z>0 by its construction. �

In [7], the choice µ1 = ρ2 was studied. It was noted that the Gibbs phenomenon does not occur and
noise is reduced well, though not very well. In Section 4, we adopt this as Mollifier 2.

Remark 5 In [7], the method of Lanczos’ σ-factor and its multiple applications ([8] [p. 109ff, p. 132])
are called attention as a method of suppressing the Gibbs phenomenon in the Fourier series. It was noted
there that Lanczos’ method corresponds to the present method using ρ1 as the mollifier. Then ρ̂1(w) is
given by Equation (28), and hence noise reduction is not expected by Requirement 1. The extensions of
Lanczos’ method correspond to the present method using ρk for k ∈ Z>1 as the mollifier. Using ρ2 and
ρ4 corresponds to the present studies for m = 1 and m = 2.

3.3. Scaled B-Splines

In Section 3.2, the use of ϕ1 = θm or ρm for m ∈ Z>0 is mentioned. Then µ1 = ρ2m, and as a
probability density function (pdf), it has the variance σ2[ρ2m] = m · σ2[ρ2] = m

6
, by Equation (29) and

the theory of probability. In comparing two choices of µ1, it is desirable that the variances of them are
equal or nearly equal with each other, in the respect of Requirement 3.

For m ∈ Z>0, we now adopt ϕ1(x) = θm(
√

mx)
√

m or ϕ1(x) = ρm(
√

mx)
√

m, so that
ϕ̂1(w) = θ̂m( w√

m
) = θ̂( w√

m
)m or ϕ̂1(w) = ρ̂m( w√

m
) = ρ̂1(

w√
m

)m. Then we have µ1 = pm, where

pm(x) = ρ2m(
√

mx)
√

m, p̂m(w) = ρ̂2m(
w√
m

) = p̂1(
w√
m

)m (33)

Now σ2[pm] = m · σ2[p1] · 1
m

= 1
6
.

By the central limit theorem, as m → ∞, pm(x) approaches the Gaussian pdf with the variance 1
6
, so

that, in this limit,

µ1(x) = p∞(x) =

√
3√
π

e−3x2

, µ̂1(w) = p̂∞(w) = e−w2/12 (34)

If we adopt ϕ1(x) = ρm(
√

mx)
√

m for m ∈ Z>0, in the limit of m → ∞, we have

ϕ1(x) =

√
6√
π

e−6x2

, ϕ̂1(w) = p̂∞(w)1/2 = e−w2/24 (35)

In Figures 3a,b, the graphs of µ̂1(w) and µ1(x), calculated by µ1 = pm and Equations (30)–(33), are
shown for m = 1, 2, 4 and ∞. The curves for m = 3 are not drawn. These are between the curves for
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m = 2 and those for m = 4, and are very close to those for m = 4. The curves of M8f0(x) are shown
for m = 1 and 2 in Figure 2b.

Figure 3a shows that Requirement 1 is well satisfied by the curves for m ≥ 2. Figure 3b shows that
Requirement 2 is satisfied by all the curves, and that Requirement 3 is satisfied slightly better by the
curve for m = 1. The estimations for the curves for m ≥ 2 are nearly equal, but the best of them is for
m = 2. In Section 4, we adopt this as Mollifier 3.

4. Numerical Computation

We are interested in numerically calculating a function that approximates Dλf . The given data are
the value of λ and a function fϵ involving noise, in place of f . We adopt Dλ[Mνfϵ] as an approximation
of Dλf , where Mνfϵ = fϵ ∗ µν . In order to calculate Dλ[Mνfϵ], we only have to choose a mollifier µ1

and a value of the scale ν. The estimations in Section 2.2 guarantee that the error can be made small if
the error ||f − fϵ|| is small. What we can practically do is to do the calculation for a number of values of
ν and to choose a reasonable one among them. We show some results of such an experiment for λ = 1.

