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Abstract:

 The definition of Azumaya algebras over commutative rings R requires the tensor product of modules over R and the twist map for the tensor product of any two R-modules. Similar constructions are available in braided monoidal categories, and Azumaya algebras were defined in these settings. Here, we introduce Azumaya monads on any category [image: there is no content] by considering a monad [image: there is no content] on [image: there is no content] endowed with a distributive law [image: there is no content] satisfying the Yang–Baxter equation (BD-law). This allows to introduce an opposite monad [image: there is no content] and a monad structure on [image: there is no content]. The quadruple [image: there is no content] is called an Azumaya monad, provided that the canonical comparison functor induces an equivalence between the category [image: there is no content] and the category of [image: there is no content]-modules. Properties and characterizations of these monads are studied, in particular for the case when F allows for a right adjoint functor. Dual to Azumaya monads, we define Azumaya comonads and investigate the interplay between these notions. In braided categories [image: there is no content], for any [image: there is no content]A, the braiding induces a BD-law [image: there is no content], and A is called left (right) Azumaya, provided the monad [image: there is no content](resp.[image: there is no content]) is Azumaya. If τ is a symmetry or if the category [image: there is no content] admits equalizers and coequalizers, the notions of left and right Azumaya algebras coincide.
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1. Introduction

Azumaya algebras [image: there is no content] over a commutative ring R are characterized by the fact that the functor [image: there is no content] induces an equivalence between the category of R-modules and the category of [image: there is no content]-bimodules. In this situation, Azumaya algebras are separable algebras, that is the multiplication [image: there is no content] splits as a [image: there is no content]-bimodule map.

Braided monoidal categories allow for similar constructions as module categories over commutative rings, and so, with some care, Azumaya algebras (monoids) and Brauer groups can be defined for such categories. For finitely bicomplete categories, this was worked out by Fisher-Palmquist in [1]; for symmetric monoidal categories it was investigated by Pareigis in [2]; and for braided monoidal categories, the theory was outlined by van Oystaeyen and Zhang in [3] and Femić in [4]. It follows from the observations in [2] that, even in symmetric monoidal categories, the category equivalence requested for an Azumaya algebra A does not imply the separability of A (defined as for R-algebras).

In our approach to Azumaya (co)monads, we focus on the properties of monads and comonads on any category [image: there is no content] inducing equivalences between certain related categories. Our main tools are distributive laws between monads (and comonads) as used in the investigations of Hopf monads in general categories (see [5,6]).

In Section 2, basic facts about the related theory are recalled, including Galois functors.

In Section 3, we consider monads [image: there is no content] on any category [image: there is no content] endowed with a distributive law [image: there is no content] satisfying the Yang–Baxter equation (monad BD-law). The latter enables the definition of a monad [image: there is no content], where [image: there is no content], [image: there is no content] and [image: there is no content]. Furthermore, λ can be considered as distributive law [image: there is no content], and this allows one to define a monad structure on [image: there is no content]. Then, for any object A∈[image: there is no content], [image: there is no content] allows for an [image: there is no content]-module structure, thus inducing a comparison functor K:[image: there is no content]→[image: there is no content][image: there is no content]. We call [image: there is no content] an Azumaya monad (in 3.3) if this functor is an equivalence of categories. The properties and characterizations of such monads are given, in particular for the case that they allow for a right adjoint functor (Theorem 3.10). Dualizing these notions leads to an intrinsic definition of Azumaya comonads (Definition 3.14). Given a monad [image: there is no content] with monad BD-law [image: there is no content], where the functor F has a right adjoint R, a comonad [image: there is no content] with a comonad BD-law [image: there is no content] can be constructed (Proposition 3.15). The relationship between the Azumaya properties of the monad [image: there is no content] and the comonad [image: there is no content] is addressed in Proposition 3.16. It turns out that for a Cauchy complete category [image: there is no content], [image: there is no content] is an Azumaya monad and [image: there is no content] is a separable monad, if and only if [image: there is no content] is an Azumaya comonad and [image: there is no content]κ[image: there is no content] is a separable comonad (Theorem 3.17).

In Section 4, our theory is applied to study Azumaya algebras in braided monoidal categories [image: there is no content]. Then, for any [image: there is no content]A, the braiding induces a distributive law [image: there is no content] and A is called left (right) Azumaya if the monad [image: there is no content] (resp. [image: there is no content]) is Azumaya. In [3], [image: there is no content]-algebras, which are both left and right Azumaya, are used to define the Brauer group of [image: there is no content]. We will get various characterizations for such algebras, but will not pursue their role for the Brauer group. In braided monoidal categories with equalizers and coequalizers, the notions of left and right Azumaya algebras coincide (Theorem 4.18).

