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Abstract:

 The problem of correctly defining geometric objects, such as the curvature, is a hard one in discrete geometry. In 2009, Ollivier defined a notion of curvature applicable to a wide category of measured metric spaces, in particular to graphs. He named it coarse Ricci curvature because it coincides, up to some given factor, with the classical Ricci curvature, when the space is a smooth manifold. Lin, Lu and Yau and Jost and Liu have used and extended this notion for graphs, giving estimates for the curvature and, hence, the diameter, in terms of the combinatorics. In this paper, we describe a method for computing the coarse Ricci curvature and give sharper results, in the specific, but crucial case of polyhedral surfaces.




Keywords:


discrete curvature; optimal transportation; graph theory; discrete Laplacian; tiling




Classification:


MSC 05C10; 68U05; 90B06








1. The Coarse Ricci Curvature of Ollivier

Defining the concept of curvature in the discrete setting, as it exists on smooth manifolds, has been, and still is, a challenging goal, both for theoretical and applied purposes. Whether a discrete analog is meaningful or not lies in the geometric properties one can recover, such as diameter estimates (Myers’ theorem below), isoperimetric or functional inequalities [1], topological properties (e.g., Gauss–Bonnet, Hodge theorem), spectral properties [2,3] or the limit behavior for discretizations. In the intrinsic case (the case of extrinsic curvature and, in particular, discretized surfaces in three-space goes beyond the presented paper, and we refer the reader to [4], for instance.), the angular defect and its counterpart for graphs, the combinatorial curvature (see [1,5,6]) play the role of the Gaussian (or scalar) curvature. Ricci curvature, however, is different in that it is a directional quantity, attached to a point and a tangent vector; therefore, a discrete analog would be edge-based. The earliest attempt at defining a combinatorial Ricci curvature comes from Stone [7,8], who implements Myers’ proof on Jacobi fields in order to get a diameter bound. Forman [9] later defined Ricci curvature by means of the decomposition of the Laplace operator analogous to the Bochner–Weitzenböck formula on smooth manifolds, also deriving a Myers-type theorem. More recently, the methods from probability theory and optimal transportation have made new inroads into smooth and discrete (metric) geometry. This new field is wide and thriving, and we will not attempt to describe it ( In particular, we will leave out the so-called curvature-dimension inequalities; see [10,11].). Rather, we will focus on a surprising notion defined by Ollivier, which we will eventually compare to Forman’s.

Let us first recall the definition of the coarse Ricci curvature, as given originally by Ollivier in [12]. Since our focus is on polyhedral objects, we will use, for greater legibility, the language of graphs and matrices, rather than more general measure theoretic formulations. In this section, we will assume that our base space [image: there is no content] is a simple graph (no loops, no multiple edges between vertices), unoriented and locally finite (vertices at finite distance are in finite number) for the combinatorial distance (the length of the shortest chain between x and [image: there is no content]):



∀x,[image: there is no content]∈V,d(x,[image: there is no content])=infn,n∈N*,∃x1,…,xn−1,x=x0∼x1∼⋯∼xn=[image: there is no content]








where [image: there is no content] stands for the adjacency relation and adjacent vertices are at distance 1. We shall call this distance the uniform distance; the more general case will be considered in Section 4. Polyhedral surfaces (also known as two-dimensional cell complexes) studied afterwards will be seen as a special case of graphs (specifically, they obey the assumption in [1]). We do not require our graphs to be finite, but we will nevertheless use vector and matrix notations (with possibly infinitely many indices).
For any [image: there is no content], a probability measure, μ on X, is a map, [image: there is no content], such that [image: there is no content]. Assume that for any vertex, x, we are given a probability measure, [image: there is no content]. Intuitively, [image: there is no content](y) is the probability of jumping from x to y in a random walk. For instance, we can take [image: there is no content] to be the uniform measure on the sphere (or one-ring) at x, [image: there is no content], namely [image: there is no content](y)=[image: there is no content] if [image: there is no content], where [image: there is no content] denotes the degree of x and zero elsewhere. A coupling or transference plan ξ between μ and [image: there is no content] is a measure on [image: there is no content], whose marginals are μ,[image: there is no content], respectively:



∑[image: there is no content]ξ(y,[image: there is no content])=μ(y)and∑yξ(y,[image: there is no content])=[image: there is no content]([image: there is no content])








Intuitively, a coupling is a plan for transporting a mass of one distributed according to μ to the same mass distributed according to [image: there is no content]. Therefore, [image: there is no content] indicates which quantity is taken from y and sent to [image: there is no content]. Because mass is nonnegative, one can only take from x the quantity, [image: there is no content], no more no less, and the same holds at the destination point, ruled by [image: there is no content]. We may view measures as vectors indexed by V and couplings as matrices, and we will use that point of view later.
The cost of a given coupling ξ is:



c(ξ)=∑y,[image: there is no content]∈Vξ(y,[image: there is no content])d(y,[image: there is no content])








where cost is induced by the distance traveled. The Wasserstein distance, [image: there is no content], between probability measures μ,[image: there is no content] is:


[image: there is no content](μ,[image: there is no content])=infξ∑y,[image: there is no content]∈Vξ(y,[image: there is no content])d(y,[image: there is no content])








where the infimum is taken over all couplings, ξ, between μ and [image: there is no content] (such a set will never be empty, and we will show that its infimum is attained later on). Let us focus on two simple, but important examples:

	(1)

	Let [image: there is no content] be the Dirac measure, [image: there is no content], i.e., [image: there is no content](y) equals one when [image: there is no content] and zero elsewhere. Then, there is only one coupling, ξ, between [image: there is no content] and δ[image: there is no content], and it satisfies [image: there is no content] if [image: there is no content] and z=[image: there is no content] and vanishes elsewhere. Obviously, [image: there is no content](x,[image: there is no content])=d(x,[image: there is no content]).



	(2)

	Consider now [image: there is no content],μ[image: there is no content]1, the uniform measures on unit spheres around x and [image: there is no content], respectively; then, a coupling, ξ, vanishes on (y,[image: there is no content]), whenever y lies outside the sphere, [image: there is no content], or [image: there is no content] outside S[image: there is no content]. So the (a priori infinite) matrix, ξ, has at most dxd[image: there is no content] nonzero terms, and we can focus on the dx×d[image: there is no content] submatrix, ξ(y,[image: there is no content])y∈[image: there is no content],[image: there is no content]∈S[image: there is no content], whose lines sum to [image: there is no content] and columns to 1d[image: there is no content]. For instance, ξ could be the uniform coupling:



ξ=1dxd[image: there is no content]1⋯⋯1⋮⋮1⋯⋯1








where we have written only the submatrix.



	(3)

	A variant from the above measure is the measure uniform on the ball Bx={x}∪[image: there is no content].





