
Axioms 2014, 3, 140-152; doi:10.3390/axioms3020140
OPEN ACCESS

axioms
ISSN 2075-1680

www.mdpi.com/journal/axioms

Article

Continuous Stieltjes-Wigert Limiting Behaviour of a Family of
Confluent q-Chu-Vandermonde Distributions
Andreas Kyriakoussis and Malvina Vamvakari *

Department of Informatics and Telematics, Harokopio University, 70 El. Venizelou str.,
Athens 17671, Greece; E-Mail:akyriak@hua.gr

* Author to whom correspondence should be addressed; E-Mail: mvamv@hua.gr;
Tel.: +30-210-9549400; Fax: +30-210-9549401.

Received: 11 November 2013; in revised form: 17 March 2014 / Accepted: 4 April 2014 /
Published: 10 April 2014

Abstract: From Kemp [1], we have a family of confluent q-Chu- Vandermonde distributions,
consisted by three members I, II and III, interpreted as a family of q-steady-state
distributions from Markov chains. In this article, we provide the moments of the
distributions of this family and we establish a continuous limiting behavior for the
members I and II, in the sense of pointwise convergence, by applying a q-analogue of the
usual Stirling asymptotic formula for the factorial number of order n. Specifically, we
initially give the q-factorial moments and the usual moments for the family of confluent
q-Chu- Vandermonde distributions and then we designate as a main theorem the conditions
under which the confluent q-Chu-Vandermonde distributions I and II converge to a
continuous Stieltjes-Wigert distribution. For the member III we give a continuous analogue.
Moreover, as applications of this study we present a modified q-Bessel distribution, a
generalized q-negative Binomial distribution and a generalized over/underdispersed (O/U)
distribution. Note that in this article we prove the convergence of a family of discrete
distributions to a continuous distribution which is not of a Gaussian type.

Keywords: stirling asymptotic formula; q-factorial number of order n; confluent
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generalized q-negative Binomial distribution; Over/Underdispersed (O/U) distribution;
pointwise convergence; continuous Stieltjes-Wigert distribution
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1. Introduction and Preliminaries

From Kemp [1], we have that the confluent q-Chu-Vandermonde hypergeometric sum,

1φ1(b; c; q, c/b) =
∞∑
n=0

(b; q)n
(c; q)n(q; q)n

(−c/b)nq(
n
2) =

(c/b; q)∞
(c; q)∞

(1)

where 0 < q < 1 and (a; q)x =
∏x

j=1(1 − aqj−1),x = 0, 1, 2, . . ., gives rise to a family of
q-Chu-Vandermonde distributions for suitable values of c and b, interpreted as a family q-steady-state
distributions from Markov chains, with probability generating function (p.g.f.)

G(z) =
1φ1(b; c; q, c/bz)

1φ1(b; c; q, c/b)
, z ∈ R (2)

and with probability function (p.f.)

p(x) = P [X = x] = fX(x) =

(b;q)x
(c;q)x(q;q)x

q(
x
2)(−c/b)x

(c/b;q)∞
(c;q)∞

, x = 0, 1, . . . . (3)

Note that Equation (1) is a generalization of the q-binomial theorem and gives rise to two q-confluent
distributions with infinite support and one with finite support.

The members of the above family of q-Chu-Vandermonde hypergeometric series discrete distributions
are listed in Table 1.

Table 1. Confluent q-Chu-Vandermonde Distributions.

Confluent Symbol of Symbol of Parameters Support
q-Chu-Vandermonde G(z) p(x) b and c

Distributions

q-CCV-I GqCCV I(z) pqCCV I(x) b = −h, h > 0, 0 < c < 1 x = 0, 1, 2, . . .

q-CCV-II GqCCV II(z) pqCCV II(x) 0 < b < 1, c = −η, η > 0 x = 0, 1, 2, . . .

q-CCV-III GqCCV III(z) pqCCV III(x) b = q−n, n = 0, 1, . . ., 0 < c < 1 x = 0, 1, . . . , n

The distributions of the above table have finite mean and variance when n → ∞ and we cannot
conclude the asymptotic normality in the sense of the DeMoivre-Laplace classical limit theorem, as in
the case of ordinary hypergeometric series discrete distributions. Also, we cannot apply asymptotic
methods –central or/and local limit theorems– as in Bender [2], Canfield [3], Flajolet and Soria [4],
Odlyzko [5] et al.