The results about Azumaya comonads provide an extensive theory of Azumaya coalgebras in braided categories [image: there is no content], and the basics for this are described in Section 5. Besides the formal transfer of results known for algebras, we introduce coalgebras [image: there is no content] over cocommutative coalgebras [image: there is no content], and for this, Section 3 provides conditions that make them Azumaya. This extends the corresponding notions studied for coalgebras over cocommutative coalgebras in vector space categories by Torrecillas, van Oystaeyen and Zhang in [7]. Over a commutative ring [image: there is no content], Azumaya coalgebras [image: there is no content] turn out to be coseparable and are characterized by the fact that the dual algebra [image: there is no content] is an Azumaya R-algebra. Notice that coalgebras with the latter property were first studied by Sugano in [8].

Let us mention that, given an endofunctor F:[image: there is no content]→[image: there is no content] with a monad and a comonad structure, a natural transformation [image: there is no content] is called a local prebraiding in (6.7 in [5]), provided it is a monad, as well as a comonad BD-law. For example, the Yang–Baxter operator in the definition of a weak braided Hopf algebra in Alonso Álvarez et al. (Definition 2.1 in [9]) is (among other conditions) required to be of this type. As pointed out by a referee, in Gordon et al. [10], it is suggested to generalize Azumaya algebras by considering them as weak equivalences in an appropriate tricategory.



2. Preliminaries

Throughout this section, [image: there is no content] will stand for any category.


2.1. Modules and comodules.

For a monad [image: there is no content] on [image: there is no content], we write [image: there is no content][image: there is no content] for the Eilenberg–Moore category of [image: there is no content]-modules and denote the corresponding forgetful-free adjunction by:



η[image: there is no content],ε[image: there is no content]:ϕ[image: there is no content]⊣U[image: there is no content]:[image: there is no content][image: there is no content]→[image: there is no content].








Dually, if [image: there is no content] is a comonad on [image: there is no content], we write [image: there is no content][image: there is no content] for the Eilenberg–Moore category of [image: there is no content]-comodules and denote the corresponding forgetful-cofree adjunction by:



η[image: there is no content],ε[image: there is no content]:U[image: there is no content]⊣ϕ[image: there is no content]:[image: there is no content]→[image: there is no content][image: there is no content].








For any monad [image: there is no content] and an adjunction [image: there is no content], there is a comonad [image: there is no content], where [image: there is no content], [image: there is no content] (mates), and there is an isomorphism of categories (e.g., [5]):



Ψ:[image: there is no content][image: there is no content]→[image: there is no content][image: there is no content],[image: there is no content]↦(A,A→[image: there is no content]RT(A)→R(h)R(A)).



(2.1)




Note that, for any (A,θ)∈[image: there is no content][image: there is no content], [image: there is no content].



2.2. Monad distributive laws.

Given two monads [image: there is no content] and [image: there is no content] on [image: there is no content], a natural transformation [image: there is no content] is a (monad) distributive law of [image: there is no content] over [image: there is no content] if it induces the commutativity of the diagrams:



 [image: Axioms 04 00032 i001]








Given a distributive law [image: there is no content], the triple [image: there is no content][image: there is no content]=(ST,m′m·SλT,e′e) is a monad on [image: there is no content] (e.g., [11,12]). Notice that the monad structure on [image: there is no content][image: there is no content] depends on λ, and if the choice of λ needs to be specified, we write ([image: there is no content][image: there is no content])λ.

Furthermore, a distributive law λ corresponds to a monad [image: there is no content]^λ=(S^,m^,e^) on [image: there is no content][image: there is no content] that is a lifting of [image: there is no content] to [image: there is no content][image: there is no content] in the sense that:



U[image: there is no content]S^=SU[image: there is no content], U[image: there is no content]m^=m′U[image: there is no content], U[image: there is no content]e^=e′U[image: there is no content]








.
This defines the Eilenberg–Moore category ([image: there is no content][image: there is no content])[image: there is no content]^λ of [image: there is no content]^λ-modules, whose objects are triples [image: there is no content], with (A,t)∈[image: there is no content][image: there is no content], (A,s)∈[image: there is no content][image: there is no content] and a commutative diagram:



 [image: Axioms 04 00032 i002]



(2.2)




There is an isomorphism of categories [image: there is no content]λ:[image: there is no content]([image: there is no content][image: there is no content])λ→([image: there is no content][image: there is no content])[image: there is no content]^λ by the assignment:



(A,ST(A)→ϱA)↦((A,T(A)→eT(A)′ST(A)→ϱA),S(A)→S(eA)ST(A)→ϱA),








and for any ((A,t),s)∈([image: there is no content][image: there is no content])S^λ,


[image: there is no content]








When no confusion can occur, we shall just write [image: there is no content]^ instead of [image: there is no content]^λ.