Ollivier’s coarse Ricci curvature (also called Wasserstein curvature) between x and [image: there is no content] (which, by the way, need not be neighbors) measures the ratio between the Wasserstein distance and the distance. Precisely, we set:



[image: there is no content](x,[image: there is no content])=1−[image: there is no content]([image: there is no content],μ[image: there is no content]1)d(x,[image: there is no content])








Since [image: there is no content] is the uniform measure on the sphere, then [image: there is no content] compares the average distance between the spheres, [image: there is no content] and S[image: there is no content], with the distance between their centers, which indeed depends on the Ricci curvature in the smooth case (see [12,13] for the analogy with Riemannian manifolds, which prompted this definition).
We will rather use the definition of Lin, Lu and Yau [14] (see also Ollivier [13]) for a smooth time variable, t: let [image: there is no content] be the lazy random walk:



[image: there is no content](y)=1−tify=xtdxify∈[image: there is no content]0otherwise








so that [image: there is no content]=(1−t)[image: there is no content]+t[image: there is no content] interpolates linearly between the Dirac measure and the uniform measure on the sphere (in [14], a different notation is used: the lazy random walk is parametrized by [image: there is no content], and the limit point corresponds to [image: there is no content]). We let [image: there is no content](x,[image: there is no content])=1−[image: there is no content]([image: there is no content],μ[image: there is no content]t)d(x,[image: there is no content]) and [image: there is no content](x,[image: there is no content])→0 as [image: there is no content]. We then set:


[image: there is no content](x,[image: there is no content])=lim inf[image: there is no content][image: there is no content](x,[image: there is no content])t








and we will call [image: there is no content] the (asymptotic) Ollivier–Ricci curvature. The curvature, [image: there is no content], is attached to a continuous Markov process, whereas [image: there is no content] corresponds to a time-discrete process (however, both approaches are equivalent, by considering weighted graphs and allowing loops ( i.e., weights [image: there is no content]). See [2] and also §4 for weighted graphs). Lin, Lu and Yau [14] prove the existence of the limit, [image: there is no content](x,[image: there is no content]), using concavity properties. In the next section, we give a different proof by linking the existence to a linear programming problem with convexity properties.
The relevance of such a definition comes from the analogy with Riemannian manifolds, but can also be seen through its applications, e.g., the existence of an upper bound for the diameter of X depending on [image: there is no content] (see Myers’ theorem below).



2. A Linear Programming Problem

In the case of graphs, the computation of [image: there is no content] is surprisingly simple to understand and implement numerically. Recall that a coupling, [image: there is no content], between [image: there is no content] and μ[image: there is no content]t is completely determined by a (dx+1)×(d[image: there is no content]+1) submatrix, and henceforward, we will identify [image: there is no content] with this submatrix. A coupling is actually any matrix in R(dx+1)(d[image: there is no content]+1) with nonnegative coefficients, subject to the following t-dependent linear constraints: ∀y∈Bx,⟨[image: there is no content],[image: there is no content]⟩=[image: there is no content](y) and ∀[image: there is no content]∈B[image: there is no content],⟨[image: there is no content],C[image: there is no content]⟩=μ[image: there is no content]t([image: there is no content]), for all [image: there is no content] and [image: there is no content]∈B[image: there is no content], where [image: there is no content] and C[image: there is no content] are the following matrices:



[image: there is no content]=⋯0⋯⋯1⋯⋯1⋯0⋯⋯⋯0⋯⋯,C[image: there is no content]=⋮1⋮⋮0⋮00⋮⋮⋮⋮⋮1⋮⋮








⟨M,N⟩=trtMN is the standard inner product between matrices and tM denotes the transpose of M. We will write the nonnegativity constraint, ⟨Ey[image: there is no content],[image: there is no content]⟩≥0, where Ey[image: there is no content] is the basis matrix, whose coefficients all vanish, except at (y,[image: there is no content]). The set of possible couplings is therefore a bounded convex polyhedron, [image: there is no content], contained in the unit cube [0,1](dx+1)(d[image: there is no content]+1). In the following, we will also need the limit set K0={Ex[image: there is no content]}, which contains a unique coupling (see Case 1 above).
In order to compute [image: there is no content], we want to minimize the cost function, c, which is actually linear:



c([image: there is no content])=∑y,[image: there is no content]∈V[image: there is no content](x,y)d(x,y)=∑y∈Bx,[image: there is no content]∈B[image: there is no content][image: there is no content](x,y)d(x,y)=⟨[image: there is no content],D⟩








where D stands for the distance matrix restricted to Bx×B[image: there is no content], so that D is the (constant) [image: there is no content] gradient of c. Clearly, the infimum is reached, and minimizers lie on the boundary of [image: there is no content]. Then, either the gradient D is perpendicular to some facet of [image: there is no content]. The minimizer can be freely chosen on that facet, or not, and the minimizer is unique and lies on a vertex of [image: there is no content]. Moreover the Kuhn–Tucker theorem ([15], part VI) gives a characterization of minimizers in terms of Lagrange multipliers (a.k.a. Kuhn–Tucker vectors): [image: there is no content] minimizes c on [image: there is no content] if and only if there exists (λy)[image: there is no content], (λ[image: there is no content]′)[image: there is no content]∈B[image: there is no content] and (νy[image: there is no content])y∈Bx,[image: there is no content]∈B[image: there is no content], such that:


∇c=D=∑yλy[image: there is no content]+∑[image: there is no content]λ[image: there is no content]′Cy+∑[image: there is no content],[image: there is no content]νy[image: there is no content]Ey[image: there is no content]withνy[image: there is no content]≥0



(1)




and:


∀y,[image: there is no content],νy[image: there is no content]⟨Ey[image: there is no content],[image: there is no content]⟩=νy[image: there is no content][image: there is no content](y,[image: there is no content])=0



(2)




meaning that the Lagrange multipliers, νy[image: there is no content], have to vanish unless the inequality constraint is active (or saturated): [image: there is no content](y,[image: there is no content])=0. As a consequence: (i) finding a minimizer is practically easy thanks to numerous linear programming algorithms; and (ii) proving rigorously that a given [image: there is no content] is a minimizer requires only writing the Relations (1) and (2) for [image: there is no content]∈[image: there is no content].
The non-uniqueness is quite specific to the [image: there is no content] metric, when cost is proportional to length and, therefore, linear instead of strictly convex (instead of, say, length squared as in the 2-Wasserstein metric, [image: there is no content]). It corresponds to the following geometric fact: transporting mass m from x to z is equivalent in cost to transporting the same mass, m, from x to y and from y to z, as long as y is on a geodesic from x to z (and [image: there is no content], since we prohibit negative mass).