Thus an important question is arisen about the asymptotic behaviour for n → ∞ of this family of
q-Chu-Vandermonde hypergeometric series discrete distributions.

Recently, the authors investigated the asymptotic behaviour of another member of q-hypergeometric
series discrete distributions, having also finite mean and variance, that of a q-Binomial one [6].
Specifically it has been established a pointwise convergence to a continuous Stieltjes-Wigert distribution.

In this article, we provide a continuous limiting behaviour of the above family of confluent
q- Chu- Vandermonde discrete distributions, for 0 < q < 1, in the sense of pointwise convergence.
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Specifically, we initially give the q-factorial moments and the usual moments of this family and then we
designate as a main theorem the conditions under which the confluent q-Chu-Vandermonde distributions
I and II converge to a continuous Stieltjes-Wigert distribution. For the member III we give a continuous
analogue. Moreover, as applications of this study we present a modified q-Bessel distribution, a
generalized q-negative Binomial distribution and a generalized over / underdispersed (O/U) distribution.
Note that, the main contribution of this article is that a family of discrete distributions converges to a
continuous distribution which is not of a Gaussian type.

To establish the proof of our main theorem we apply a q-analogue of the well known Stirling
asymptotic formula for the n factorial (n!) established by Kyriakoussis and Vamvakari [6]. The authors
have derived an asymptotic expansion for n→∞ of the q-factorial number of order n ,

[n]q! = [1]q[2]q . . . [n]q =
n∏
k=1

1− qk

(1− q)n
=

(q; q)n
(1− q)n

(4)

where 0 < q < 1 and [t]q =
1−qt
1−q , the q-number t. Analytically we have

[n]q! =
(2π(1− q))1/2

(q log q−1)1/2

q(
n
2)q−n/2[n]

n+1/2
1/q∏∞

j=1(1 + q(q−n − 1)qj−1)

(
1 +O(n−1)

)
(5)

For answering the main question of this study we apply our above asymptotic formula for the q-factorial
number of order n to provide pointwise convergence of the family of confluent q-Chu-Vandermonde
distributions to a continuous Stieltjes-Wigert distribution with probability density function

vSWq (x) =
q1/8√

2π log q−1 x
e

(log x)2

2 log q , x > 0 (6)

with mean value µSW = q−1 and standard deviation σSW = q−3/2(1− q)1/2

Remark 1. We note that the corresponding to the probability measure Equation (3) orthogonal
polynomials are the q-Meixner ones (see [7]). Also, we have that the q-Meixner orthogonal polynomials
converge to the Stieltjes-Wigert ones, both members of the q-Askey scheme (see [7,8]). But, from the
convergence of the orthogonal polynomials one cannot conclude the convergence of the corresponding
probability measures (see [9,10]). So, in this paper the method of pointwise convergence is followed.

2. On Factorial Moments of the Confluent q-Chu-Vandermonde Distributions

In this section, we first transfer from the random variable X of the family of confluent
q-Chu-Vandermonde distributions Equation (3) to the equal-distributed deformed random variable
Y = [X]1/q, and we then compute the mean value and variance of the random variable Y , say µq and
σ2
q respectively. We also derive all the descending factorial k-th order moments of the random variable
X through the computation of all the r-th orders factorials of the random variable Y , named q-factorial
moments of the r.v. X .

Proposition 1. The q-mean and q-variance of the family of confluent q-Chu-Vandermonde
distributions are given respectively by

µq = −
c

b

1− b
1− q

and σ2
q =

(
−c
b

)2 1− b
q(1− q)

− c

b

1− b
1− q
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Proof. The q-mean of the family of confluent q-Chu-Vandermonde distributions is given by