2.3 Proposition.

In the setting of Section 2.2, let [image: there is no content] be an invertible monad distributive law.


	(1)

	[image: there is no content] is again a monad distributive law;



	(1)

	[image: there is no content] can be seen as a monad isomorphism ([image: there is no content][image: there is no content])[image: there is no content]→([image: there is no content][image: there is no content])λ defining a category isomorphism:



[image: there is no content]λ:[image: there is no content]([image: there is no content][image: there is no content])λ→[image: there is no content]([image: there is no content][image: there is no content])[image: there is no content],(A,ST(A)→ϱA)↦(A,TS(A)→λST(A)→ϱA);










	(3)

	[image: there is no content] induces a lifting [image: there is no content]^[image: there is no content]:[image: there is no content][image: there is no content]→[image: there is no content][image: there is no content] of [image: there is no content] to [image: there is no content][image: there is no content] and an isomorphism of categories:



Φ:([image: there is no content][image: there is no content])[image: there is no content]^λ→([image: there is no content][image: there is no content])[image: there is no content]^[image: there is no content],((A,t),s)↦((A,s),t),








leading to the commutative diagram:



 [image: Axioms 04 00032 i003]












Proof. (1) and (2) followed by Lemma 4.2 in [13]; (3) is outlined in Remark 3.4 in [14].    ☐



2.4. Comonad distributive laws.

Given comonads [image: there is no content] and [image: there is no content] on [image: there is no content], a natural transformation [image: there is no content] is a (comonad) distributive law of [image: there is no content] over [image: there is no content] if it induces commutativity of the diagrams:



 [image: Axioms 04 00032 i004]








Given this, the triple ([image: there is no content][image: there is no content])κ=(HG,HκG·δ′δ,ε′ε) is a comonad on [image: there is no content] (e.g., [11,12]).

Also, the distributive law κ corresponds to a lifting of the comonad [image: there is no content] to a comonad [image: there is no content]˜κ:[image: there is no content][image: there is no content]→[image: there is no content][image: there is no content], leading to the Eilenberg–Moore category ([image: there is no content][image: there is no content])[image: there is no content]˜κ of [image: there is no content]˜κ-comodules whose objects are triples [image: there is no content] with (A,g)∈[image: there is no content][image: there is no content] and [image: there is no content]∈[image: there is no content][image: there is no content] with commutative diagram:



 [image: Axioms 04 00032 i005]








There is an isomorphism of categories Qκ:[image: there is no content]([image: there is no content][image: there is no content])κ→([image: there is no content][image: there is no content])[image: there is no content]˜κ given by:



(A,A→ρHG(A))↦(A,A→ρHG(A)→εG(A)′G(A)),A→ρHG(A)→H(εA)H(A)),








and for any ((A,g),h)∈([image: there is no content][image: there is no content])[image: there is no content]˜κ,


Qκ-1((A,g),h)=(A,A→hH(A)→H(g)HG(A)).








The following observations are dual to 2.3.



2.5 Proposition.

In the setting of Section 2.4, let [image: there is no content] be an invertible comonad distributive law.


	(1)

	[image: there is no content] is a comonad distributive law of [image: there is no content] over [image: there is no content];



	(2)

	[image: there is no content] allows for a comonad structure ([image: there is no content][image: there is no content])[image: there is no content] and [image: there is no content] is a comonad isomorphism ([image: there is no content][image: there is no content])κ→([image: there is no content][image: there is no content])[image: there is no content] defining a category equivalence:



[image: there is no content]κ:[image: there is no content]([image: there is no content][image: there is no content])κ→[image: there is no content]([image: there is no content][image: there is no content])[image: there is no content],(A,A→ρHG(A))↦(A,A→ρHG(A)→κGH(A);










	(3)

	[image: there is no content] induces a lifting [image: there is no content]˜[image: there is no content]:[image: there is no content][image: there is no content]→[image: there is no content][image: there is no content] of [image: there is no content] to [image: there is no content][image: there is no content] and an equivalence of categories:



Φ′:([image: there is no content][image: there is no content])[image: there is no content]˜κ→([image: there is no content][image: there is no content])[image: there is no content]˜[image: there is no content],((A,g),h)↦([image: there is no content],g),








leading to the commutative diagram:



 [image: Axioms 04 00032 i006]














2.6. Mixed distributive laws.

Given a monad [image: there is no content] and a comonad [image: there is no content] on [image: there is no content], a mixed distributive law (or entwining) from [image: there is no content] to [image: there is no content] is a natural transformation [image: there is no content] with commutative diagrams:



 [image: Axioms 04 00032 i007]








Given a mixed distributive law [image: there is no content] from the monad [image: there is no content] to the comonad [image: there is no content], we write [image: there is no content]^ω=(G^,δ^,ε^) for a comonad on [image: there is no content][image: there is no content] lifting [image: there is no content] (e.g., Section 5 in [12]).