Computing the Olivier–Ricci curvature requires a priori taking a derivative; however, it is actually much simpler, due to the following lemma, which also proves its existence, without the need for subtler considerations, like in [14]:




Lemma 1. 
For [image: there is no content] small enough, convex sets [image: there is no content] and [image: there is no content] are homothetic. More precisely,



[image: there is no content]−Ex[image: there is no content]=st([image: there is no content]−Ex[image: there is no content])













Proof. 
First, write the constraint corresponding to the lazy random walk as [image: there is no content](y)=[image: there is no content](y)+t[image: there is no content], where [image: there is no content] and [image: there is no content]=[image: there is no content] iff [image: there is no content]. Let [image: there is no content] lie in [image: there is no content] and [image: there is no content] be positive. Then, [image: there is no content]=st[image: there is no content]+1−stEx[image: there is no content] lies in [image: there is no content]. Indeed:



⟨[image: there is no content],[image: there is no content]⟩=st([image: there is no content](y)+t[image: there is no content])+1−st[image: there is no content](y)=[image: there is no content](y)+s[image: there is no content]=μxs(y)










⟨C[image: there is no content],[image: there is no content]⟩=st(δ[image: there is no content]([image: there is no content])+tΔ[image: there is no content][image: there is no content])+1−stδ[image: there is no content]([image: there is no content])=δ[image: there is no content]([image: there is no content])+sΔ[image: there is no content][image: there is no content]=μ[image: there is no content]s([image: there is no content])








We see immediately that ξy[image: there is no content]s=stξy[image: there is no content]t≥0 whenever (y,[image: there is no content])≠(x,[image: there is no content]). Moreover, ξx[image: there is no content]s=stξx[image: there is no content]t+1−st≥0, provided [image: there is no content]. All the previous arguments hold in generality, but the nonnegativity of ξx[image: there is no content]s needs a different argument when [image: there is no content]. Because [image: there is no content] and μ[image: there is no content]t are probability measures, ∑y[image: there is no content](y)=∑[image: there is no content]μ[image: there is no content]t([image: there is no content])=1, and for any t,


0≤∑y≠x∑[image: there is no content]≠[image: there is no content]ξy[image: there is no content]t=∑y≠x([image: there is no content](y)−ξy[image: there is no content]t)=(1−[image: there is no content](x))−∑y≠xξy[image: there is no content]t=1−[image: there is no content](x)−μ[image: there is no content]t([image: there is no content])−ξx[image: there is no content]t








consequently:


ξx[image: there is no content]t≥[image: there is no content](x)+μ[image: there is no content]t([image: there is no content])−1=1+t([image: there is no content]+Δyy)=1−2t



(3)




Hence, for [image: there is no content], ξx[image: there is no content]t is positive for any matrix, [image: there is no content], satisfying the equality constraints (and the same holds for [image: there is no content], using again that [image: there is no content]).
The significance of this positivity is that the constraint ξx[image: there is no content]t≥0 is never saturated; there will always be some mass transported from x to [image: there is no content] if t is small enough, because the other vertices cannot hold all the mass from x. ☐






Remark 1. 
The lemma holds true for [image: there is no content] small enough, as long as [image: there is no content] is uniformly bounded on X, a property that we will meet later. Equation (3) generalizes, and we see easily that if |Δx[image: there is no content]|≤C, then the homothety property holds for all [image: there is no content].






Proposition 2. 
The Ollivier–Ricci curvature, [image: there is no content], is equal to any quotient [image: there is no content]/t for t small enough (e.g., [image: there is no content]).






Proof. 
As a consequence of Lemma 1, the gradient, D, has the same projection on the affine space determined by the equality constraints, and the minimizers can be chosen to be homothetic for [image: there is no content] small enough. If ([image: there is no content]) denotes this family of homothetic minimizers:



[image: there is no content]([image: there is no content],μ[image: there is no content]t)=⟨D,[image: there is no content]⟩=⟨D,tt0ξt0+1−tt0Ex[image: there is no content]⟩=tt0[image: there is no content](μxt0,μ[image: there is no content]t0)+1−tt0d(x,[image: there is no content])










[image: there is no content](x,[image: there is no content])=1−[image: there is no content]([image: there is no content],μ[image: there is no content]t)d(x,[image: there is no content])=1−tt0[image: there is no content](μxt0,μ[image: there is no content]t0)d(x,[image: there is no content])−1−tt0=tt01−[image: there is no content](μxt0,μ[image: there is no content]t0)d(x,[image: there is no content])=tt0κt0








So, [image: there is no content] is linear for t small enough and:


[image: there is no content](x,[image: there is no content])=d[image: there is no content](x,[image: there is no content])dt|t=0=κt0(x,[image: there is no content])t0  ☐










As a consequence, computing [image: there is no content](x,[image: there is no content]) is quite simple: one needs only solve the linear problem for t small enough (e.g., [image: there is no content]).




Remark 2. 
This property linking the time-continuous Olivier–Ricci curvature to the time-discrete curvature is true in generality, as soon as the random walk is lazy enough, i.e., the probability of staying at x is large enough (see the remark of Ollivier [12] at the end of Section 1.1, [16] for time-continuous and space-discrete Markov chains with exponential jump times and, also, [17] for more details on Ollivier–Ricci curvature in the continuous case).



Finally, we note that this optimization problem is an instance of integer linear programming, and as a consequence, the solution is integer-valued up to a multiplicative constant:




Theorem 3. 
For any pair of adjacent vertices, x,[image: there is no content], with degrees [image: there is no content], and [image: there is no content], there exists an optimal coupling, [image: there is no content], with coefficients in [image: there is no content]; consequently, [image: there is no content](x,[image: there is no content]) and [image: there is no content](x,[image: there is no content]) lie in [image: there is no content].






Proof. 
Let us first rewrite the constraints above as the following single linear equation. Numbering [image: there is no content] and [image: there is no content], the neighbors of x and [image: there is no content]=x0′ and [image: there is no content] the neighbors of [image: there is no content], we consider the vector X=([image: there is no content](x0,x0′),…,[image: there is no content](x0,x[image: there is no content]′),[image: there is no content](x1,x0′),…,[image: there is no content](x1,x[image: there is no content]′),…,[image: there is no content](xd,x0′),…,[image: there is no content](xd,x[image: there is no content]′)). The constraints amounts to [image: there is no content] for the following data:



1⋯1⋯1⋯111⋱⋯⋱11[image: there is no content](x0,x0′)⋮[image: there is no content](x0,x[image: there is no content])[image: there is no content](x1,x0′)⋮[image: there is no content](xd,x0′)⋮[image: there is no content](xd,x[image: there is no content])=μx0t(x0)⋮μx0t(xd)μx0′t(x0′)⋮μx0′t(x[image: there is no content]′)








The integral matrix, A, is totally unimodular: Every square, non-singular submatrix, B of A, has determinant [image: there is no content]. Indeed, A satisfies the following requirements:

	the entries of A lie in [image: there is no content];


	A has no more than two nonzero entries on each column;


	its rows can be partitioned into two sets [image: there is no content] and [image: there is no content], such that if a column has two entries of the same sign, their rows are in different sets.