In the numerical calculations, we choose sufficiently large values Lx, Lw ∈ Z>0 and N = LxLw, and
consider discrete values of coordinates xk := k

Lx
for k ∈ Z−N/2+1,N/2. The integral

∫ ∞
−∞ f(x)dx of a

function f is approximated by
∑N/2

k=−N/2+1 f(xk)∆xk, where ∆xk := 1
Lx

; See Appendix B.
We now consider the V-shaped function f1(x), which is given by

f1(x) =

{
−1 + |x|, |x| ≤ 1

0, |x| > 1
(36)

and noisy data f1,ϵ(xk) = f1(xk) + 0.1 · rk for k ∈ Z, where rk for each k is a random number chosen
from the uniform distribution in the interval (−1, 1). In Figure 4a,b, the functions f1(x) and f1,ϵ(xk) are
shown. Figure 4c,d shows f ′

1(x) = d
dx

f1(x) and the central difference approximate ḟ1,ϵ(xk) given by

ḟ1,ϵ(xk) :=
f1,ϵ(xk+1) − f1,ϵ(xk−1)

2∆xk

(37)

We calculate Mνf1,ϵ(x) by

Mνf1,ϵ(x) = (f1,ϵ ∗ µν)(x) :=

N/2∑
k=−N/2+1

µν(x − xk)f1,ϵ(xk)∆xk (38)

where we put µν(xk±N) = µν(xk) for k ∈ R(−N/2,N/2]. This quantity is differentiable and its derivative
is denoted by (Mνf1,ϵ)

′(x).
In Figures 5–7, Mνf1(x), Mνf1,ϵ(x), (Mνf1)

′(x) and (Mνf1,ϵ)
′(x) are shown for the following three

choices of mollifier.

Mollifier 1 The mollifier based on the rdH-wavelet using l = 1 and u(w) = u2(w), given by
Equation (25) in Section 3.1, where σ2 = 1

8
and σ ; 0.354.

Mollifier 2 The mollifier based on the Haar wavelet, given by µ1 = ρ2 in Section 3.2, where ρ2 is given
by Equation (31), and σ2 = 1

6
and σ ; 0.408.
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Mollifier 3 The mollifier based on the scaled uo-Franklin wavelet, given by µ1 = p2 in Section 3.3,
where p2 is given by (33) and (32), and σ2 = 1

6
and σ ; 0.408.

Figure 4. (a) f1(x); (b) f1,ϵ(xk); (c) f ′
1(x); (d) ḟ1,ϵ(xk).
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Here σ2 denotes the variance of the mollifier. In each of Figures 5–7, (a) and (b) are for ν = 16, (c)
and (d) are for ν = 8, and (e) and (f) are for ν = 4. We do not observe the Gibbs phenomenon in these
curves. The noise is reduced as ν decreases.

As ν decreases, the noise is depressed, but also the bottom in (a), (c) and (e) becomes rounder, and
the slope at xk = 0 in (b), (d) and (f) becomes smaller. Hence in order to see the original forms shown
in Figure 4a,c clearly, we have to draw the curves for ν = 16, ν = 8 and ν = 4. By Requirement 3, this
smearing is governed by the width of the mollifier µν(x). The width may be estimated by the value of
the standard deviation σ. The value is slightly smaller for the first choice.

When we compare Figures 5–7, we do not observe difference between Figures 5 and 7. In Figure 6,
we observe that the noise reduction is not so good as in the other two.

In Figure 8, we show the curves for the choice specified by l = 1
3

and u(w) = u2(w) for the
rdH-wavelet. In this case, the Gibbs phenomenon is clearly seen, which is expected in Remark 3.
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Figure 5. (a), (c), (e): Mνf1(x), Mνf1,ϵ(x); (b), (d), (f): (Mνf1)
′(x) and (Mνf1,ϵ)

′(x), for
Mollifier 1. The thinner curves show Mνf1(x) and (Mνf1)

′(x).
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Figure 6. (a), (c), (e): Mνf1(x), Mνf1,ϵ(x); (b), (d), (f): (Mνf1)
′(x) and (Mνf1,ϵ)

′(x), for
Mollifier 2. The thinner curves show Mνf1(x) and (Mνf1)

′(x).
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Figure 6. Cont.
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Figure 7. (a), (c), (e): Mνf1(x), Mνf1,ϵ(x); (b), (d), (f): (Mνf1)
′(x) and (Mνf1,ϵ)

′(x), for
Mollifier 3. The thinner curves show Mνf1(x) and (Mνf1)

′(x).
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Figure 7. Cont.
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Figure 8. (a), (c), (e): Mνf1(x), Mνf1,ϵ(x); (b), (d), (f): (Mνf1)
′(x) and (Mνf1,ϵ)

′(x), for
the mollifier µν(x) based on the rdH-wavelet using l = 1

3
and u(w) = u2(w). The thinner

curves show Mνf1(x) and (Mνf1)
′(x).
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5. Concluding Remarks

In Section 4, we study three mollifiers called Mollifiers 1, 2 and 3. In [3], propositions are given for
estimating the fractional derivative of a function, when the function given involves noise. Noting that
those propositions are not applicable to the three mollifiers, we present revised propositions in Section 2.
We here note that the new estimations are applicable to the three mollifiers.