It is well-known that for any object [image: there is no content] of [image: there is no content][image: there is no content],



G^[image: there is no content]=(G(A),G(h)·ωA), (δ^)[image: there is no content]=δA, (ε^)[image: there is no content]=εA








, and the objects of ([image: there is no content][image: there is no content])[image: there is no content]^ are triples [image: there is no content], where [image: there is no content]∈[image: there is no content][image: there is no content] and (A,ϑ)∈[image: there is no content][image: there is no content] with commuting diagram:


 [image: Axioms 04 00032 i008]



(2.3)






2.7. Distributive laws and adjoint functors.

Let [image: there is no content] be a distributive law of a monad [image: there is no content] over a monad [image: there is no content] on [image: there is no content]. If [image: there is no content] admits a right adjoint comonad [image: there is no content] (with [image: there is no content]), then the composite:



[image: there is no content]








is a mixed distributive law from [image: there is no content] to [image: there is no content] (e.g., [5,15]) and the assignment:


(A,ν:ST(A)→A)↦(A,hν:S(A)→A,ϑν:A→R(A)),with










hν:S(A)→S(eA)ST(A)→νA, ϑν:A→[image: there is no content]ART(A)→R(eT(A)′)RST(A)→R(ν)R(A),








yields an isomorphism of categories [image: there is no content]([image: there is no content][image: there is no content])λ≃([image: there is no content][image: there is no content])[image: there is no content]^λ⋄.


2.8. Invertible distributive laws and adjoint functors.

Let [image: there is no content] be an invertible distributive law of a monad [image: there is no content] over a monad [image: there is no content] on [image: there is no content]. Then, [image: there is no content] is a distributive law of the monad [image: there is no content] over the monad [image: there is no content] (2.3), and if [image: there is no content] admits a right adjoint comonad [image: there is no content] (with [image: there is no content]), then the previous construction can be repeated with λ replaced by [image: there is no content]. Thus, the composite:



([image: there is no content])⋄:TH→[image: there is no content]THHSTH→H[image: there is no content]HHTSH→HTε¯HT








is a mixed distributive law from the monad [image: there is no content] to the comonad [image: there is no content]. Moreover, there is an adjunction α,β:[image: there is no content]^λ⊣[image: there is no content]^([image: there is no content])⋄:[image: there is no content][image: there is no content]→[image: there is no content][image: there is no content], where [image: there is no content]^λ is the lifting of [image: there is no content] to [image: there is no content][image: there is no content] considered in 2.2 (e.g., Theorem 4 in [16]), and the canonical isomorphism Ψ from (2.1) yields the commutative diagram:


 [image: Axioms 04 00032 i009]



(2.4)




Note that U[image: there is no content](α)=[image: there is no content] and U[image: there is no content](β)=ε¯.



2.9. Entwinings and adjoint functors.

For a monad [image: there is no content] and a comonad [image: there is no content], consider an entwining [image: there is no content]. If [image: there is no content] admits a right adjoint comonad [image: there is no content] (with [image: there is no content]), then the composite:



[image: there is no content]








is a comonad distributive law of [image: there is no content] over [image: there is no content] (e.g., [5,15]), inducing a lifting [image: there is no content]˜ω of [image: there is no content] to [image: there is no content][image: there is no content] and, thus, an Eilenberg–Moore category ([image: there is no content][image: there is no content])[image: there is no content]˜ω of [image: there is no content]˜ω-comodules whose objects are triples [image: there is no content] with commutative diagram (see Section 2.4):


 [image: Axioms 04 00032 i010]



(2.5)




The following notions will be of use for our investigations.



2.10. Monadic and comonadic functors.

Let η,ε:F⊣R:[image: there is no content]→[image: there is no content] be an adjoint pair of functors. Then, the composite [image: there is no content] allows for a monad structure [image: there is no content][image: there is no content] on [image: there is no content] and the composite [image: there is no content] for a comonad structure [image: there is no content][image: there is no content] on [image: there is no content]. By definition, R is monadic and F is comonadic, provided the respective comparison functors are equivalences,



KR:[image: there is no content]→[image: there is no content][image: there is no content][image: there is no content],B↦(R(B),R(εB)),










KF:[image: there is no content]→[image: there is no content][image: there is no content][image: there is no content],A↦(F(A),F([image: there is no content])).








For an endofunctor we have, under some conditions on the category:



2.11 Lemma.

Let F:[image: there is no content]→[image: there is no content] be a functor that allows for a left and a right adjoint functor and assume [image: there is no content] to have equalizers and coequalizers. Then, the following are equivalent:


	(a)

	F is conservative;



	(b)

	F is monadic;



	(c)

	F is comonadic.