Then, whenever b is integer-valued, the vertices of the constraint set {X∈R+(d+1)([image: there is no content]+1),AX=b} are also integer-valued. We refer the reader to classical results of integer linear programming, which can be found in [18].
In our setting, choose [image: there is no content], so that the coefficients of b lie in [image: there is no content]. By the above remarks, so do the coefficients of [image: there is no content], since an optimal coupling can be chosen to be a vertex of the constraint set. Since the distance matrix is also integer-valued, the cost, [image: there is no content], lies in [image: there is no content], and for two neighbors, x,[image: there is no content], [image: there is no content](x,[image: there is no content])∈1Nd[image: there is no content]N. The curvature [image: there is no content](x,[image: there is no content]) is obtained by diving by [image: there is no content], hence the result. The reasoning also holds for [image: there is no content]. ☐





3. Curvature of Discrete Surfaces

Estimates for the Ollivier–Ricci curvature are given in [11,14] ([image: there is no content] in the first paper, [image: there is no content] in the second) for general graphs and for some specific ones, such as trees. Essentially, they rely on studying one coupling, which gives an upper bound on [image: there is no content], hence a lower bound on the curvature, which may or may not be optimal. We will give below exact values, albeit in the specific setting that concerns us: polyhedral surfaces. Furthermore, we will always assume that vertices x,[image: there is no content] are neighbors; in other words, we see [image: there is no content] as a function on the edges. Actual computing of [image: there is no content](x,[image: there is no content]) for more distant vertices is, of course, possible, but much more complicated. However, it should be noted that [image: there is no content] trivially enjoys a concavity property, as a direct consequence of the triangle inequality on the distance, [image: there is no content]: if x=x0,x1,…,xn=[image: there is no content] is a geodesic path from x to [image: there is no content], then:



[image: there is no content](x0,xn)≥∑i=1nd(xi−1,xi)d(x0,xn)[image: there is no content](xi−1,xi)=1d(x0,xn)∑i=1n[image: there is no content](xi−1,xi)



(4)




the latter equality holding only in the uniform metric, because [image: there is no content] between neighbors. This inequality passes to the limit and applies to [image: there is no content], as well. The concavity property implies in particular that if [image: there is no content] is bounded below on all edges, then [image: there is no content](x,y) has the same lower bound on all couples, [image: there is no content].
We use this fact to give a trivial proof of Myers’ theorem (see also [19] for the smooth case).




Theorem 4 
(Ollivier [12], prop. 23). If [image: there is no content] is bounded below on all edges by a positive constant, ρ, then S is finite, and its diameter is bounded above by [image: there is no content].






Proof. 
Using the triangle inequality again on [image: there is no content]:



[image: there is no content]=[image: there is no content]([image: there is no content],δy)≤[image: there is no content]([image: there is no content],[image: there is no content])+[image: there is no content]([image: there is no content],μyt)+[image: there is no content](μyt,δy)≤Jt(x)+(1−[image: there is no content](x,y))d(x,y)+Jt(y)








where Jt(x)=[image: there is no content]([image: there is no content],[image: there is no content]) is the jump at x, which is also the expectation, E[image: there is no content](d(x,.)), of the distance to x with respect to the probability, [image: there is no content]. For the uniform metric [image: there is no content], so that:


d(x,y)≤2[image: there is no content](x,y)≤2ρ








which gives the upper bound for the diameter. Since S is locally finite, it is therefore finite. ☐


We will now give our results and compare them with those obtained either by Jost and Liu [11] or by using Forman’s definitions of Ricci curvature [9].

As the first example, let us give the Ollivier–Ricci curvature for the Platonic solids (with [image: there is no content] as a comparison, corresponding to the non-lazy random walk) in Table 1:

Table 1. Ollivier–Ricci (asymptotic and discrete at time 1 for the Platonic solids, along Forman’s version of Ricci curvature (divided by three, to be comparable). Values in bold are sharp with respect to Myers’ theorem.










	
	Tetrahedron
	Cube
	Octahedron
	Dodecahedron
	Icosahedron





	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	0
	[image: there is no content]



	[image: there is no content]
	[image: there is no content]
	0
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	[image: there is no content] Forman
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	0
	0










This stresses the difference between [image: there is no content] (used in [11]) and [image: there is no content], which exhibits, in our opinion, a more geometric (and less graph-theoretic) behavior. In particular, the values of [image: there is no content] are sharp with respect to Myers’ theorem for the cube and the octahedron. Forman refers to the combinatorial Ricci curvature for unit weights defined in [9], which also satisfies a Myers’ theorem, albeit with a different constant: the diameter is bounded above by [image: there is no content], hence our choice to divide it by three, to allow comparison between with the Ollivier–Ricci curvature. Forman’s Ricci curvature is sharp only for the cube.

Tessellations by regular polygons fit well in this framework, since all edges have the same length. Regular tilings are the triangular, square and hexagonal tiling. The triangular tiling corresponds to the [image: there is no content] case (see Table 2 below) and has zero Ollivier–Ricci curvature, and so does the square tiling. However, the hexagonal lattice has negative Ollivier–Ricci curvature equal to [image: there is no content].

Table 2. Asymptotic Ollivier–Ricci curvature, [image: there is no content](x,[image: there is no content]), according to respective degrees of x and [image: there is no content], compared to the Time 1 Ollivier–Ricci [image: there is no content], as well as Forman’s Ricci curvature (divided by three for comparison purposes); [image: there is no content]≥ refers to the estimates of Jost and Liu.


	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	Others





	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	[image: there is no content]≥
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	5[image: there is no content]−23ifd=34d+6[image: there is no content]−2ifd≥4



	[image: there is no content]Forman
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	−[image: there is no content]
	[image: there is no content]










The method can also be applied to semiregular tiling, but those are only vertex-transitive in general and not edge-transitive (with the exception of the trihexagonal tiling); hence, one must treat separately the different types of edges. For example, for the snub square tiling, [image: there is no content]=0 for an edge between two triangles, but [image: there is no content]=−1/5 for an edge between a triangle and a square.

