Article

Continuous Stieltjes-Wigert Limiting Behaviour of a Family of Confluent q-Chu-Vandermonde Distributions

Andreas Kyriakoussis and Malvina Vamvakari *
Department of Informatics and Telematics, Harokopio University, 70 El. Venizelou str., Athens 17671, Greece; E-Mail:akyriak@hua.gr
* Author to whom correspondence should be addressed; E-Mail: mvamv@hua.gr; Tel.: +30-210-9549400; Fax: +30-210-9549401.

Received: 11 November 2013; in revised form: 17 March 2014 / Accepted: 4 April 2014 /
Published: 10 April 2014

Abstract

From Kemp [1], we have a family of confluent q-Chu- Vandermonde distributions, consisted by three members I, II and III, interpreted as a family of q-steady-state distributions from Markov chains. In this article, we provide the moments of the distributions of this family and we establish a continuous limiting behavior for the members I and II, in the sense of pointwise convergence, by applying a q-analogue of the usual Stirling asymptotic formula for the factorial number of order n. Specifically, we initially give the q-factorial moments and the usual moments for the family of confluent q-Chu- Vandermonde distributions and then we designate as a main theorem the conditions under which the confluent q-Chu-Vandermonde distributions I and II converge to a continuous Stieltjes-Wigert distribution. For the member III we give a continuous analogue. Moreover, as applications of this study we present a modified q-Bessel distribution, a generalized q-negative Binomial distribution and a generalized over/underdispersed (O / U) distribution. Note that in this article we prove the convergence of a family of discrete distributions to a continuous distribution which is not of a Gaussian type.

Keywords: stirling asymptotic formula; q-factorial number of order n; confluent q-Chu-Vandermonde distributions; q-factorial moments; modified q-Bessel distribution; generalized q-negative Binomial distribution; Over/Underdispersed (O/U) distribution; pointwise convergence; continuous Stieltjes-Wigert distribution

1. Introduction and Preliminaries

From Kemp [1], we have that the confluent q-Chu-Vandermonde hypergeometric sum,

$$
\begin{equation*}
{ }_{1} \phi_{1}(b ; c ; q, c / b)=\sum_{n=0}^{\infty} \frac{(b ; q)_{n}}{(c ; q)_{n}(q ; q)_{n}}(-c / b)^{n} q^{\binom{n}{2}}=\frac{(c / b ; q)_{\infty}}{(c ; q)_{\infty}} \tag{1}
\end{equation*}
$$

where $0<q<1$ and $(a ; q)_{x}=\prod_{j=1}^{x}\left(1-a q^{j-1}\right), x=0,1,2, \ldots$, gives rise to a family of q-Chu-Vandermonde distributions for suitable values of c and b, interpreted as a family q-steady-state distributions from Markov chains, with probability generating function (p.g.f.)

$$
\begin{equation*}
G(z)=\frac{{ }_{1} \phi_{1}(b ; c ; q, c / b z)}{{ }_{1} \phi_{1}(b ; c ; q, c / b)}, z \in \mathcal{R} \tag{2}
\end{equation*}
$$

and with probability function (p.f.)

$$
\begin{equation*}
p(x)=P[X=x]=f_{X}(x)=\frac{\frac{(b ; q)_{x}}{(c ; q)_{x}(q ; q)_{x}} q^{\binom{x}{2}}(-c / b)^{x}}{\frac{(c / b ; q)_{\infty}}{(c ; q)_{\infty}}}, x=0,1, \ldots . \tag{3}
\end{equation*}
$$

Note that Equation (1) is a generalization of the q-binomial theorem and gives rise to two q-confluent distributions with infinite support and one with finite support.

The members of the above family of q-Chu-Vandermonde hypergeometric series discrete distributions are listed in Table 1.

Table 1. Confluent q-Chu-Vandermonde Distributions.

Confluent	Symbol of $\boldsymbol{G}(\boldsymbol{z})$	Symbol of $\boldsymbol{p}(\boldsymbol{x})$	Parameters \boldsymbol{b} and \boldsymbol{c}	Support
Distributions				
q-CCV-I	$G_{q C C V I}(z)$	$p_{q C C V I}(x)$	$b=-h, h>0,0<c<1$	$x=0,1,2, \ldots$
q-CCV-II	$G_{q C C V I I}(z)$	$p_{q C C V I I}(x)$	$0<b<1, c=-\eta, \eta>0$	$x=0,1,2, \ldots$
q-CCV-III	$G_{q C C V I I I}(z)$	$p_{q C C V I I I}(x)$	$b=q^{-n}, n=0,1, \ldots, 0<c<1$	$x=0,1, \ldots, n$

The distributions of the above table have finite mean and variance when $n \rightarrow \infty$ and we cannot conclude the asymptotic normality in the sense of the DeMoivre-Laplace classical limit theorem, as in the case of ordinary hypergeometric series discrete distributions. Also, we cannot apply asymptotic methods -central or/and local limit theorems- as in Bender [2], Canfield [3], Flajolet and Soria [4], Odlyzko [5] et al.

Thus an important question is arisen about the asymptotic behaviour for $n \rightarrow \infty$ of this family of q-Chu-Vandermonde hypergeometric series discrete distributions.

Recently, the authors investigated the asymptotic behaviour of another member of q-hypergeometric series discrete distributions, having also finite mean and variance, that of a q-Binomial one [6]. Specifically it has been established a pointwise convergence to a continuous Stieltjes-Wigert distribution.

In this article, we provide a continuous limiting behaviour of the above family of confluent q - Chu- Vandermonde discrete distributions, for $0<q<1$, in the sense of pointwise convergence.

Specifically, we initially give the q-factorial moments and the usual moments of this family and then we designate as a main theorem the conditions under which the confluent q-Chu-Vandermonde distributions I and II converge to a continuous Stieltjes-Wigert distribution. For the member III we give a continuous analogue. Moreover, as applications of this study we present a modified q-Bessel distribution, a generalized q-negative Binomial distribution and a generalized over / underdispersed (O/U) distribution. Note that, the main contribution of this article is that a family of discrete distributions converges to a continuous distribution which is not of a Gaussian type.