If [image: there is no content] is a monad, then the above are also equivalent to:

	(d)

	the free functor ϕ[image: there is no content]:[image: there is no content]→[image: there is no content][image: there is no content] is comonadic.





Proof. Since F is a left, as well as a right adjoint functor, it preserves equalizers and coequalizers. Moreover, since [image: there is no content] is assumed to have both equalizers and coequalizers, it follows from Beck’s monadicity theorem (see [17]) and its dual that F is monadic or comonadic if and only if it is conservative.

(a)⇔(d) follows from Corollary 3.12 in [18].       ☐



2.12. [image: there is no content]-module functors.

Given a monad [image: there is no content] on [image: there is no content], a functor R:[image: there is no content]→[image: there is no content] is said to be a (left) [image: there is no content]-module if there exists a natural transformation [image: there is no content] with [image: there is no content] and [image: there is no content].

This structure of a left [image: there is no content]-module on R is equivalent to the existence of a functor [image: there is no content]:[image: there is no content]→[image: there is no content][image: there is no content] with commutative diagram (see Proposition II.1.1 in [19])



 [image: Axioms 04 00032 i011]








If [image: there is no content] is such a functor, then [image: there is no content](B)=(R(B),αB) for some morphism [image: there is no content] and the collection {αB,B∈[image: there is no content]} forms a natural transformation [image: there is no content] making R a [image: there is no content]-module. Conversely, if [image: there is no content] is a [image: there is no content]-module, then [image: there is no content]:[image: there is no content]→[image: there is no content][image: there is no content] is defined by [image: there is no content](B)=(R(B),αB).

For any [image: there is no content]-module (R:[image: there is no content]→[image: there is no content],α) admitting an adjunction F⊣R:[image: there is no content]→[image: there is no content] with unit [image: there is no content], the composite:



t[image: there is no content]:T→TηTRF→αFRF








is a monad morphism from [image: there is no content] to the monad [image: there is no content][image: there is no content] on [image: there is no content] generated by the adjunction [image: there is no content]. This yields a functor [image: there is no content]t[image: there is no content]:[image: there is no content][image: there is no content][image: there is no content]→[image: there is no content][image: there is no content].
If t[image: there is no content]:T→RF is an isomorphism (i.e., [image: there is no content]t[image: there is no content] is an isomorphism), then R is called a [image: there is no content]-Galois module functor. Since [image: there is no content]=[image: there is no content]t[image: there is no content]·KR (see 2.10), we have (dual to Theorem 4.4 in [20]):



2.13 Proposition.

The functor [image: there is no content] is an equivalence of categories if and only if the functor R is monadic and a [image: there is no content]-Galois module functor.



2.14. [image: there is no content]-comodule functors.

Given a comonad [image: there is no content] on a category [image: there is no content], a functor L:[image: there is no content]→[image: there is no content] is a left [image: there is no content]-functor if there exists a natural transformation [image: there is no content] with [image: there is no content] and [image: there is no content]. This structure on L is equivalent to the existence of a functor [image: there is no content]:[image: there is no content]→[image: there is no content][image: there is no content] with commutative diagram (dual to 2.12):



 [image: Axioms 04 00032 i012]








If a [image: there is no content]-functor [image: there is no content] admits a right adjoint S:[image: there is no content]→[image: there is no content], with counit [image: there is no content], then (see Propositions II.1.1 and II.1.4 in [19]) the composite:



[image: there is no content]








is a comonad morphism from the comonad generated by the adjunction [image: there is no content] to [image: there is no content].
L:[image: there is no content]→[image: there is no content] is said to be a [image: there is no content]-Galois comodule functor provided [image: there is no content] is an isomorphism.

Dual to Proposition 2.13, we have (see also [6,21]):



2.15 Proposition.

The functor [image: there is no content] is an equivalence of categories if and only if the functor L is comonadic and a [image: there is no content]-Galois comodule functor.



2.16. Right adjoint for [image: there is no content].

If the category [image: there is no content] has equalizers of coreflexive pairs and [image: there is no content], the functor [image: there is no content] (in 2.14) has a right adjoint [image: there is no content], which can be described as follows (e.g., [19,20]), with the composite:



γ:S→ηSSLS→St[image: there is no content]SG,








the value of [image: there is no content] at (A,ϑ)∈[image: there is no content][image: there is no content] is given by the equalizer:


[image: there is no content](A,ϑ)→i(A,ϑ)S(A)⇉γAS(ϑ)SG(A).








If [image: there is no content] denotes the counit of the adjunction [image: there is no content]⊣[image: there is no content], then for any (A,ϑ)∈[image: there is no content][image: there is no content],



U[image: there is no content]([image: there is no content](A,ϑ))=σA·L(i(A,ϑ)),



(2.6)




where [image: there is no content] is the counit of the adjunction [image: there is no content].