The results above can easily be derived using making computation by hand or by using integer linear programming software (a source file with all the above examples to be used with open source software Sage [20] is attached to the article). The next results however are of a more general nature, with variable degrees, and cannot be obtained by simple computations. We consider adjacent vertices x,[image: there is no content] on a triangulated surface with the following genericity hypotheses:


	(B)

	x,[image: there is no content] are not on the boundary;



	(G)

	for any [image: there is no content] and [image: there is no content]∈star([image: there is no content]), there is a geodesic of length d(y,[image: there is no content]) in star(x)∪star([image: there is no content]).





Under hypothesis (G), the distance matrix, D, in X agrees with its restriction to star(x)∪star([image: there is no content]); hence, all computations are local. For that genericity assumption to fail, one needs very small loops close to x and [image: there is no content], which can usually be excluded as soon as the triangulation is fine enough. For instance, the tetrahedron and the octahedron do not satisfy (G) (see remark 6). Furthermore, hypothesis (B) prohibits the vertex, x (or [image: there is no content]), to be of degree three, because it would have to lie on the boundary, unless its two other neighbors belong to the same face, therefore contradicting (G). We conclude with the following.



Theorem 5. 
Under the genericity Hypotheses (B) and (G), the Ollivier–Ricci curvature depends only on the degrees, [image: there is no content], of vertices x,[image: there is no content] and is given in Table 2.






Proof. 
To compute the optimal cost, [image: there is no content]([image: there is no content],μ[image: there is no content]t), we need only find a coupling, [image: there is no content], for which the Kuhn–Tucker relation (1) holds. Thanks to the genericity Hypothesis (G), we can restrict ourselves to finite matrices (on star(x)∪star([image: there is no content])). Details are given in the Section 5. Note that Hypothesis (B) makes for simpler calculations, but they could obviously be extended to deal with the presence of a boundary. Despite its incompatibility with our genericity hypotheses, we include the [image: there is no content] case for the sake of completeness. ☐



Table 2 gives [image: there is no content] and [image: there is no content] as a function of respective degrees [image: there is no content]. Because [image: there is no content](x,[image: there is no content])=[image: there is no content]([image: there is no content],x), we may assume without loss of generality that [image: there is no content]. We compare with Forman’s expression and also to the lower bound:



♯(x,[image: there is no content])[image: there is no content]−1−1d−1[image: there is no content]−♯(x,[image: there is no content])d+−1−1d−1[image: there is no content]−♯(x,[image: there is no content])[image: there is no content]+








given by Jost and Liu [11] for general graphs, where ♯(x,[image: there is no content]) is the number of triangles incident to the edge (x[image: there is no content]), which, under our hypotheses, is always equal to two. Jost and Liu conclude that the presence of triangles improves the lower Ricci bound. We see here that when there are only triangles, one obtains an actual value, which differs from their lower bound as soon as [image: there is no content].



Remark 3. 
1. The [image: there is no content] case is given here, although it contradicts either (B) or (G), the latter being the tetrahedron computed above; similarly, the [image: there is no content] case is excluded.


	2.

	Zero Ollivier–Ricci curvature is attained only with degrees [image: there is no content] (regular triangular tiling), [image: there is no content] and [image: there is no content].









4. Varying Edge Lengths

While many authors have focused on the graph theory, the case of polyhedral surfaces is somewhat different: the combinatorial structure is more restrictive, as we have seen above, but the geometry is more varied. In particular, edge lengths [image: there is no content] may be different from one. This is partially achieved in the literature [11,14] by allowing weights on the edges, which amounts to changing the random walk, but we think the geometry should intervene at two levels: measure and distance. We will present here a general framework to approach the problem, using the Laplace operator, which depends on both the geometric and the combinatorial structure of S. One must also note the ambiguous definition of the Ollivier–Ricci asymptotic curvature, which plays the role of a length in Myers’ theorem, and yet, its definition makes it a dimensionless quantity. Indeed multiplying all lengths by a constant λ will not change [image: there is no content] (since [image: there is no content] is multiplied by λ, as well).

In the following, we assume that S is a polyhedral (or discrete) surface with set of vertices V, edges E and faces F. Furthermore, S is not only locally finite, but its vertices have a maximum degree, [image: there is no content] ([image: there is no content] denotes the minimal degree, which is at least two for surfaces with boundary and three for surfaces without boundary). The geometry of S is determined by the geometry of its faces, namely an isometric bijection between each face, f, and a planar face of identical degree, with the compatibility condition that edge lengths measured in two adjacent faces coincide. Then, two natural notions of length arise: (i) the combinatorial length, which counts the number of edges along a path; and (ii) the metric length, where each edge length is given by the geometry. Each notion of length yields a different distance between vertices: the combinatorial distance, [image: there is no content], which we have used above, and the metric distance, d. Note that if each face is assumed to be a regular polygon with edges of length one, then both distances agree, and metric theory coincides with graph theory. We will make the following assumption on the geometry: the distances, d and [image: there is no content], are metrically equivalent: ∃C,C−1[image: there is no content]≤d≤C[image: there is no content]. Such a hypothesis holds if the lengths of the edges are uniformly bounded above and below; in particular, the aspect ratio is bounded (this also rules out extremely large or extremely small faces, which could happen with only the bounded aspect ratio).

We consider a differential operator, Δ (a Laplacian, see [21]) determined by its values, [image: there is no content], for vertices [image: there is no content] and the usual properties (note that our sign convention is such that the Laplacian is a negative operator; [21] uses the opposite):


	(a)

	[image: there is no content]>0 whenever [image: there is no content];



	(b)

	[image: there is no content]=0 whenever [image: there is no content] and [image: there is no content] (locality property);



	(c)

	∑y[image: there is no content]=0, which implies that [image: there is no content]<0 (note that the sum is finite, due to the previous assumption and the local finiteness of S).





Often, this operator is obtained by putting a weight [image: there is no content] on each edge [image: there is no content]. The degree at x is then the sum dx=∑[image: there is no content]w[image: there is no content] and [image: there is no content]=w[image: there is no content]/dx. Obviously, property (c) implies [image: there is no content]. The case studied above corresponds to a graph with all weights equal to one (therefore, unweighted), and the corresponding Laplace operator is called the harmonic Laplacian [image: there is no content].
The Laplacian is not a priori symmetric, i.e., [image: there is no content]-self-adjoint (though it could be made so with respect to some metric on vertices). Thanks to the finiteness assumption (b), we can define iterates [image: there is no content] of Δ for integer k, and the [image: there is no content] coefficient (not to be confused with ([image: there is no content])k) is:



Δ[image: there is no content]k=∑z1,…,zk−1Δxz1Δz1z2⋯Δzk−1y








the sum being taken on all paths of length k on S. By direct recurrence, we see that our boundedness hypotheses imply the bound |Δ[image: there is no content]k|≤2k. Indeed,


[image: there is no content]








As a consequence, the heat semigroup etΔ=∑k=0∞tkk![image: there is no content] is well defined. It acts on measures and defines the image measure δxt=[image: there is no content]etΔ of the Dirac measure at x by:


δxt(y)=∑z[image: there is no content](z)(etΔ)zy=(etΔ)[image: there is no content]=[image: there is no content](y)+O(t2)








where [image: there is no content](y)=[image: there is no content](y)+t[image: there is no content] is the lazy random walk studied above (for the harmonic Laplacian, but results hold in the general case). The random walks, [image: there is no content], have finite first moment, as can be inferred from the proof of the following.