To establish the proof of our main theorem we apply a q-analogue of the well known Stirling asymptotic formula for the n factorial ($n!$) established by Kyriakoussis and Vamvakari [6]. The authors have derived an asymptotic expansion for $n \rightarrow \infty$ of the q-factorial number of order n,

$$
\begin{equation*}
[n]_{q}!=[1]_{q}[2]_{q} \ldots[n]_{q}=\prod_{k=1}^{n} \frac{1-q^{k}}{(1-q)^{n}}=\frac{(q ; q)_{n}}{(1-q)^{n}} \tag{4}
\end{equation*}
$$

where $0<q<1$ and $[t]_{q}=\frac{1-q^{t}}{1-q}$, the q-number t. Analytically we have

$$
\begin{equation*}
[n]_{q}!=\frac{(2 \pi(1-q))^{1 / 2}}{\left(q \log q^{-1}\right)^{1 / 2}} \frac{q^{\binom{n}{2}} q^{-n / 2}[n]_{1 / q}^{n+1 / 2}}{\prod_{j=1}^{\infty}\left(1+q\left(q^{-n}-1\right) q^{j-1}\right)}\left(1+O\left(n^{-1}\right)\right) \tag{5}
\end{equation*}
$$

For answering the main question of this study we apply our above asymptotic formula for the q-factorial number of order n to provide pointwise convergence of the family of confluent q-Chu-Vandermonde distributions to a continuous Stieltjes-Wigert distribution with probability density function

$$
\begin{equation*}
v_{q}^{S W}(x)=\frac{q^{1 / 8}}{\sqrt{2 \pi \log q^{-1} x}} e^{\frac{(\log x)^{2}}{2 \log q}}, x>0 \tag{6}
\end{equation*}
$$

with mean value $\mu^{S W}=q^{-1}$ and standard deviation $\sigma^{S W}=q^{-3 / 2}(1-q)^{1 / 2}$
Remark 1. We note that the corresponding to the probability measure Equation (3) orthogonal polynomials are the q-Meixner ones (see [7]). Also, we have that the q-Meixner orthogonal polynomials converge to the Stieltjes-Wigert ones, both members of the q-Askey scheme (see [7,8]). But, from the convergence of the orthogonal polynomials one cannot conclude the convergence of the corresponding probability measures (see $[9,10]$). So, in this paper the method of pointwise convergence is followed.

2. On Factorial Moments of the Confluent q-Chu-Vandermonde Distributions

In this section, we first transfer from the random variable X of the family of confluent q-Chu-Vandermonde distributions Equation (3) to the equal-distributed deformed random variable $Y=[X]_{1 / q}$, and we then compute the mean value and variance of the random variable Y, say μ_{q} and σ_{q}^{2} respectively. We also derive all the descending factorial k-th order moments of the random variable X through the computation of all the r-th orders factorials of the random variable Y, named q-factorial moments of the r.v. X.

Proposition 1. The q-mean and q-variance of the family of confluent q-Chu-Vandermonde distributions are given respectively by

$$
\mu_{q}=-\frac{c}{b} \frac{1-b}{1-q} \text { and } \sigma_{q}^{2}=\left(-\frac{c}{b}\right)^{2} \frac{1-b}{q(1-q)}-\frac{c}{b} \frac{1-b}{1-q}
$$

Proof. The q-mean of the family of confluent q-Chu-Vandermonde distributions is given by

$$
\begin{equation*}
\mu_{q}=E(Y)=E\left([X]_{1 / q}\right)=\sum_{x=0}^{n}[x]_{1 / q} f_{X}(x)=\frac{(c ; q)_{\infty}}{(c / b ; q)_{\infty}} \sum_{x=0}^{\infty}[x]_{1 / q} \frac{(b ; q)_{x}}{(c ; q)_{x}(q ; q)_{x}} q^{\binom{x}{2}}\left(-\frac{c}{b}\right)^{x} \tag{7}
\end{equation*}
$$

and since

$$
[x]_{1 / q}=q^{-x+1}[x]_{q}, q^{-x+1} q^{\binom{x}{2}}=q^{\left(\frac{x-1}{2}\right)}, \frac{[x]_{q}}{(q ; q)_{x}}=\frac{1}{(1-q)(q ; q)_{x-1}}
$$

and

$$
(b ; q)_{x}=(1-b)(b q ; q)_{x-1}, \quad(c ; q)_{x}=(1-c)(c q ; q)_{x-1}
$$

it is written as

$$
\begin{equation*}
\mu_{q}=-\frac{c}{b} \frac{1-b}{(1-c)(1-q)} \frac{(c ; q)_{\infty}}{(c / b ; q)_{\infty}} \sum_{x=1}^{\infty} \frac{(b q ; q)_{x-1}}{(c q ; q)_{x-1}(q ; q)_{x-1}} q^{\binom{x-1}{2}}\left(-\frac{c}{b}\right)^{x-1} \tag{8}
\end{equation*}
$$

Using the confluent q-Chu-Vandermonde hypergeometric sum Equation (1) we obtain the formula of the q-mean in Equation (7).

For the evaluation of the q-variance we need to find the second order moment of the r.v. $Y=[X]_{1 / q}$ which is given by

$$
\begin{equation*}
E\left[Y^{2}\right]=E\left[[X]_{1 / q}^{2}\right]=\sum_{x=0}^{\infty}[x]_{1 / q}^{2} f_{X}(x)=\frac{(c ; q)_{\infty}}{(c / b ; q)_{\infty}} \sum_{x=0}^{\infty}[x]_{1 / q}^{2} \frac{(b ; q)_{x}}{(c ; q)_{x}(q ; q)_{x}} q^{\binom{x}{2}}\left(-\frac{c}{b}\right)^{x} \tag{9}
\end{equation*}
$$

Since

$$
[x]_{q}=[x-1]_{q}+q^{x-1}, q^{-2 x+2} q^{\left(\frac{x}{2}\right)}=q^{-1} q^{\left(\frac{x-2}{2}\right)}
$$

and

$$
(b ; q)_{x}=(1-b)(1-b q)\left(b q^{2} ; q\right)_{x-2}, \quad(c ; q)_{x}=(1-c)(1-c q)\left(c q^{2} ; q\right)_{x-2}
$$