µq = E(Y ) = E([X]1/q) =
n∑
x=0

[x]1/qfX(x) =
(c; q)∞
(c/b; q)∞

∞∑
x=0

[x]1/q
(b; q)x

(c; q)x(q; q)x
q(

x
2)
(
−c
b

)x
(7)

and since
[x]1/q = q−x+1[x]q, q

−x+1q(
x
2) = q(

x−1
2 ),

[x]q
(q; q)x

=
1

(1− q)(q; q)x−1
and

(b; q)x = (1− b)(bq; q)x−1, (c; q)x = (1− c)(cq; q)x−1

it is written as

µq = −
c

b

1− b
(1− c)(1− q)

(c; q)∞
(c/b; q)∞

∞∑
x=1

(bq; q)x−1
(cq; q)x−1(q; q)x−1

q(
x−1
2 )
(
−c
b

)x−1
(8)

Using the confluent q-Chu-Vandermonde hypergeometric sum Equation (1) we obtain the formula of the
q-mean in Equation (7).

For the evaluation of the q-variance we need to find the second order moment of the r.v. Y = [X]1/q

which is given by

E[Y 2] = E[[X]21/q] =
∞∑
x=0

[x]21/qfX(x) =
(c; q)∞
(c/b; q)∞

∞∑
x=0

[x]21/q
(b; q)x

(c; q)x(q; q)x
q(

x
2)
(
−c
b

)x
(9)

Since
[x]q = [x− 1]q + qx−1, q−2x+2q(

x
2) = q−1q(

x−2
2 )

and
(b; q)x = (1− b)(1− bq)(bq2; q)x−2, (c; q)x = (1− c)(1− cq)(cq2; q)x−2

Equation (9) becomes

E[Y 2] =
(
−c
b

)2 (1− b)(1− bq)
q(1− q)2(1− c)(1− cq)

(c; q)∞
(c/b; q)∞

∞∑
x=2

(bq2; q)x−2
(cq2; q)x−2(q; q)x−2

q(
x−2
2 )
(
−c
b

)x−2
=

(
−c
b

)2 (1− b)(1− bq)
q(1− q)2(1− c)(1− cq)

(c; q)∞
(cq2; q)∞

=
(
−c
b

)2 (1− b)(1− bq)
q(1− q)2

So,

σ2
q = V (Y ) = V ([X]1/q) =

(
−c
b

)2 (1− b)(1− bq)
q(1− q)2

− c

b

1− b
1− q

−
(
−c
b

)2 (1− b)2
(1− q)2

(10)

from which we obtain the formula of the q-variance given in Equation (7).

Proposition 2. The r-th order q-factorial moments of the family of confluent q-Chu-Vandermonde
distributions are given by

E([X]r,1/q) =
(b; q)r
(1− q)r

(
−c
b

)r
, r = 1, 2, . . . . (11)
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Proof. The r-th order q-factorial moments of the family of confluent q-Chu-Vandermonde
distributions is

E([X]r,1/q) =
∞∑
x=r

[x]r,1/qfX(x)

=
(c; q)∞
(c/b; q)∞

∞∑
x=r

[x]1/q[x− 1]1/q · · · [x− r + 1]1/q
(b; q)x

(c; q)x(q; q)x
q(

x
2)(−c/b)x (12)

Since

[x]1/q = q−x+1[x]q,

(
x

2

)
=

(
x− r
2

)
+

(
r

2

)
+ r(x− r), [x]r,q

(q; q)x
=

1

(1− q)r(q; q)x−r

(b; q)x = (b; q)r(bq
r; q)x−r and

(c; q)∞
(c; q)x

=
(cqr; q)∞
(cqr; q)x−r

the sum Equation (12) becomes

E([X]r,1/q) =
(cqr; q)∞(b; q)r
(c/b; q)∞(1− q)r

(−c/b)r
∞∑
x=r

(bqr; q)x−r
(cqr; q)x−r(q; q)x−r

q(
x−r
2 )(−c/b)x−r (13)

By the confluent q-Vandermonde sum the r-th order q-factorial moments of the family of confluent
q-Chu-Vandermonde distributions, reduces to Equation (11).

Proposition 3. The descending factorial k-th order moments of the r.v. X of the family of
q-Chu-Vandermonde distributions are given by

E((X)k) =
k!

(c/b; q)∞

∞∑
r=k

sq(r, k)(q − 1)r−k(cqr; q)∞
[r]1/q!