Proposition 6. 
The Ollivier–Ricci curvature depends only on the first order expansion of the random walk:



lim[image: there is no content]1t1−[image: there is no content](δxt,δyt)[image: there is no content]=lim[image: there is no content]1t1−[image: there is no content]([image: there is no content],μyt)[image: there is no content]













Proof. 
Consider any coupling, ξ, that transfers mass from points at (uniform) distance [image: there is no content] from x of at least two, to x and its neighbors. If the vertex, y, is at [image: there is no content]-distance k from x, then Δ[image: there is no content]ℓ=0 for [image: there is no content] and:



|δxt(y)|=∑ℓ≥ktℓℓ!Δ[image: there is no content]ℓ≤∑ℓ≥k(2t)ℓℓ!≤(2t)kk!e2t








The points at uniform distance k from x are at most [image: there is no content] numerous, and using the equivalence between distances, they will be moved at most by [image: there is no content] to x or one of its neighbors:


[image: there is no content](δxt,[image: there is no content])≤∑k=2∞C(k+1)[image: there is no content](2t)kk!e2t≤3Ce2t2∑k=2∞(2t[image: there is no content])k(k−1)!=3C[image: there is no content]te2t∑k=1∞(2t[image: there is no content])kk!≤3C[image: there is no content]t2e2te2t[image: there is no content]=O(t2)








Since:


|[image: there is no content](δxt,δyt)−[image: there is no content]([image: there is no content],μyt)|≤[image: there is no content](δxt,[image: there is no content])+[image: there is no content](δyt,μyt)=O(t2)








we conclude that both limits coincide. ☐


As a consequence, it is natural to replace in the section above the random walk by [image: there is no content]=[image: there is no content]+tΔx,., for some definition of the Laplacian (see [22,23,24]). However, in order to recover the geometric properties above, one needs to normalize the random walk, [image: there is no content], so that the jump [image: there is no content], i.e., the average distance of points jumping from x should be t. That amounts to setting:



[image: there is no content](y)=[image: there is no content](y)+t[image: there is no content]∑z∼xd(x,z)Δxz








equivalently, one might renormalize the Laplacian accordingly. As a consequence, [image: there is no content] now behaves as the inverse of a length, as expected. Furthermore, Myers’ theorem 4 is still valid. Indeed, while Equation (4) no longer holds when edge lengths vary, it remains true that [image: there is no content](x,y)≥ρ if [image: there is no content] is bounded below on all edges by ρ.
An example: The rectangular parallelepiped.

For the rectangular parallelepiped with edges of lengths [image: there is no content], the Ollivier–Ricci curvature is:



[image: there is no content]=1a−1[image: there is no content]








along an edge of length a, and others follow (see §5.4). For the cube, we recover [image: there is no content]=23a. If a is the length of the longest edge, an application of Myers’ theorem yields an upper bound for the diameter [image: there is no content] times greater than its actual value, [image: there is no content].



Remark 4. 
A more general theory can be developed with non-local operators, by replacing local finiteness (property (b) above) with convergence requirements. Another, still finite, natural generalization of (b) is to allow [image: there is no content]≠0 whenever x and y belong to the same face. For a triangulated manifold, this amounts to the usual neighborhood relation, but as soon as some faces have more than three edges, this makes a difference (e.g., the cube). Note, however, that the corresponding Myers’ theorem needs to be adjusted, as well, since the jump will change accordingly. In our experiments on Platonic solids with [image: there is no content], a uniform measure on vertices of [image: there is no content], we did not find better diameter bounds with this method.






Remark 5. 
One might also be tempted to compute Ollivier–Ricci curvature on the surface, S, seen as a smooth flat surface with conical singularities (so that distances are computed between points on the faces). If vertices x,[image: there is no content] both have nonnegative Gaussian curvature (a.k.a. angular defect [image: there is no content]), then by a computation analog to Ollivier’s [12], we infer:



[image: there is no content]=4312π−α′sinα′2+12π−αsinα2








which differs from our previous computations. This emphasizes that this setup is somewhere in between the smooth and the discrete setup.




5. Appendix: Solutions for the Linear Programming Problem on Generic Triangulated Surfaces

We give here the Lagrange multipliers for the linear programming problem and the corresponding minimizer. The regular tetrahedron is given first as an example of the method, and the main result consists of analyzing the various cases according to their (arbitrary) degrees. Cases with degrees less or equal to six can easily be computed by a machine, and we refer to the Sage program attached.


5.1. The Regular Tetrahedron

The distance matrix for Vertices 1, 2, 3 and 4 is:



[image: there is no content]








and the optimal coupling from [image: there is no content] to [image: there is no content] shifts mass [image: there is no content] from Vertex 1 to Vertex 2 (provided [image: there is no content]), leaving other vertices untouched:


[image: there is no content]=t3[image: there is no content]000t30000t30000t3withcost⟨[image: there is no content],D⟩=1−4t3








with Lagrange multipliers:


[image: there is no content]








the last matrix corresponding to a linear combination of Ey[image: there is no content] with positive coefficients νy[image: there is no content], only where [image: there is no content](y,[image: there is no content])=0. Conversely, it is straightforward from νy[image: there is no content][image: there is no content](y,[image: there is no content])=0 to deduce that [image: there is no content] is unique. Hence [image: there is no content]=4t3 and [image: there is no content]=4/3. The case [image: there is no content] cannot be dealt with in the same way, but admits the following optimal transference plan:


ξ1=0000[image: there is no content]00000[image: there is no content]0000[image: there is no content],D=L2−C2+0211000012011210








with cost [image: there is no content] and, therefore, curvature [image: there is no content]=2/3.



Remark 6. 
The case of degrees [image: there is no content] differs only in that the distance between Vertices 3 and 4 is equal to two instead of one. However, the optimal couplings found above do not move mass from 3 nor from 4. Hence, it is also optimal for the [image: there is no content] case.





5.2. Generic Triangulated Surfaces

We analyze now generic triangulated surfaces according to the degrees [image: there is no content] of x and [image: there is no content]. In our matrix notation, x will have an index 1 and [image: there is no content] an index 2. Since x and [image: there is no content] are not on the boundary, all edges containing them belong to two triangular faces. In particular, there are two vertices, with indices 3 and 4, which are neighbors of both x and [image: there is no content] (see Figure 1). There remains [image: there is no content] exclusive neighbors of x (that are not neighbors of [image: there is no content]), ordered from 5 to [image: there is no content], along the border of [image: there is no content], and [image: there is no content] exclusive neighbors of [image: there is no content], ordered from [image: there is no content] to [image: there is no content] along the border of star([image: there is no content]).