Equation (9) becomes

$$
\begin{aligned}
E\left[Y^{2}\right] & =\left(-\frac{c}{b}\right)^{2} \frac{(1-b)(1-b q)}{q(1-q)^{2}(1-c)(1-c q)} \frac{(c ; q)_{\infty}}{(c / b ; q)_{\infty}} \sum_{x=2}^{\infty} \frac{\left(b q^{2} ; q\right)_{x-2}}{\left(c q^{2} ; q\right)_{x-2}(q ; q)_{x-2}} q^{\left(\frac{x-2}{2}\right)}\left(-\frac{c}{b}\right)^{x-2} \\
& =\left(-\frac{c}{b}\right)^{2} \frac{(1-b)(1-b q)}{q(1-q)^{2}(1-c)(1-c q)} \frac{(c ; q)_{\infty}}{\left(c q^{2} ; q\right)_{\infty}}=\left(-\frac{c}{b}\right)^{2} \frac{(1-b)(1-b q)}{q(1-q)^{2}}
\end{aligned}
$$

So,

$$
\sigma_{q}^{2}=V(Y)=V\left([X]_{1 / q}\right)=\left(-\frac{c}{b}\right)^{2} \frac{(1-b)(1-b q)}{q(1-q)^{2}}-\frac{c}{b} \frac{1-b}{1-q}-\left(-\frac{c}{b}\right)^{2} \frac{(1-b)^{2}}{(1-q)^{2}}
$$

from which we obtain the formula of the q-variance given in Equation (7).
Proposition 2. The r-th order q-factorial moments of the family of confluent q-Chu-Vandermonde distributions are given by

$$
\begin{equation*}
E\left([X]_{r, 1 / q}\right)=\frac{(b ; q)_{r}}{(1-q)^{r}}\left(-\frac{c}{b}\right)^{r}, r=1,2, \ldots \tag{11}
\end{equation*}
$$

Proof. The r-th order q-factorial moments of the family of confluent q-Chu-Vandermonde distributions is

$$
\begin{align*}
E\left([X]_{r, 1 / q}\right) & =\sum_{x=r}^{\infty}[x]_{r, 1 / q} f_{X}(x) \\
& =\frac{(c ; q)_{\infty}}{(c / b ; q)_{\infty}} \sum_{x=r}^{\infty}[x]_{1 / q}[x-1]_{1 / q} \cdots[x-r+1]_{1 / q} \frac{(b ; q)_{x}}{(c ; q)_{x}(q ; q)_{x}} q^{\left(\frac{x}{2}\right)}(-c / b)^{x} \tag{12}
\end{align*}
$$

Since

$$
\begin{gathered}
{[x]_{1 / q}=q^{-x+1}[x]_{q},\binom{x}{2}=\binom{x-r}{2}+\binom{r}{2}+r(x-r), \frac{[x]_{r, q}}{(q ; q)_{x}}=\frac{1}{(1-q)^{r}(q ; q)_{x-r}}} \\
(b ; q)_{x}=(b ; q)_{r}\left(b q^{r} ; q\right)_{x-r} \text { and } \frac{(c ; q)_{\infty}}{(c ; q)_{x}}=\frac{\left(c q^{r} ; q\right)_{\infty}}{\left(c q^{r} ; q\right)_{x-r}}
\end{gathered}
$$

the sum Equation (12) becomes

$$
\begin{equation*}
E\left([X]_{r, 1 / q}\right)=\frac{\left(c q^{r} ; q\right)_{\infty}(b ; q)_{r}}{(c / b ; q)_{\infty}(1-q)^{r}}(-c / b)^{r} \sum_{x=r}^{\infty} \frac{\left(b q^{r} ; q\right)_{x-r}}{\left(c q^{r} ; q\right)_{x-r}(q ; q)_{x-r}} q^{\left(\frac{x-r}{2}\right)}(-c / b)^{x-r} \tag{13}
\end{equation*}
$$

By the confluent q-Vandermonde sum the r-th order q-factorial moments of the family of confluent q-Chu-Vandermonde distributions, reduces to Equation (11).

Proposition 3. The descending factorial k-th order moments of the r.v. X of the family of q-Chu-Vandermonde distributions are given by

$$
\begin{equation*}
E\left((X)_{k}\right)=\frac{k!}{(c / b ; q)_{\infty}} \sum_{r=k}^{\infty} \frac{s_{q}(r, k)(q-1)^{r-k}\left(c q^{r} ; q\right)_{\infty}}{[r]_{1 / q}!} E\left([X]_{r, 1 / q}\right)_{1} \phi_{1}\left(b q^{r} ; c q^{r} ; q, c q^{r} / b\right) \tag{14}
\end{equation*}
$$

Proof. The relation of the factorial descending moments with the q-factorial descending moments through the q-Stirling numbers of the first kind is given by the sum

$$
\begin{equation*}
E\left((X)_{k}\right)=k!\sum_{r=k}^{\infty} \frac{s_{q}(r, k)(q-1)^{r-k}}{[r]_{q}!} E\left([X]_{r, q}\right) \tag{15}
\end{equation*}
$$

where $s_{q}(r, k)$ the q-Stirling numbers of the first kind (see Charalambides [11]).
Since

$$
\binom{x}{r}_{q}=q^{r(x-r)}\binom{x}{r}_{1 / q}
$$

the sum Equation (15) is written as

$$
\begin{align*}
E\left((X)_{k}\right) & =k!\sum_{r=k}^{\infty} \frac{s_{q}(r, k)(q-1)^{r-k}}{[r]_{1 / q}!} E\left(q^{r(x-r)}[X]_{r, 1 / q}\right) \\
& =k!\sum_{r=k}^{\infty} \frac{s_{q}(r, k)(q-1)^{r-k}}{[r]_{1 / q}!} \frac{\left(c q^{r} ; q\right)_{\infty}(b ; q)_{r}(-c / b)^{r}}{(c / b ; q)_{\infty}(1-q)^{r}} \sum_{x=r}^{\infty} \frac{\left(b q^{r} ; q\right)_{x-r}}{\left(c q^{r} ; q\right)_{x-r}(q ; q)_{x-r}} q^{\left({ }^{x-r}\right)}\left(-c q^{r} / b\right)^{x-r} \tag{16}
\end{align*}
$$

By Equation (11) of the previous proposition 2 and the definition of the q-hypergeometric function Equation (1), Equation (16) reduces to Equation (14).