E([X]r,1/q) 1φ1(bq
r; cqr; q, cqr/b) (14)

Proof. The relation of the factorial descending moments with the q-factorial descending moments
through the q-Stirling numbers of the first kind is given by the sum

E((X)k) = k!
∞∑
r=k

sq(r, k)(q − 1)r−k

[r]q!
E([X]r,q) (15)

where sq(r, k) the q-Stirling numbers of the first kind (see Charalambides [11]).
Since (

x

r

)
q

= qr(x−r)
(
x

r

)
1/q

the sum Equation (15) is written as

E((X)k) = k!
∞∑
r=k

sq(r, k)(q − 1)r−k

[r]1/q!
E(qr(x−r)[X]r,1/q)

= k!
∞∑
r=k

sq(r, k)(q − 1)r−k

[r]1/q!

(cqr; q)∞(b; q)r(−c/b)r

(c/b; q)∞(1− q)r
∞∑
x=r

(bqr; q)x−r
(cqr; q)x−r(q; q)x−r

q(
x−r
2 )(−cqr/b)x−r

(16)

By Equation (11) of the previous proposition 2 and the definition of the q-hypergeometric function
Equation (1), Equation (16) reduces to Equation (14).
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3. Pointwise Convergence of A Family of Confluent q-Chu-Vandermonde Distributions to the
Stieltjes-Wigert Distribution

In this section, we transfer from the random variable X of the family of confluent
q-Chu-Vandermonde distributions Equation (3) to the equal-distributed deformed random variable
Y = [X]1/q, and using the q-analogue Stirling asymptotic formula (5), we establish the convergence to a
deformed standardized continuous Stieltjes-Wigert distribution of the members I and II of the family of
q-Chu-Vandermonde distributions.

Theorem 1. Let the p.f. of the family of confluent q-Chu-Vandermonde distributions be of the form

fX(x) =

(b;q)x
(c;q)x(q;q)x

q(
x
2)(−c/b)x

(c/b;q)∞
(c;q)∞

, x = 0, 1, . . . (17)

where b = bn, c = cn, n = 0, 1, 2, . . . , such that bn = o(1) and −cn/bn → ∞, as n → ∞. Then,
for n → ∞, the p.f. fX(x), x = 0, 1, 2, . . . is approximated by a deformed standardized continuous
Stieltjes-Wigert distribution as follows

fX(x) ∼=
q1/8(log q−1)

1/2

(2π)1/2

(
q−3/2(1− q)1/2

[x]1/q − µq
σq

+ q−1
)1/2

· exp
(

1

2 log q
log2

(
q−3/2(1− q)1/2

[x]1/q − µq
σq

+ q−1
))

, x ≥ 0 (18)

Proof. Since the product (b; q)x =
∏x

j=1(1 − bqj−1) = (1 − b)(1 − bq) · · · (1 − bqx−1) for b = bn with
bn → 0 as n → ∞ is approximated by (bn; q)x ∼= 1 the p.f. of the family of confluent
q-Chu-Vandermonde distributions is discretely approximated as

fX(x) ∼=
q(

x
2)(−cn/bn)x

(cn;q)x(q;q)x

(cn/bn;q)∞
(cn;q)∞

, x = 0, 1, . . . . (19)

By using the q-Stirling asymptotic formula (5) we get the following approximation for the p.f. fX(x)
with b = bn, c = cn such that bn = o(1) and −cn/bn →∞, as n→∞,

fX(x) ∼=
(q log q−1)1/2

(2π(1− q))1/2
(−cn/bn)x

(1− q)x

∏∞
j=1(1 + q(q−x − 1)qj−1)(cn; q)∞

q−x/2[x]
x+1/2
1/q (cn; q)x(cn/bn; q)∞

(20)

From the standardized r.v. Z =
[X]1/q−µq

σq
with µq and σq given in Equation (7), we get

[x]1/q = σqz + µq =

[(
−cn
bn

)2
1− q
q(1− q)

− cn
bn

1− bn
1− q

]1/2
z − cn

bn

1− bn
1− q

= −cn
bn

1− bn
1− q

[(
1− q

q(1− bn)
− bn
cn

1− q
1− bn

)1/2

z + 1

]
(21)