We first confirm that Condition 3 is applicable to Mollifiers 1, 2 and 3, by choosing β satisfying
0 < β ≤ 2, 0 < β ≤ 1 and 0 < β ≤ 2, respectively. We next confirm that the conditions µ1,
Dλµ1 ∈ L1(R) in Propositions 1 and 2 are satisfied if λ satisfies λ > 0, 0 < λ < 2 and 0 < λ < 4,
respectively, for Mollifiers 1, 2 and 3.

The last fact for Mollifier 2 is confirmed by noting that Dλµ1 exists only when λ < 2 for
µ1(x) = ρ2(x) given by Equation (31), since we then have

Dλµ1(x) =
1

Γ(2 − λ)

[
(x + 1)1−λH(x + 1) − 2x1−λH(x) + (x − 1)1−λH(x − 1)

]
(39)

The corresponding calculation for Mollifier 3 is done by using µ1(x) = p2(x) = ρ4(
√

2x)
√

2 with the
aid of Equation (32).

In the present method of mollification, we remove high frequency component of data, regarding it to
be noise. Hence if noise involves low frequency component, it will not be removed, and if high frequency
component in the data is not desired to be erased, the present method will not be useful.

In the present paper, we study an example of calculating the first order derivative. In [3], the derivative
of order 1/2 is calculated as an example, where the mollification based on an orthogonal rapidly decaying
wavelet is used.
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Appendices

A. Proof of Lemma 5

We denote ϕ1,m(x) := ϕ1(x − m) for m ∈ Z. Condition 1 states that (ϕ1,m, ϕ1,m′) = δm,m′ for
m,m′ ∈ Z. By using Equation (23) and ∆ := m − m′, we prove this as follows.

(ϕ1,m, ϕ1,m′)=
1

2π

∫ ∞

−∞
|ϕ̂1(w)|2eiw∆dw

=
1

2π

{∫ lπ

−lπ

u(−s)2ei(−π+s)∆ds +

∫ π−lπ

−π+lπ

eiw∆dw +

∫ lπ

−lπ

u(s)2ei(π+s)∆ds
}

=
1

2π

{∫ π−lπ

−π+lπ

eiw∆dw +

∫ lπ

−lπ

ei(π+s)∆ds
}

=
1

2π

∫ π+lπ

−π+lπ

eiw∆dw = δm,m′
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B. Use of Discrete Fourier Transform (DFT)

In ([12] [Section 12.1]), description is given on the discrete Fourier transform (DFT) and its inverse.
It is assumed that N data hk for k ∈ Z0,N−1 are given. Then the DFT Hn of hk for n ∈ Z0,N−1 is
introduced by the first of the following equations:

Hn =
N−1∑
k=0

hke
2πikn/N , hk =

1

N

N−1∑
n=0

Hne
−2πikn/N (B.1)

The second equation represents hk by the inverse DFT. In ([12] [Section 12.2]), the fast Fourier transform
(FFT) algorithm is presented for the numerical computation of {Hn} from {hk}, and vice versa.

In the present paper, we choose two integers Lx ∈ Z>0 and Lw ∈ Z>0, and put N := LxLw. For a
function g(x) ∈ L1(R), we consider N values g(xk) at xk := k/Lx for k ∈ Z−N/2+1,N/2. Then g(xk) is
assumed to be a periodic series of k with period N . We now put

hk = g(xk), Hn = ĝ(−wn)/∆x, wn = −2πn/Lw (B.2)

where ∆x = 1
Lx

. Then hk and Hn are periodic series of k and n with period N , and the formulas in (B.1)
are reduced to

g(xk)=
1

2π

N/2∑
n=−N/2+1

ĝ(wn)eiwnxk ∆wn, ĝ(wn) =

N/2∑
k=−N/2+1

g(xk)e
−iwnxk ∆xk (B.3)

where ∆wn = 2π/Lw and ∆xk = 1/Lx. By this definition, ĝ(wn) is a periodic series of n with period N .
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