3. Pointwise Convergence of A Family of Confluent q-Chu-Vandermonde Distributions to the Stieltjes-Wigert Distribution

In this section, we transfer from the random variable X of the family of confluent q-Chu-Vandermonde distributions Equation (3) to the equal-distributed deformed random variable $Y=[X]_{1 / q}$, and using the q-analogue Stirling asymptotic formula (5), we establish the convergence to a deformed standardized continuous Stieltjes-Wigert distribution of the members I and II of the family of q-Chu-Vandermonde distributions.

Theorem 1. Let the p.f. of the family of confluent q-Chu-Vandermonde distributions be of the form

$$
\begin{equation*}
f_{X}(x)=\frac{\frac{(b ; q)_{x}}{(c ; q)_{x}(q ; q)_{x}} q^{\left(\frac{x}{2}\right)}(-c / b)^{x}}{\frac{(c / b ; q)_{\infty}}{(c ; q)_{\infty}}}, x=0,1, \ldots \tag{17}
\end{equation*}
$$

where $b=b_{n}, c=c_{n}, n=0,1,2, \ldots$, such that $b_{n}=o(1)$ and $-c_{n} / b_{n} \rightarrow \infty$, as $n \rightarrow \infty$. Then, for $n \rightarrow \infty$, the p.f. $f_{X}(x), x=0,1,2, \ldots$ is approximated by a deformed standardized continuous Stieltjes-Wigert distribution as follows

$$
\begin{align*}
f_{X}(x) \cong & \frac{q^{1 / 8}\left(\log q^{-1}\right)^{1 / 2}}{(2 \pi)^{1 / 2}}\left(q^{-3 / 2}(1-q)^{1 / 2} \frac{[x]_{1 / q}-\mu_{q}}{\sigma_{q}}+q^{-1}\right)^{1 / 2} \\
& \cdot \exp \left(\frac{1}{2 \log q} \log ^{2}\left(q^{-3 / 2}(1-q)^{1 / 2} \frac{[x]_{1 / q}-\mu_{q}}{\sigma_{q}}+q^{-1}\right)\right), x \geq 0 \tag{18}
\end{align*}
$$

Proof. Since the product $(b ; q)_{x}=\prod_{j=1}^{x}\left(1-b q^{j-1}\right)=(1-b)(1-b q) \cdots\left(1-b q^{x-1}\right)$ for $b=b_{n}$ with $b_{n} \rightarrow 0$ as $n \rightarrow \infty$ is approximated by $\left(b_{n} ; q\right)_{x} \cong 1$ the p.f. of the family of confluent q-Chu-Vandermonde distributions is discretely approximated as

$$
\begin{equation*}
f_{X}(x) \cong \frac{\frac{q^{\left(\frac{x}{2}\right)}\left(-c_{n} / b_{n}\right)^{x}}{\left(c_{n} ; q\right)_{x}(q ; q)_{x}}}{\frac{\left(c_{n} / b_{n} ;\right)_{\infty}}{\left(c_{n} ; q\right)_{\infty}}}, x=0,1, \ldots \tag{19}
\end{equation*}
$$

By using the q-Stirling asymptotic formula (5) we get the following approximation for the p.f. $f_{X}(x)$ with $b=b_{n}, c=c_{n}$ such that $b_{n}=o(1)$ and $-c_{n} / b_{n} \rightarrow \infty$, as $n \rightarrow \infty$,

$$
\begin{equation*}
f_{X}(x) \cong \frac{\left(q \log q^{-1}\right)^{1 / 2}}{(2 \pi(1-q))^{1 / 2}} \frac{\left(-c_{n} / b_{n}\right)^{x}}{(1-q)^{x}} \frac{\prod_{j=1}^{\infty}\left(1+q\left(q^{-x}-1\right) q^{j-1}\right)\left(c_{n} ; q\right)_{\infty}}{q^{-x / 2}[x]_{1 / q}^{x+1 / 2}\left(c_{n} ; q\right)_{x}\left(c_{n} / b_{n} ; q\right)_{\infty}} \tag{20}
\end{equation*}
$$

From the standardized r.v. $Z=\frac{[X]_{1 / q}-\mu_{q}}{\sigma_{q}}$ with μ_{q} and σ_{q} given in Equation (7), we get

$$
\begin{align*}
{[x]_{1 / q} } & =\sigma_{q} z+\mu_{q}=\left[\left(-\frac{c_{n}}{b_{n}}\right)^{2} \frac{1-q}{q(1-q)}-\frac{c_{n}}{b_{n}} \frac{1-b_{n}}{1-q}\right]^{1 / 2} z-\frac{c_{n}}{b_{n}} \frac{1-b_{n}}{1-q} \\
& =-\frac{c_{n}}{b_{n}} \frac{1-b_{n}}{1-q}\left[\left(\frac{1-q}{q\left(1-b_{n}\right)}-\frac{b_{n}}{c_{n}} \frac{1-q}{1-b_{n}}\right)^{1 / 2} z+1\right] \tag{21}
\end{align*}
$$

Using the assumptions $b_{n}=o(1)$ and $-c_{n} / b_{n} \rightarrow \infty$ as $n \rightarrow \infty$, we have

$$
\begin{equation*}
[x]_{1 / q} \cong-\frac{c_{n}}{b_{n}} \frac{q}{1-q}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right) \tag{22}
\end{equation*}
$$

Also, by the previous two equations we get

$$
\begin{equation*}
q^{-x}=-\frac{c_{n}}{b_{n}} \frac{1-b_{n}}{q}\left[\left(\frac{1-q}{q\left(1-b_{n}\right)}-\frac{b_{n}}{c_{n}} \frac{1-q}{1-b_{n}}\right)^{1 / 2} z+1\right]+1 \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
q^{-x} \cong-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q) z+q^{-1}\right) \tag{24}
\end{equation*}
$$

Moreover, by the Equation (23) we find

$$
\begin{equation*}
x=\frac{1}{\log q^{-1}} \log \left(-\frac{c_{n}}{b_{n}} \frac{1-b_{n}}{q}\left[\left(\frac{1-q}{q\left(1-b_{n}\right)}-\frac{b_{n}}{c_{n}} \frac{1-q}{1-b_{n}}\right)^{1 / 2} z+1\right]+1\right) \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
x \cong \frac{1}{\log q^{-1}} \log \left(-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q) z+q^{-1}\right)\right) \tag{26}
\end{equation*}
$$