Using the assumptions bn = o(1) and −cn/bn →∞ as n→∞, we have

[x]1/q ∼= −
cn
bn

q

1− q
(q−3/2(1− q)1/2z + q−1) (22)
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Also, by the previous two equations we get

q−x = −cn
bn

1− bn
q

[(
1− q

q(1− bn)
− bn
cn

1− q
1− bn

)1/2

z + 1

]
+ 1 (23)

and
q−x ∼= −

cn
bn

(
q−3/2(1− q)z + q−1

)
(24)

Moreover, by the Equation (23) we find

x =
1

log q−1
log

(
−cn
bn

1− bn
q

[(
1− q

q(1− bn)
− bn
cn

1− q
1− bn

)1/2

z + 1

]
+ 1

)
(25)

and

x ∼=
1

log q−1
log

(
−cn
bn

(
q−3/2(1− q)z + q−1

))
(26)

Finally, by the Equation (21) we get

[x]x1/q =

(
−cn
bn

)x(
1− bn
1− q

)x [(
1− q

q(1− bn)
− bn
cn

1− q
1− bn

)1/2

z + 1

]x

=

(
−cn
bn

)x(
1− bn
1− q

)x
exp

(
x log

[(
1− q

q(1− bn)
− bn
cn

1− q
1− bn

)1/2

z + 1

])
(27)

and

[x]x1/q
∼=

(
−cn
bn

)x(
1

1− q

)x
· exp

(
1

log q−1
log

(
−cn
bn

(
q−3/2(1− q)z + q−1

))
log
(
q
(
q−3/2(1− q)1/2z + q−1

)))
(28)

with z = [x]1/q−µq
σq

Substituting all the previous approximations Equations (22),(24),(26),(28) to the p.f. fX(x) we get
the approximation

fX(x) ∼=
(q(1− q) log q−1)1/2

(2πq(1− q))1/2

∏∞
j=1

(
1− cn

bn

(
q−3/2(1− q)1/2z + q−1

)
qj−1

)
(cn; q)∞

(cn; q)x(cn/bn; q)∞

· exp

(
1

log q
log

(
−cn
bn

(
q−3/2(1− q)1/2z + q−1

))
log
(
q
(
q−3/2(1− q)1/2z + q−1

)))
·

(
−cn
bn

q1/2

(1− q)1/2
(
q−3/2(1− q)1/2z + q−1

))−1
, z =

[x]1/q − µq
σq

(29)

As a last step, we need to estimate the products
∞∏
j=1

(
1− cn

bn

(
q−3/2(1− q)1/2z + q−1

)
qj−1

)
,

(cn/bn; q)x =
∏∞

j=1(1 − cn/bnq
j−1) and (cn; q)∞/(cn; q)x = (cnq

x; q)∞ =
∏∞

j=1(1 − cnq
xqj−1) by

integrals. Since the first product is written as
∞∏
j=1

(
1− cn

bn

(
q−3/2(1− q)1/2z + q−1

)
qj−1

)
= exp

(
∞∑
j=1

log

(
1− cn

bn

(
q−3/2(1− q)1/2z + q−1

)
qj−1

))
(30)
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and the function

h(x) = log

(
1− cn

bn

(
q−3/2(1− q)1/2z + q−1

)
qx−1

)
has all orders continuous derivatives in [1,∞), we can apply the Euler-Maclaurin summation formula
(see [5], p. 1090) in the sum of the Equation (30).

So,

∞∑
j=1

log

(
1− cn

bn

(
q−3/2(1− q)1/2z + q−1

)
qj−1

)
=

∞∫
1

log

(
1− cn

bn

(
q−3/2(1− q)1/2z + q−1

)
qu−1

)
du

+
1

2
log

(
1− cn

bn

(
q−3/2(1− q)1/2z + q−1

))
+

m∑
k=1

β2k
(2k)!

h(2k−1)
(
1− cn

bn

(
q−3/2(1− q)1/2z + q−1

))
+Rk

(31)

where

|Rk| ≤
|β2k|
(2k)!