Figure 1. Generic description of [image: there is no content].



[image: Axioms 03 00119 g001 1024]







The distance matrix is:



D=01111011110211201⋯⋯⋯12⋯⋯⋯212⋯⋯22⋯⋯212⋯⋯⋯21⋯⋯⋯12⋯⋯2112⋯⋯21212⋮⋮2⋮⋮⋮⋮⋮⋮⋮⋮21221012⋯21⋱⋱⋱⋮2⋱⋱⋱2⋮⋱⋱⋱12⋯2103⋯⋯32⋮3⋮⋮3⋮23⋯⋯32121⋮⋮⋮2⋮⋮⋮⋮⋮⋮2⋮21123⋯⋯32⋮3⋮⋮3⋮23⋯⋯3012⋯21⋱⋱⋱⋮2⋱⋱⋱2⋮⋱⋱⋱12⋯210








The form of the distance matrix is somewhat different when d or [image: there is no content] are very small. Indeed, due to the genericity assumption (B), both degrees are larger or equal to 4. We see easily that the distance from an exclusive neighbor, y, of x to an exclusive neighbor, [image: there is no content], of [image: there is no content] is in general ( i.e., for [image: there is no content] neighbors, y, and [image: there is no content]−5 neighbors, [image: there is no content]) obtained by a geodesic passing though x and [image: there is no content]. However, when [image: there is no content] or [image: there is no content]<6, “shortcuts” predominate, hence the need for ad hoc computations.
Applying the constraints, we see that any coupling, and, in particular, the optimal coupling, takes the following block form:



[image: there is no content]=*0*0*000








so, we may as well restrict to the Lines 1 through [image: there is no content] and Columns 1, 2, 3 and 4 and [image: there is no content] through d+[image: there is no content]−2 of matrices D and [image: there is no content]. Then, the (d+1)×([image: there is no content]+1) submatrix [image: there is no content] of D can be written (for d,[image: there is no content]≥5):


[image: there is no content]=01111011110211202⋯⋯⋯21⋯⋯⋯12⋯⋯2112⋯⋯21212⋮⋮2⋮⋮⋮⋮⋮⋮⋮⋮212213⋯⋯32⋮3⋮⋮3⋮23⋯⋯3








Similarly, we will write [image: there is no content], the relevant submatrix of the coupling ξ, and ⟨[image: there is no content],D⟩=⟨[image: there is no content],[image: there is no content]⟩=∑i,jξi,jtd(xi,xj).
When d and [image: there is no content] are large, the optimal coupling moves the mass mainly along the edge (x,[image: there is no content]). This gives a general formula for values of d and [image: there is no content]. For values of [image: there is no content]≥6, we set:



Δ=[image: there is no content]+L1+2L2+L3+L4−C1−2C2−C3−C4−2C5−3(C6+⋯+C[image: there is no content])−2C[image: there is no content]+1








and show that Δ has only nonnegative coefficients.

	[image: there is no content]≥6 and [image: there is no content]:



Δ=001120221002102010⋯011⋮⋮11⋮⋮000⋯010001⋮⋮1⋮⋮⋮⋮⋮⋮⋮⋮1001010⋯00⋮⋮⋮1⋮⋮⋮⋮1⋮⋮⋮00⋯01,[image: there is no content]=t[image: there is no content]xt000t[image: there is no content]0000t[image: there is no content]0000t[image: there is no content]0⋯⋯⋯00yt⋯yt00yt⋯yt00yt⋯yt00⋯⋯0⋮⋮⋮⋮⋮⋮0⋯⋯00yt⋯ytt[image: there is no content]⋮zt⋯zt0⋮⋮⋮⋮0zt⋯zt⋮t[image: there is no content]yt⋯yt0








where:



xt=1−t−t[image: there is no content],yt=t[image: there is no content]−51d−1[image: there is no content],zt=td([image: there is no content]−5)








([image: there is no content] whenever t≤[image: there is no content][image: there is no content]+1) and the cost is [image: there is no content]=1+t2−4d−8[image: there is no content]. We check easily that [image: there is no content] has nonnegative coefficients and satisfies Conditions (1) and (2).


	[image: there is no content]≥6 and [image: there is no content]:

The distance matrix, D, has only five rows, and its submatrix is slightly different:



[image: there is no content]=01111011110211202⋯⋯⋯21⋯⋯⋯12⋯⋯2112⋯⋯2121123⋯32,Δ=001120221002102010⋯0110⋯0110⋯0000⋯0100000⋯⋯⋯0








and an optimal transportation plan is:



[image: there is no content]=t[image: there is no content]xt000t[image: there is no content]00002t3[image: there is no content]00002t3[image: there is no content]0⋯⋯⋯00yt⋯yt00zt⋯zt2t3[image: there is no content]2t3[image: there is no content]zt⋯zt000t3[image: there is no content]t3[image: there is no content]t3[image: there is no content]zt⋯ztt3[image: there is no content]








where:



xt=1−t−t[image: there is no content],yt=t[image: there is no content]−514−1[image: there is no content],zt=t[image: there is no content]−514−43[image: there is no content],t≤[image: there is no content][image: there is no content]+1








with cost [image: there is no content]=1+t−8t[image: there is no content]=1+t2−44−8[image: there is no content]. Note that, thanks to [image: there is no content]≥6, we have 14−43[image: there is no content]≥0, so [image: there is no content] as needed.


	[image: there is no content]≥6 and [image: there is no content]:

Similarly, we have:



[image: there is no content]=01111011110211202⋯⋯⋯21⋯⋯⋯12⋯⋯2112⋯⋯2,Δ=001120221002102010⋯0110⋯0110⋯0000⋯01










[image: there is no content]=t[image: there is no content]xt000t[image: there is no content]0000t[image: there is no content]0000t[image: there is no content]0⋯⋯⋯00yt⋯yt00zt⋯ztt[image: there is no content]t[image: there is no content]zt⋯zt0








where:



xt=1−t−t[image: there is no content],yt=t[image: there is no content]−5[image: there is no content]−1[image: there is no content],zt=t[image: there is no content]−5[image: there is no content]−2[image: there is no content],t≤[image: there is no content][image: there is no content]+1








and the cost is [image: there is no content]=1+t2−43−8[image: there is no content]. Thanks to [image: there is no content]≥6, we have [image: there is no content] as needed.