2.17. Separable functors.

(e.g., [22]) A functor F:[image: there is no content]→[image: there is no content] between any categories is said to be separable if the natural transformation:



F-,-:[image: there is no content](-,-)→[image: there is no content](F(-),F(-))








is a split monomorphism.
If F:[image: there is no content]→[image: there is no content] and G:[image: there is no content]→D are functors, then:


	(i)

	if F and G are separable, then GF is also separable;



	(ii)

	if GF is separable, then F is separable.







2.18. Separable (co)monads.

(2.9 in [15]) Let [image: there is no content] be any category.


	(1)

	For a monad [image: there is no content] on [image: there is no content], the following are equivalent:


	(a)

	m has a natural section [image: there is no content], such that [image: there is no content];



	(b)

	the forgetful functor U[image: there is no content]:[image: there is no content][image: there is no content]→[image: there is no content] is separable.







	(2)

	For a comonad [image: there is no content] on [image: there is no content], the following are equivalent:


	(a)

	δ has a natural retraction [image: there is no content], such that [image: there is no content];



	(b)

	the forgetful functor U[image: there is no content]:[image: there is no content][image: there is no content]→[image: there is no content] is separable.











2.19. Separability of adjoints.

(2.10 in [15]) Let G:[image: there is no content]→[image: there is no content] and F:[image: there is no content]→[image: there is no content] be an adjoint pair of functors with unit η¯:1[image: there is no content]→FG and counit ε¯:GF→1[image: there is no content].


	(1)

	F is separable if and only if η¯:1[image: there is no content]→FG is a split monomorphism;



	(2)

	G is separable if and only if ε¯:GF→1[image: there is no content] is a split epimorphism.





Given a comonad structure [image: there is no content] on G with corresponding monad structure [image: there is no content] on F (see Section 2.1), there are pairs of adjoint functors:



[image: there is no content]→ϕ[image: there is no content][image: there is no content][image: there is no content],[image: there is no content][image: there is no content]→U[image: there is no content][image: there is no content],[image: there is no content][image: there is no content]→U[image: there is no content][image: there is no content],[image: there is no content]→ϕ[image: there is no content][image: there is no content][image: there is no content];









	(1)

	ϕ[image: there is no content] is separable if and only if ϕ[image: there is no content] is separable;



	(2)

	U[image: there is no content] is separable if and only if U[image: there is no content] is separable, and then, any object of [image: there is no content][image: there is no content] is injective relative to U[image: there is no content] and every object of [image: there is no content][image: there is no content] is projective relative to U[image: there is no content].





The following generalizes criteria for separability given in Theorem 1.2 in [22].



2.20 Proposition.

Let U:[image: there is no content]→[image: there is no content] and F:[image: there is no content]→[image: there is no content] be a pair of functors.


	(i)

	If there exist natural transformations [image: there is no content], such that [image: there is no content], then both [image: there is no content] and U are separable.



	(ii)

	If there exist natural transformations [image: there is no content], such that [image: there is no content], then both [image: there is no content] and F are separable.





Proof. (i) Inspection shows that:



[image: there is no content](-,-)→(FU)-,-[image: there is no content](FU(-),FU(-))→[image: there is no content](κ,κ′)[image: there is no content](-,-)








is the identity, and hence, [image: there is no content] is separable. By 2.17, this implies that U is also separable.
(ii) is shown symmetrically.         ☐




3. Azumaya Monads and Comonads

An algebra A over a commutative ring R is Azumaya provided A induces an equivalence between [image: there is no content] and the category AMA of [image: there is no content]-bimodules. The construction uses properties of the monad [image: there is no content] on [image: there is no content], and the purpose of this section is to trace this notion back to the categorical essentials to allow the formulation of the basic properties for monads on any category. Throughout, [image: there is no content] will again denote any category.


3.1 Definition.

Given an endofunctor F:[image: there is no content]→[image: there is no content] on [image: there is no content], a natural transformation [image: there is no content] is said to satisfy the Yang–Baxter equation provided it induces the commutativity of the diagram:



 [image: Axioms 04 00032 i013]








For a monad [image: there is no content] on [image: there is no content], a monad distributive law [image: there is no content] satisfying the Yang–Baxter equation is called a (monad) BD-law (see Definition 2.2 in [13]).

Here, the interest in the YB-condition for distributive laws lies in the fact that it allows one to define opposite monads and comonads.



3.2 Proposition.

Let [image: there is no content] be a monad on [image: there is no content] and [image: there is no content] a BD-law.


	(1)

	[image: there is no content]λ=(Fλ,mλ,eλ) is a monad on [image: there is no content], where [image: there is no content], [image: there is no content], and [image: there is no content].