∞∫
1

|g(2k)
(
1− cn

bn

(
q−3/2(1− q)1/2z + q−1

)
qu−1

)
|du (32)

with βk the Bernoulli numbers.
Now, expressing the integral appearing in Equation (31) through the dilogarithm function we get

∞∫
1

log

(
1− cn

bn

(
q−3/2(1− q)1/2z + q−1

)
qu−1

)
du =

1

log q
Li2

(
−
(
−cn
bn

)(
q−3/2(1− q)1/2z + q−1

))
(33)

where Li2(y) =
∑

k≥1
yk

k2
the dilogarithm function. The dilogarithm satisfies the Landen’s identity

Li2(−y) = Li2

(
y

y + 1

)
− 1

2
log2(1 + y) (34)

Applying the Landen’s identity to Equation (33) we obtain

∞∫
1

log

(
1− cn

bn

(
q−3/2(1− q)1/2z + q−1

)
qu−1

)
du =

1

2 log q−1
log2

(
−cn
bn

(
q−3/2(1− q)1/2z + q−1

))

+ Li2

(
− cn
bn

(
q−3/2(1− q)1/2z + q−1

)
− cn
bn
(q−3/2(1− q)1/2z + q−1) + 1

)
(35)

Next, we estimate the sum and the quantity Rk appearing in Equation (31)

m∑
k=1

β2k
(2k)!

h(2k−1)
(
1− cn

bn

(
q−3/2(1− q)1/2z + q−1

))
+Rk

=
β2
2
h
′
(
1− cn

bn

(
q−3/2(1− q)1/2z + q−1

))
+R1 +O

((
−cn
bn

)−2)

=
β2 log q

2

(
− cn
bn

) (
q−3/2(1− q)1/2z + q−1

)
1− cn

bn
(q−3/2(1− q)1/2z + q−1)

+O

(
−bn
cn

)
(36)
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So, by applying Equations (35) and (36) to Equation (31) we obtain

∞∑
j=1

log

(
1− cn

bn

(
q−3/2(1− q)1/2z + q−1

)
qj−1

)
=

1

2 log q−1
log2

(
−cn
bn

(
q−3/2(1− q)1/2z + q−1

))

+Li2

(
− cn
bn

(
q−3/2(1− q)1/2z + q−1

)
− cn
bn
(q−3/2(1− q)1/2z + q−1) + 1

)
+

1

2
log

(
1− cn

bn

(
q−3/2(1− q)1/2z + q−1

))

+
β2 log q

2

(
− cn
bn

) (
q−3/2(1− q)1/2z + q−1

)
1− cn

bn
(q−3/2(1− q)1/2z + q−1)

+O

(
−bn
cn

)
(37)

Working similarly for the sum appearing in the product

∞∏
j=1

(
1− cn

bn
qj−1

)
= exp

(
∞∑
j=1

log

(
1− cn

bn
qj−1

))
(38)

we obtain

∞∑
j=1

log

(
1− cn

bn
qj−1

)
=

1

2 log q−1
log2

(
− c

bn

)
+ Li2

(
− c
bn

− c
bn

+ 1

)

+
1

2
log

(
1− c

bn

)
+
β2 log q

2

(
− c
bn

)
1− c

bn

+O

(
−bn
c

)
(39)

We need now to estimate the sum appearing in the last product

(cn; q)∞/(cn; q)x = (cnq
x; q)∞ =

∞∏
j=1

(1− cnqxqj−1)

= exp

(
∞∑
j=1

log
(
1 + bn

(
q−3/2(1− q)1/2z + q−1

)−1
qj−1

))
(40)

and working analogously as previous we get

∞∑
j=1

log
(
1 + bn

(
q−3/2(1− q)1/2z + q−1

)−1
qj−1

)
=

1

2 log q−1
log2

(
bn
(
q−3/2(1− q)1/2z + q−1

)−1)

+Li2

 bn
(
q−3/2(1− q)1/2z + q−1

)−1
bn (q−3/2(1− q)1/2z + q−1) + 1

−1
+

1

2
log
(
1 + bn

(
q−3/2(1− q)1/2z + q−1

)−1)

+
β2 log q

2

bn
(
q−3/2(1− q)1/2z + q−1

)−1
1 + bn (q−3/2(1− q)1/2z + q−1)

−1 +O (bn) (41)