We conclude that in all cases where [image: there is no content]≥6, we have [image: there is no content]=4d+8[image: there is no content]−2, as claimed.



5.3. [image: there is no content] Computation

In the case [image: there is no content], the measure, [image: there is no content], does not put any weight on x; hence, any transfer plan is identically zero along the line corresponding to x (and along the column corresponding to y). In our notations, it would amount to discarding the first line and the second column of all matrices previously written, but for clarity and comparison purposes, we will keep them, though they play no role. Again, we only deal with the cases of variable degree and leave the remaining cases to the computer program.


	[image: there is no content]≥6 and [image: there is no content]

The matrix, Δ, is the same as above, but because of the additional constraint, an optimal coupling is now given by:



ξ˜1=1d[image: there is no content]0000000000d0000d0⋯⋯⋯00[image: there is no content][image: there is no content]−5⋯[image: there is no content][image: there is no content]−500[image: there is no content]−d[image: there is no content]−5⋯[image: there is no content]−d[image: there is no content]−500[image: there is no content]−d[image: there is no content]−5⋯[image: there is no content]−d[image: there is no content]−5000⋯0d⋮⋮0⋮⋮⋮⋮⋮⋮⋮⋮00⋯00[image: there is no content]−d[image: there is no content]−5⋯[image: there is no content]−d[image: there is no content]−5d0[image: there is no content]−d[image: there is no content]−5⋯[image: there is no content]−d[image: there is no content]−50⋮[image: there is no content][image: there is no content]−5⋯[image: there is no content][image: there is no content]−50⋮⋮⋮⋮0[image: there is no content][image: there is no content]−5⋯[image: there is no content][image: there is no content]−5⋮d[image: there is no content]−d[image: there is no content]−5⋯[image: there is no content]−d[image: there is no content]−50








with cost [image: there is no content]=1d[image: there is no content](−4[image: there is no content]−8d+3d[image: there is no content])=3−4d−8[image: there is no content]. Since we need at least eight distinct lines, we cannot compute [image: there is no content] by this method anymore when [image: there is no content].


	[image: there is no content] and [image: there is no content]≥7



[image: there is no content]=01111011110211202⋯⋯⋯21⋯⋯⋯12⋯⋯2112⋯⋯2121212213⋯⋯3223⋯⋯3,Δ=001120221002102010⋯011⋮⋮11⋮⋮000⋯010001001010⋯0000⋯01








An optimal coupling is given by:



ξ˜1=15[image: there is no content]00000000002000050⋯⋯⋯00[image: there is no content][image: there is no content]−5⋯[image: there is no content][image: there is no content]−500[image: there is no content]−7[image: there is no content]−5⋯[image: there is no content]−7[image: there is no content]−551[image: there is no content]−6[image: there is no content]−5⋯[image: there is no content]−6[image: there is no content]−50303020000[image: there is no content]−6[image: there is no content]−5⋯[image: there is no content]−6[image: there is no content]−504[image: there is no content]−6[image: there is no content]−5⋯[image: there is no content]−6[image: there is no content]−50[image: there is no content]=11[image: there is no content]−405[image: there is no content]=3−45−8[image: there is no content]









	[image: there is no content] and [image: there is no content]≥7



[image: there is no content]=01111011110211202⋯⋯⋯21⋯⋯⋯12⋯⋯2112⋯⋯2121123⋯32,Δ=001120221002102010⋯011⋮⋮11⋮⋮000⋯01000010⋯00








An optimal coupling is given by:



ξ˜1=14[image: there is no content]00000000003000030⋯⋯⋯00[image: there is no content][image: there is no content]−5⋯[image: there is no content][image: there is no content]−500[image: there is no content]−7[image: there is no content]−5⋯[image: there is no content]−7[image: there is no content]−544[image: there is no content]−7[image: there is no content]−5⋯[image: there is no content]−7[image: there is no content]−5040110[image: there is no content]−6[image: there is no content]−5⋯[image: there is no content]−6[image: there is no content]−50[image: there is no content]=14[image: there is no content](8[image: there is no content]−32)=3−44−8[image: there is no content]









	[image: there is no content] and [image: there is no content]≥8



[image: there is no content]=01111011110211202⋯⋯⋯21⋯⋯⋯12⋯⋯2112⋯⋯2








In this case, the Lagrange multipliers are a bit different and:



Δ=[image: there is no content]+2L1+2L2+L3+L4−2C1−2C2−C3−C4−2C5−3(C6+⋯+C[image: there is no content])−2C[image: there is no content]+1=012210220002002021⋯1210⋯0110⋯0000⋯01








An optimal coupling is given by:



ξ˜1=13[image: there is no content]00000000203010030⋯⋯⋯00[image: there is no content][image: there is no content]−5⋯[image: there is no content][image: there is no content]−500[image: there is no content]−8[image: there is no content]−5⋯[image: there is no content]−8[image: there is no content]−533[image: there is no content]−7[image: there is no content]−5⋯[image: there is no content]−7[image: there is no content]−50[image: there is no content]=13[image: there is no content](5[image: there is no content]−21)=3−43−7[image: there is no content]













5.4. The Rectangular Parallelepiped

The (Delaunay) cotan Laplacian [22] for the rectangular parallelepiped with edges of lengths [image: there is no content], [image: there is no content], [image: there is no content] (see Figure 2) is given by:

Figure 2. Rectangular parallelepiped.



[image: Axioms 03 00119 g002 1024]







Δ12=b+c2a,Δ14=c+a2b,Δ15=a+b2c








so that [image: there is no content]; hence we normalize to [image: there is no content]=(1−t)[image: there is no content]+tμ˙x with:


μ˙1(2)=b+c2a(a+b+c)=12a−12(a+b+c),μ˙1(4)=12b−12(a+b+c),μ˙1(5)=12c−12(a+b+c)










μ˙1(1)=121a+1b+1c−3[image: there is no content]








The distance matrix is:


D=0aa+bbcc+aa0ba+bc+aca+bb0a[image: there is no content]b+cba+ba0b+c[image: there is no content]cc+a[image: there is no content]b+c0ac+acb+c[image: there is no content]a0










D−aL1+aC1+aC4+aC5−aL4−aL5=00bbcc2a0b2a+b2a+cc2a+bb02a2a+b+cb+cbb00b+cb+cccb+cb+c002a+ccb+c2a+b+c2a0








A optimal coupling is:


[image: there is no content]=t21a−1[image: there is no content]1−t22a+1b+1c−4[image: there is no content]00000t21a−1[image: there is no content]000000000000t21b−1[image: there is no content]00000000t21c−1[image: there is no content]000000








with cost [image: there is no content]=a1−t1a−1[image: there is no content] and curvature [image: there is no content]=1a−1[image: there is no content] along an edge of length a, as claimed.
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