	(2)

	λ defines a distributive law [image: there is no content] making [image: there is no content][image: there is no content]λ=(FFλ,m̲,e̲) a monad where:



m̲=mmλ·FλF:FFFF→FF,e̲:=ee:1→FF.










	(3)

	The composite [image: there is no content] defines a left [image: there is no content]-module structure on the functor F:[image: there is no content]→[image: there is no content].



	(4)

	There is a comparison functor [image: there is no content][image: there is no content]:[image: there is no content]→[image: there is no content][image: there is no content] given by:



A↦(F(A),FFF(A)→F(λA)FFF(A)→F(mA)FF(A)→mAF(A)).












Proof. (1) is easily verified (e.g., Remark 3.4 in [14], Section 6.9 in [5]).

(2) can be seen by direct computation (e.g., [5,13,14]).

(3) can be proven by a straightforward diagram chase.

(4) follows from 2.12 using the left [image: there is no content]-module structure of F defined in (3).      ☐

When no confusion can occur, we shall just write [image: there is no content] instead of [image: there is no content][image: there is no content].



3.3 Definition.

A monad [image: there is no content] on any category [image: there is no content] with a BD-law [image: there is no content] is said to be Azumaya provided the comparison functor [image: there is no content][image: there is no content]:[image: there is no content]→[image: there is no content][image: there is no content] is an equivalence of categories.



3.4 Proposition.

If [image: there is no content] is an Azumaya monad on [image: there is no content], then the functor F admits a left adjoint.

Proof. With our previous notation, we have the commutative diagram:



 [image: Axioms 04 00032 i014]



(3.1)




Since U[image: there is no content]:[image: there is no content][image: there is no content]→[image: there is no content] always has a left adjoint and since [image: there is no content][image: there is no content] is an equivalence of categories, the composite F=U[image: there is no content]·[image: there is no content][image: there is no content] has a left adjoint.         ☐

This observation allows for a first characterization of Azumaya monads.



3.5 Theorem.

Let [image: there is no content] be a monad on [image: there is no content] and [image: there is no content] a BD-law. The following are equivalent:


	(a)

	[image: there is no content] is an Azumaya monad;



	(b)

	the functor F:[image: there is no content]→[image: there is no content] is monadic and the left [image: there is no content]-module structure on F defined in Proposition 3.2 is Galois;



	(c)

	the functor F:[image: there is no content]→[image: there is no content] is monadic (with some adjunction [image: there is no content]), and the composite (as in 2.12):



t[image: there is no content]:FF→FFηFFFL→FλLFFFL→FmLFFL→mLFL








is an isomorphism of monads [image: there is no content][image: there is no content]λ→[image: there is no content], where [image: there is no content] is the monad on [image: there is no content] generated by this adjunction [image: there is no content].





Proof. That (a) and (b) are equivalent follows from Proposition 2.15.

(b)⇔(c) In both cases, F is monadic, and thus, F allows for an adjunction, say [image: there is no content] with unit [image: there is no content]. Write [image: there is no content] for the monad on [image: there is no content] generated by this adjunction. Since the left [image: there is no content]-module structure on the functor F is the composite:



[image: there is no content]








it follows from 2.12 that the monad morphism t[image: there is no content]:[image: there is no content][image: there is no content]λ→[image: there is no content] induced by the diagram:


 [image: Axioms 04 00032 i015]








is the composite:


t[image: there is no content]:FF→FFηFFFL→FλLFFFL→FmLFFL→mLFL.








Thus, F is [image: there is no content]-Galois if and only if t[image: there is no content] is an isomorphism.      ☐



3.6. The isomorphism [image: there is no content]FFλ≃([image: there is no content]Fλ)F^.

According to 2.2, for any monad BD-law [image: there is no content], the assignment:



(A,FF(A)→ϱA)↦((A,F(A)→e[image: there is no content]FF(A)→ϱA),F(A)→FeAFF(A)→ϱA)








yields an isomorphism of categories [image: there is no content]λ:[image: there is no content][image: there is no content]⟶([image: there is no content][image: there is no content]λ)[image: there is no content]^, where for any module ([image: there is no content],g)∈([image: there is no content][image: there is no content]λ)[image: there is no content]^,


[image: there is no content]λ-1([image: there is no content],g)=(A,FF(A)→FhF(A)→gA).