Applying the estimations Equations (37),(39),(41) to the approximation Equation (29), carrying out
all the necessary manipulations and by the assumptions bn = o(1) and −cn/bn → ∞, as n → ∞,
we derive
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fX(x) ∼=
q1/8(log q−1)1/2

(2π)1/2
(
q−3/2(1− q)1/2z + q−1

)1/2
exp

(
1

2 log q
log2

(
q−3/2(1− q)1/2z + q−1

))
z =

[x]1/q − µq
σq

, x ≥ 0 (42)

that is Equation (18).
Moreover, by standardizing the continuous Stieltjes-Wigert distribution Equation (6) and then

deforming this by the random variable [X]1/q−µq
σq

, we obtain Equation (18) and our proof is completed.

Remark 1. Under the assumptions of the theorem 1 the probability functions I and II of the Table 1
have the asymptotic approximation (18). Note that we do not have the same conclusion for the p.f. III of
the table 1 since the assumption bn = o(1) does not hold.

Remark 2. From the proof of the theorem 1 we have that the p.f. of the family of confluent
q- Chu -Vandermonde discrete distributions is discretely approximated by

fX(x) ∼=
q(

x
2)(−cn/bn)x

(cn;q)x(q;q)x

(cn/bn;q)∞
(cn;q)∞

, x = 0, 1, . . . .

From the q-CCVI of the table 1, for bn = −hn = o(1), hn > 0 and cn = c constant with 0 < c < 1,

n = 0, 1, 2, . . . , we get

pqCCV I(x) ∼=
q(

x
2)(c/hn)x

(c;q)x(q;q)x

(−c/hn;q)∞
(c;q)∞

, x = 0, 1, . . . . (43)

Consequently, pqCCV I(x) is discretely approximated by a modified q-Bessel distribution.

Applications

1. A modified q-Bessel distribution: From the remarks 1 and 2 we get an asymptotic expression as in
Equation (18) for the modified q-Bessel distribution with p.f.

pMB(x) =

q(
x
2)(c/hn)x

(c;q)x(q;q)x

(−c/hn;q)∞
(c;q)∞

, x = 0, 1, . . . , (44)

and with

µq =
c

1− q
h−1n and σ2

q =
c2

q(1− q)
h−2n −

c

1− q
h−1n

where 0 < c < 1, hn > 0, n = 0, 1, 2, . . . with hn = o(1).

2. A Generalized q-Negative Binomial Distribution: The q-CCVII for b = qn, n = 1, 2, . . . and η = q

becomes a generalized q-negative binomial distribution with p.f.

p(x) = P (X = x) =

(n+x−1
x )

q

(−q;q)x q
(x2)q−nx+x

(−q−n+1;q)∞
(−q;q)∞

, x = 0, 1, . . . with
(
n

x

)
q

=
[n]q!

[x]q![n− x]q!
(45)
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From the proposition 3 the mean value and the variance of the r.v. X of this q-negative binomial
distribution are given respectively by

E(X) =
∞∑
r=1

aII1 (r)1φ1(q
n+1;−qr+1; q,−qr+1−n) (46)

where

aII1 (r) =
(−qr+1; q)∞
(−q1−n; q)∞

|sq(r, 1)|(qn; q)rqr

(1− q)qnr[r]1/q!
(47)

and
V (X) = E(X(X − 1)) + E(X)− E(X)2 (48)

with

E(X(X − 1)) =
∞∑
r=2

aII2 (r)1φ1(q
n+1;−qr+1; q,−qr+1−n) (49)

where

aII2 (r) =
(−qr+1; q)∞
(−q1−n; q)∞

2|sq(r, 2)|(qn; q)rqr

(1− q)2qnr[r]1/q!
(50)

By remark 1 the above q-negative binomial distribution has the Stieltjes-Wigert asymptotic behavior for
n→∞ as in Equation (18) with µq and σ2

q given by proposition 1

µq = q−n+11− qn

1− q
and σ2

q = q−2n+1 1− qn

q(1− q)
+ q−n+1 1− qn

1− q

3. The Generalized Over / Underdispersed (O/U) Distribution: The q-CCVII for b = qn and η = λqn

becomes a generalized O/U distribution with p.f.