Finally, by the Equation (21) we get

$$
\begin{align*}
{[x]_{1 / q}^{x} } & =\left(-\frac{c_{n}}{b_{n}}\right)^{x}\left(\frac{1-b_{n}}{1-q}\right)^{x}\left[\left(\frac{1-q}{q\left(1-b_{n}\right)}-\frac{b_{n}}{c_{n}} \frac{1-q}{1-b_{n}}\right)^{1 / 2} z+1\right]^{x} \\
& =\left(-\frac{c_{n}}{b_{n}}\right)^{x}\left(\frac{1-b_{n}}{1-q}\right)^{x} \exp \left(x \log \left[\left(\frac{1-q}{q\left(1-b_{n}\right)}-\frac{b_{n}}{c_{n}} \frac{1-q}{1-b_{n}}\right)^{1 / 2} z+1\right]\right) \tag{27}
\end{align*}
$$

and

$$
\begin{align*}
{[x]_{1 / q}^{x} } & \cong\left(-\frac{c_{n}}{b_{n}}\right)^{x}\left(\frac{1}{1-q}\right)^{x} \\
& \cdot \exp \left(\frac{1}{\log q^{-1}} \log \left(-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q) z+q^{-1}\right)\right) \log \left(q\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)\right)\right) \tag{28}
\end{align*}
$$

with $z=\frac{[x]_{1 / q}-\mu_{q}}{\sigma_{q}}$
Substituting all the previous approximations Equations (22),(24),(26),(28) to the p.f. $f_{X}(x)$ we get the approximation

$$
\begin{align*}
f_{X}(x) & \cong \frac{\left(q(1-q) \log q^{-1}\right)^{1 / 2}}{(2 \pi q(1-q))^{1 / 2}} \frac{\prod_{j=1}^{\infty}\left(1-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right) q^{j-1}\right)\left(c_{n} ; q\right)_{\infty}}{\left(c_{n} ; q\right)_{x}\left(c_{n} / b_{n} ; q\right)_{\infty}} \\
& \cdot \exp \left(\frac{1}{\log q} \log \left(-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)\right) \log \left(q\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)\right)\right) \\
& \cdot\left(-\frac{c_{n}}{b_{n}} \frac{q^{1 / 2}}{(1-q)^{1 / 2}}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)\right)^{-1}, \quad z=\frac{[x]_{1 / q}-\mu_{q}}{\sigma_{q}} \tag{29}
\end{align*}
$$

As a last step, we need to estimate the products $\prod_{j=1}^{\infty}\left(1-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right) q^{j-1}\right)$, $\left(c_{n} / b_{n} ; q\right)_{x}=\prod_{j=1}^{\infty}\left(1-c_{n} / b_{n} q^{j-1}\right)$ and $\left(c_{n} ; q\right)_{\infty} /\left(c_{n} ; q\right)_{x}=\left(c_{n} q^{x} ; q\right)_{\infty}=\prod_{j=1}^{\infty}\left(1-c_{n} q^{x} q^{j-1}\right)$ by integrals. Since the first product is written as

$$
\begin{equation*}
\prod_{j=1}^{\infty}\left(1-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right) q^{j-1}\right)=\exp \left(\sum_{j=1}^{\infty} \log \left(1-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right) q^{j-1}\right)\right) \tag{30}
\end{equation*}
$$

and the function

$$
h(x)=\log \left(1-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right) q^{x-1}\right)
$$

has all orders continuous derivatives in $[1, \infty)$, we can apply the Euler-Maclaurin summation formula (see [5], p. 1090) in the sum of the Equation (30).

So,

$$
\begin{align*}
& \sum_{j=1}^{\infty} \log \left(1-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right) q^{j-1}\right)=\int_{1}^{\infty} \log \left(1-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right) q^{u-1}\right) d u \\
& +\frac{1}{2} \log \left(1-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)\right)+\sum_{k=1}^{m} \frac{\beta_{2 k}}{(2 k)!} h^{(2 k-1)}\left(1-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)\right)+R_{k} \tag{31}
\end{align*}
$$

where

$$
\begin{equation*}
\left|R_{k}\right| \leq \frac{\left|\beta_{2 k}\right|}{(2 k)!} \int_{1}^{\infty}\left|g^{(2 k)}\left(1-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right) q^{u-1}\right)\right| d u \tag{32}
\end{equation*}
$$

with β_{k} the Bernoulli numbers.
Now, expressing the integral appearing in Equation (31) through the dilogarithm function we get

$$
\begin{equation*}
\int_{1}^{\infty} \log \left(1-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right) q^{u-1}\right) d u=\frac{1}{\log q} \operatorname{Li}_{2}\left(-\left(-\frac{c_{n}}{b_{n}}\right)\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)\right) \tag{33}
\end{equation*}
$$

where $\operatorname{Li}_{2}(y)=\sum_{k \geq 1} \frac{y^{k}}{k^{2}}$ the dilogarithm function. The dilogarithm satisfies the Landen's identity

$$
\begin{equation*}
\mathrm{Li}_{2}(-y)=\mathrm{Li}_{2}\left(\frac{y}{y+1}\right)-\frac{1}{2} \log ^{2}(1+y) \tag{34}
\end{equation*}
$$

Applying the Landen's identity to Equation (33) we obtain

$$
\begin{align*}
\int_{1}^{\infty} \log \left(1-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right) q^{u-1}\right) d u & =\frac{1}{2 \log q^{-1}} \log ^{2}\left(-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)\right) \\
& +\operatorname{Li}_{2}\left(\frac{-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)}{-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)+1}\right) \tag{35}
\end{align*}
$$

Next, we estimate the sum and the quantity R_{k} appearing in Equation (31)

$$
\begin{align*}
\sum_{k=1}^{m} & \frac{\beta_{2 k}}{(2 k)!} h^{(2 k-1)}\left(1-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)\right)+R_{k} \\
& =\frac{\beta_{2}}{2} h^{\prime}\left(1-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)\right)+R_{1}+O\left(\left(-\frac{c_{n}}{b_{n}}\right)^{-2}\right) \\
& =\frac{\beta_{2} \log q}{2} \frac{\left(-\frac{c_{n}}{b_{n}}\right)\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)}{1-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)}+O\left(-\frac{b_{n}}{c_{n}}\right) \tag{36}
\end{align*}
$$