p(x) = P (X = x) =
(−λqn; q)∞
(−λ; q)∞

(qn; q)xq
(x2)λx

(−λq; q)x(q; q)x
, x = 0, 1, . . . (see Kemp [1]) (51)

From the proposition 3 the mean value and the variance of the r.v. X of the generalized O/U
distribution are given respectively by

E(X) =
∞∑
r=1

aII1 (r)1φ1(q
r+n;−λqr+n; q,−λqr) (52)

where

aII1 (r) =
(−λqr+n; q)∞
(−λ; q)∞

|sq(r, 1)|(qn; q)rλr

(1− q)[r]1/q!
(53)

and
V (X) = E(X(X − 1)) + E(X)− E(X)2 (54)

with

E(X(X − 1)) =
∞∑
r=2

aII2 (r)1φ1(q
r+n;−λqr+n; q,−λqr) (55)

where

aII2 (r) =
(−λqr+n; q)∞
(−λ; q)∞

2|sq(r, 2)|(qn; q)rλr

(1− q)2[r]1/q!
(56)
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By remark 1 the generalized O/U distribution for λ = λn → ∞, has the Stieltjes-Wigert asymptotic
behavior for n → ∞ as in Equation (18) with µq = λn/(1 − q) and σ2

q = λ2n
q(1−q) +

λn
1−q given by

proposition 1.

Remark 3. As it was noted in remark 1, theorem 1 is not sufficed for the confluent
q-Chu-Vandermonde hypergeometric series discrete distribution III with p.f.

pqCCV I(x) = P [X = x] =

(q−n;q)x
(c;q)x(q;q)x

q(
x
2)(−cqn)x

(cqn;q)∞
(c;q)∞

=
(c; q)∞
(cqn; q)∞

(
n
x

)
q
q2(

x
2)cx

(c; q)x(q; q)x
, x = 0, 1, . . . , n (57)

where c constant. However, the discrete approximation of the above q-CCV-III distribution for n→∞,
is given by

pqCCV III(x) ∼= (c; q)∞
q2(

x
2)cx

(c; q)x(q; q)x
, x = 0, 1, . . . . (58)

Berg and Valent [12], have proved that for q < a < 1/q, the above discrete probability measure
Equation (58) has a continuous analogue counterpart family of absolutely continuous probability
measures on (0,∞) defined by

vSC(dx) =
p

π
{
( a

a− 1

(x/a; q)2∞
(q/a; q)∞

)2
+ p2

( (x; q)2∞
(q; q)∞(qa; q)∞

)2}−1dx (59)

where the parameter p > 0 is given by p = γ/(t2 + γ2) with γ2 = −t(1/ψ(a) + t), where t belongs
to the interval with endpoints 0 and −1/ψ(a) and is given by ψ(a) = (q; q)∞

∑∞
j=0

qj

(a−qj)(q;q)j with
ψ(q+) =∞.

Remark 4. Gould and Srivastava [13] have presented a unification of some combinatorial identities
associated with ordinary Gauss’s summation theorem and their basic (or q−) extension associated with
the q− analogue Gauss’ s theorem. They have also shown a generalization of their unification for the
ordinary case involving a bilateral series and have posed as an open problem the q-extension of their
bilateral result. In our work it is considered a family of confluent q-Chu-Vnadermonde distributions
which can be associated with the q-analogue of Gauss’s theorem and it would be an interesting closlely-
related open problem to study a bilateral family of the considered distributions.

4. Concluding Remarks

In this article, we have provided a continuous limiting behavior of a family of confluent
q -Chu- Vandermonde distributions, for 0 < q < 1, in the sense of pointwise convergence, by
applying a q-analogue of the usual Stirling asymptotic formula for the factorial number of order
n. Specifically, we have designated as a main theorem the conditions under which the confluent
q-Chu-Vandermonde discrete distributions q-CCVI and II converge to a continuous Stieltjes-Wigert
distribution. Moreover, as applications for this study we present a modified q-Bessel distribution, a
generalized q- negative Binomial distribution and a generalized over/underdispersed O/U distribution,
converging to a continuous Stieltjes-Wigert distribution. Note that the main contribution of this article is
that a discrete distribution congerges to a continuous one, which is not of a Gaussian type distribution.
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