So, by applying Equations (35) and (36) to Equation (31) we obtain

$$
\begin{align*}
& \sum_{j=1}^{\infty} \log \left(1-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right) q^{j-1}\right)=\frac{1}{2 \log q^{-1}} \log ^{2}\left(-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)\right) \\
& +\operatorname{Li}_{2}\left(\frac{-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)}{-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)+1}\right)+\frac{1}{2} \log \left(1-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)\right) \\
& \quad+\frac{\beta_{2} \log q}{2} \frac{\left(-\frac{c_{n}}{b_{n}}\right)\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)}{1-\frac{c_{n}}{b_{n}}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)}+O\left(-\frac{b_{n}}{c_{n}}\right) \tag{37}
\end{align*}
$$

Working similarly for the sum appearing in the product

$$
\begin{equation*}
\prod_{j=1}^{\infty}\left(1-\frac{c_{n}}{b_{n}} q^{j-1}\right)=\exp \left(\sum_{j=1}^{\infty} \log \left(1-\frac{c_{n}}{b_{n}} q^{j-1}\right)\right) \tag{38}
\end{equation*}
$$

we obtain

$$
\begin{align*}
\sum_{j=1}^{\infty} \log \left(1-\frac{c_{n}}{b_{n}} q^{j-1}\right) & =\frac{1}{2 \log q^{-1}} \log ^{2}\left(-\frac{c}{b_{n}}\right)+\operatorname{Li}_{2}\left(\frac{-\frac{c}{b_{n}}}{-\frac{c}{b_{n}}+1}\right) \\
& +\frac{1}{2} \log \left(1-\frac{c}{b_{n}}\right)+\frac{\beta_{2} \log q}{2} \frac{\left(-\frac{c}{b_{n}}\right)}{1-\frac{c}{b_{n}}}+O\left(-\frac{b_{n}}{c}\right) \tag{39}
\end{align*}
$$

We need now to estimate the sum appearing in the last product

$$
\begin{align*}
\left(c_{n} ; q\right)_{\infty} /\left(c_{n} ; q\right)_{x} & =\left(c_{n} q^{x} ; q\right)_{\infty}=\prod_{j=1}^{\infty}\left(1-c_{n} q^{x} q^{j-1}\right) \\
& =\exp \left(\sum_{j=1}^{\infty} \log \left(1+b_{n}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)^{-1} q^{j-1}\right)\right) \tag{40}
\end{align*}
$$

and working analogously as previous we get

$$
\begin{align*}
& \sum_{j=1}^{\infty} \log \left(1+b_{n}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)^{-1} q^{j-1}\right)=\frac{1}{2 \log q^{-1}} \log ^{2}\left(b_{n}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)^{-1}\right) \\
& \quad+\operatorname{Li}_{2}\left(\frac{b_{n}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)^{-1}-1}{b_{n}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)+1}\right)+\frac{1}{2} \log \left(1+b_{n}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)^{-1}\right) \\
& \quad+\frac{\beta_{2} \log q}{2} \frac{b_{n}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)^{-1}}{1+b_{n}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)^{-1}}+O\left(b_{n}\right) \tag{41}
\end{align*}
$$

Applying the estimations Equations (37),(39),(41) to the approximation Equation (29), carrying out all the necessary manipulations and by the assumptions $b_{n}=o(1)$ and $-c_{n} / b_{n} \rightarrow \infty$, as $n \rightarrow \infty$, we derive

$$
\begin{gather*}
f_{X}(x) \cong \frac{q^{1 / 8}\left(\log q^{-1}\right)^{1 / 2}}{(2 \pi)^{1 / 2}}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)^{1 / 2} \exp \left(\frac{1}{2 \log q} \log ^{2}\left(q^{-3 / 2}(1-q)^{1 / 2} z+q^{-1}\right)\right) \\
z=\frac{[x]_{1 / q}-\mu_{q}}{\sigma_{q}}, \quad x \geq 0 \tag{42}
\end{gather*}
$$

that is Equation (18).
Moreover, by standardizing the continuous Stieltjes-Wigert distribution Equation (6) and then deforming this by the random variable $\frac{[X]_{1 / q}-\mu_{q}}{\sigma_{q}}$, we obtain Equation (18) and our proof is completed.

Remark 1. Under the assumptions of the theorem 1 the probability functions I and II of the Table 1 have the asymptotic approximation (18). Note that we do not have the same conclusion for the p.f. III of the table 1 since the assumption $b_{n}=o(1)$ does not hold.

Remark 2. From the proof of the theorem 1 we have that the p.f. of the family of confluent q - Chu -Vandermonde discrete distributions is discretely approximated by

$$
f_{X}(x) \cong \frac{\frac{q^{\left(\frac{x}{2}\right)}\left(-c_{n} / b_{n}\right)^{x}}{\left(c_{n} ; q\right)_{x}(q ; q)_{x}}}{\frac{\left(c_{n} / b_{n} ;\right)_{\infty}}{\left(c_{n} ; q\right)_{\infty}}}, x=0,1, \ldots
$$

From the q-CCVI of the table 1 , for $b_{n}=-h_{n}=o(1), h_{n}>0$ and $c_{n}=c$ constant with $0<c<1$, $n=0,1,2, \ldots$, we get

$$
\begin{equation*}
p_{q C C V I}(x) \cong \frac{\frac{q^{\left.\left(\frac{x}{2}\right)^{2} / h_{n}\right)^{x}}}{(c ; q)_{x}(q ; q)_{x}}}{\frac{\left(-c / h_{n} ; ;\right)_{\infty}}{(c ; q)_{\infty}}}, x=0,1, \ldots \tag{43}
\end{equation*}
$$

Consequently, $p_{q C C V I}(x)$ is discretely approximated by a modified q-Bessel distribution.

Applications

1. A modified q-Bessel distribution: From the remarks 1 and 2 we get an asymptotic expression as in Equation (18) for the modified q-Bessel distribution with p.f.

$$
\begin{equation*}
p_{M B}(x)=\frac{\frac{q^{\left.\frac{x}{x}\right)^{2}\left(c / h_{n}\right)^{x}}}{(c ; q)_{x}(q ; q)_{x}}}{\frac{\left(-c / h_{;} ; q\right)_{\infty}}{(c ; q)_{\infty}}}, x=0,1, \ldots, \tag{44}
\end{equation*}
$$

and with

$$
\mu_{q}=\frac{c}{1-q} h_{n}^{-1} \text { and } \sigma_{q}^{2}=\frac{c^{2}}{q(1-q)} h_{n}^{-2}-\frac{c}{1-q} h_{n}^{-1}
$$

where $0<c<1, h_{n}>0, n=0,1,2, \ldots$ with $h_{n}=o(1)$.
2. A Generalized q-Negative Binomial Distribution: The q-CCVII for $b=q^{n}, n=1,2, \ldots$ and $\eta=q$ becomes a generalized q-negative binomial distribution with p.f.

$$
\begin{equation*}
p(x)=P(X=x)=\frac{\left.\left.\frac{\binom{n+x-1}{x}_{q}}{(-q ; q)_{x}} q^{x}\right)^{x}\right)^{-n x+x}}{\frac{\left(-q^{-n+1 ; q)_{\infty}}\right.}{(-q ; q)_{\infty}}}, x=0,1, \ldots \text { with }\binom{n}{x}_{q}=\frac{[n]_{q}!}{[x]_{q}![n-x]_{q}!} \tag{45}
\end{equation*}
$$

From the proposition 3 the mean value and the variance of the r.v. X of this q-negative binomial distribution are given respectively by

$$
\begin{equation*}
E(X)=\sum_{r=1}^{\infty} a_{1}^{I I}(r)_{1} \phi_{1}\left(q^{n+1} ;-q^{r+1} ; q,-q^{r+1-n}\right) \tag{46}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{1}^{I I}(r)=\frac{\left(-q^{r+1} ; q\right)_{\infty}}{\left(-q^{1-n} ; q\right)_{\infty}} \frac{\left|s_{q}(r, 1)\right|\left(q^{n} ; q\right)_{r} q^{r}}{(1-q) q^{n r}[r]_{1 / q}!} \tag{47}
\end{equation*}
$$

and

$$
\begin{equation*}
V(X)=E(X(X-1))+E(X)-E(X)^{2} \tag{48}
\end{equation*}
$$

with

$$
\begin{equation*}
E(X(X-1))=\sum_{r=2}^{\infty} a_{2}^{I I}(r)_{1} \phi_{1}\left(q^{n+1} ;-q^{r+1} ; q,-q^{r+1-n}\right) \tag{49}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{2}^{I I}(r)=\frac{\left(-q^{r+1} ; q\right)_{\infty}}{\left(-q^{1-n} ; q\right)_{\infty}} \frac{2\left|s_{q}(r, 2)\right|\left(q^{n} ; q\right)_{r} q^{r}}{(1-q)^{2} q^{n r}[r]_{1 / q}!} \tag{50}
\end{equation*}
$$

By remark 1 the above q-negative binomial distribution has the Stieltjes-Wigert asymptotic behavior for $n \rightarrow \infty$ as in Equation (18) with μ_{q} and σ_{q}^{2} given by proposition 1

$$
\mu_{q}=q^{-n+1} \frac{1-q^{n}}{1-q} \text { and } \sigma_{q}^{2}=q^{-2 n+1} \frac{1-q^{n}}{q(1-q)}+q^{-n+1} \frac{1-q^{n}}{1-q}
$$

3. The Generalized Over / Underdispersed (O/U) Distribution: The q-CCVII for $b=q^{n}$ and $\eta=\lambda q^{n}$ becomes a generalized O / U distribution with p.f.

$$
\begin{equation*}
p(x)=P(X=x)=\frac{\left(-\lambda q^{n} ; q\right)_{\infty}}{(-\lambda ; q)_{\infty}} \frac{\left(q^{n} ; q\right)_{x} q^{\binom{x}{2}} \lambda^{x}}{(-\lambda q ; q)_{x}(q ; q)_{x}}, x=0,1, \ldots \text { (see Kemp [1]) } \tag{51}
\end{equation*}
$$

From the proposition 3 the mean value and the variance of the r.v. X of the generalized O / U distribution are given respectively by

$$
\begin{equation*}
E(X)=\sum_{r=1}^{\infty} a_{1}^{I I}(r)_{1} \phi_{1}\left(q^{r+n} ;-\lambda q^{r+n} ; q,-\lambda q^{r}\right) \tag{52}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{1}^{I I}(r)=\frac{\left(-\lambda q^{r+n} ; q\right)_{\infty}}{(-\lambda ; q)_{\infty}} \frac{\left|s_{q}(r, 1)\right|\left(q^{n} ; q\right)_{r} \lambda^{r}}{(1-q)[r]_{1 / q}!} \tag{53}
\end{equation*}
$$

and

$$
\begin{equation*}
V(X)=E(X(X-1))+E(X)-E(X)^{2} \tag{54}
\end{equation*}
$$

with

$$
\begin{equation*}
E(X(X-1))=\sum_{r=2}^{\infty} a_{2}^{I I}(r)_{1} \phi_{1}\left(q^{r+n} ;-\lambda q^{r+n} ; q,-\lambda q^{r}\right) \tag{55}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{2}^{I I}(r)=\frac{\left(-\lambda q^{r+n} ; q\right)_{\infty}}{(-\lambda ; q)_{\infty}} \frac{2\left|s_{q}(r, 2)\right|\left(q^{n} ; q\right)_{r} \lambda^{r}}{(1-q)^{2}[r]_{1 / q}!} \tag{56}
\end{equation*}
$$

By remark 1 the generalized O / U distribution for $\lambda=\lambda_{n} \rightarrow \infty$, has the Stieltjes-Wigert asymptotic behavior for $n \rightarrow \infty$ as in Equation (18) with $\mu_{q}=\lambda_{n} /(1-q)$ and $\sigma_{q}^{2}=\frac{\lambda_{n}^{2}}{q(1-q)}+\frac{\lambda_{n}}{1-q}$ given by proposition 1 .

Remark 3. As it was noted in remark 1, theorem 1 is not sufficed for the confluent q-Chu-Vandermonde hypergeometric series discrete distribution III with p.f.

$$
\begin{equation*}
p_{q C C V I}(x)=P[X=x]=\frac{\left.\frac{\left(q^{-n} ; q\right)_{x}}{(c q)_{x}(q ; q)} q^{(x)} q^{x}\right)\left(-c q^{n}\right)^{x}}{\frac{\left(c^{n} ; q\right)_{\infty}}{(c ; q)_{\infty}}}=\frac{(c ; q)_{\infty}}{\left(c q^{n} ; q\right)_{\infty}} \frac{\binom{n}{x}_{q} q^{2\binom{x}{2}} c^{x}}{(c ; q)_{x}(q ; q)_{x}}, x=0,1, \ldots, n \tag{57}
\end{equation*}
$$

where c constant. However, the discrete approximation of the above q-CCV-III distribution for $n \rightarrow \infty$, is given by

$$
\begin{equation*}
p_{q C C V I I I}(x) \cong(c ; q)_{\infty} \frac{q^{2\left(\frac{x}{2}\right)^{2}} c^{x}}{(c ; q)_{x}(q ; q)_{x}}, x=0,1, \ldots \tag{58}
\end{equation*}
$$

Berg and Valent [12], have proved that for $q<a<1 / q$, the above discrete probability measure Equation (58) has a continuous analogue counterpart family of absolutely continuous probability measures on $(0, \infty)$ defined by

$$
\begin{equation*}
v^{S C}(d x)=\frac{p}{\pi}\left\{\left(\frac{a}{a-1} \frac{(x / a ; q)_{\infty}^{2}}{(q / a ; q)_{\infty}}\right)^{2}+p^{2}\left(\frac{(x ; q)_{\infty}^{2}}{(q ; q)_{\infty}(q a ; q)_{\infty}}\right)^{2}\right\}^{-1} d x \tag{59}
\end{equation*}
$$

where the parameter $p>0$ is given by $p=\gamma /\left(t^{2}+\gamma^{2}\right)$ with $\gamma^{2}=-t(1 / \psi(a)+t)$, where t belongs to the interval with endpoints 0 and $-1 / \psi(a)$ and is given by $\psi(a)=(q ; q)_{\infty} \sum_{j=0}^{\infty} \frac{q^{j}}{\left(a-q^{j}\right)(q ; q)_{j}}$ with $\psi\left(q^{+}\right)=\infty$.

Remark 4. Gould and Srivastava [13] have presented a unification of some combinatorial identities associated with ordinary Gauss's summation theorem and their basic (or $q-$) extension associated with the q - analogue Gauss' s theorem. They have also shown a generalization of their unification for the ordinary case involving a bilateral series and have posed as an open problem the q-extension of their bilateral result. In our work it is considered a family of confluent q-Chu-Vnadermonde distributions which can be associated with the q-analogue of Gauss's theorem and it would be an interesting closlelyrelated open problem to study a bilateral family of the considered distributions.

4. Concluding Remarks

In this article, we have provided a continuous limiting behavior of a family of confluent q-Chu- Vandermonde distributions, for $0<q<1$, in the sense of pointwise convergence, by applying a q-analogue of the usual Stirling asymptotic formula for the factorial number of order n. Specifically, we have designated as a main theorem the conditions under which the confluent q-Chu-Vandermonde discrete distributions q-CCVI and II converge to a continuous Stieltjes-Wigert distribution. Moreover, as applications for this study we present a modified q-Bessel distribution, a generalized q - negative Binomial distribution and a generalized over/underdispersed O / U distribution, converging to a continuous Stieltjes-Wigert distribution. Note that the main contribution of this article is that a discrete distribution congerges to a continuous one, which is not of a Gaussian type distribution.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Kemp, A.W. Steady-state Markov chain models for certain q-confluent hypergeometric distributions. J. Stat. Plan. Infer. 2005, 2005, 107-120.
2. Bender, E.A. Central and local limit theorem applied to asymptotic enumeration. J. Combin. Theory A 1973, 15, 91-111.
3. Canfield, E.R. Central and local limit theorems for the coefficients of polynomials of binomial type. J. Combin. Theory A 1977, 23, 275-290.
4. Flajolet, P.; Soria, M. Gaussian limiting distributions for the number of components in combinatorial structures. J. Comb. Theory Ser. A 1990, 53, 165-182.
5. Odlyzko, A.M. Handbook of Combinatorics. In Asymptotic Enumeration Methods; Graham, R.L., Grötschel, M., Lovász, L., Eds.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1995; pp. 1063-1229.
6. Kyriakoussis, A.; Vamvakari, M.G. On a q-analogue of the stirling formula and a continuous limiting behaviour of the q-Binomial distribution-numerical calculations. Methodol. Comput. Appl. Probabil. 2013, 15, 187-213.
7. Koekoek, R; Lesky, P.A.; Swarttouw, R.F. Hypergeometric Orthogonal Polynomilas and Their q-Analogues; Springer Monographs in Mathematics, Springer Verlag: Berlin, Germany, 2010.
8. Koekoek, R.; Swarttouw, R.F. The Askey-Scheme of Hypergeometric Orthogonal Polynomials and Its q-analogue, Report 98-17, Technical University Delft, 1998. Available online: http://aw.twi.tudelft.nl/"koekoek/askey.html (accessed on 30 March 2001).
9. Christiansen, J.S. Indeterminate Moment Problems within the Askey-Schem. Ph.D. Thesis, Institute of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark, 2004.
10. Ismail, M.E.H. Classical and Quantum Orthogonal Polynomials; Cambridge University Press: Cambridge, UK, 2004.
11. Charalambides, C.A. Moments of a class of discrete q-distributions. J. Stat. Plan. Infer. 2005, 135, 64-76.
12. Berg, C.; Valent, G. The Nevanlinna parametrization for some indeterminate Stieltjes moment problems associated with birth and death processes. Methods Appl. Anal. 1994, 1, 169-209.
13. Gould, H.W; Srivastava, H.M. Some combinatorial identities associated with the Vandermonde convolution. Appl. Math. Comput. 1997, 84, 97-102.
(c) 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