There is a functor K[image: there is no content]:[image: there is no content]→([image: there is no content][image: there is no content]λ)[image: there is no content]^,



A↦((F(A),FF(A)→λAFF(A)→mAF(A)),FF(A)→mAF(A)),








with [image: there is no content][image: there is no content]=[image: there is no content]λ-1·K[image: there is no content] and a commutative diagram:


 [image: Axioms 04 00032 i016]








Proof. Direct calculation shows that:



[image: there is no content]λ[image: there is no content][image: there is no content](A)=((F(A),FF(A)→λAFF(A)→mAF(A)),FF(A)→mAF(A)),








for all A∈[image: there is no content].         ☐
It is obvious that [image: there is no content][image: there is no content]:[image: there is no content]→[image: there is no content][image: there is no content] is an equivalence (i.e., [image: there is no content] is Azumaya) if and only if K[image: there is no content]:[image: there is no content]→([image: there is no content][image: there is no content]λ)[image: there is no content]^ is an equivalence. To apply Proposition 2.13 to the functor K[image: there is no content], we will need a functor left adjoint to ϕ[image: there is no content]λ whose existence is not a consequence of the Azumaya condition. For this, the invertibility of λ plays a crucial part.



3.7 Proposition.

Let [image: there is no content] be a monad on [image: there is no content] with an invertible monad BD-law [image: there is no content].


	(1)

	[image: there is no content]:FFλ→FλF is a distributive law inducing a monad ([image: there is no content]λ[image: there is no content])[image: there is no content]=(FλF,m̲̲,e̲̲) where:



m̲̲=mλm·F[image: there is no content]F:FFFF→FF,e̲̲=ee:1→FF,








and λ is an isomorphism of monads ([image: there is no content]λ[image: there is no content])[image: there is no content]→([image: there is no content][image: there is no content]λ)λ.



	(2)

	There is an isomorphism of categories:



Φ:([image: there is no content][image: there is no content]λ)[image: there is no content]^λ→([image: there is no content][image: there is no content])([image: there is no content]λ^)[image: there is no content],([image: there is no content],g)↦((A,g),h).










	(3)

	[image: there is no content] induces a comparison functor K[image: there is no content]′:[image: there is no content]→([image: there is no content][image: there is no content])([image: there is no content]λ^)[image: there is no content](≃[image: there is no content]([image: there is no content]λ[image: there is no content])[image: there is no content]),



A↦((F(A),FF(A)→mAF(A)),FF(A)→λAFF(A)→mAF(A)),








with commutative diagrams:



 [image: Axioms 04 00032 i017]












Proof. (1), (2) follow by Proposition 2.3; (3) is shown similarly to 3.6.      ☐

For λ invertible, it follows from the diagrams in Section 3.6, Section 3.7 that F is an Azumaya monad if and only if the functor



K[image: there is no content]′:[image: there is no content]→([image: there is no content][image: there is no content])([image: there is no content]λ^)[image: there is no content]








is an equivalence of categories.
Note that if [image: there is no content] is a BD-law, then λ can be seen as a monad BD-law [image: there is no content], and it is not hard to see that the corresponding comparison functor:



K[image: there is no content]λ:[image: there is no content]→([image: there is no content]([image: there is no content]λ)λ)([image: there is no content]λ^)λ








takes A∈[image: there is no content] to


(F(A),FFF(A)→F(λA)FFF(A)→F((mλ)A)FF(A)→(mλ)AF(A)).








Now, if [image: there is no content], then λ=[image: there is no content] and ([image: there is no content]λ)λ=[image: there is no content]. Thus, the category ([image: there is no content]([image: there is no content]λ)λ)([image: there is no content]λ^)λ can be identified with the category ([image: there is no content][image: there is no content])([image: there is no content]λ^)[image: there is no content]. Modulo this identification, the functor K[image: there is no content]λ′ corresponds to the functor K[image: there is no content]λ. It now follows from the preceding remark:



3.8 Proposition.

Let [image: there is no content] be a monad on [image: there is no content] with a BD-law [image: there is no content]. If [image: there is no content], then [image: there is no content] is an Azumaya monad if and only if ([image: there is no content]λ,λ) is so.



3.9. Azumaya monads with right adjoints.

Let [image: there is no content] be a monad with an invertible BD-law [image: there is no content]. Assume F to admit a right adjoint functor R, with [image: there is no content], inducing a comonad [image: there is no content] (see 2.1). Since [image: there is no content] is an invertible distributive law, there is a comonad [image: there is no content]^=[image: there is no content]^([image: there is no content])⋄ on [image: there is no content][image: there is no content]λ lifting the comonad [image: there is no content] and that is right adjoint to the monad [image: there is no content]^ (see 2.7), yielding a category isomorphism:



Ψ[image: there is no content]λ:([image: there is no content][image: there is no content]λ)[image: there is no content]^λ→([image: there is no content][image: there is no content]λ)[image: there is no content]^,








where, for any ([image: there is no content],g)∈([image: there is no content][image: there is no content]λ)[image: there is no content]^λ,


Ψ[image: there is no content]λ([image: there is no content],g)=([image: there is no content],g˜) with g˜:A→[image: there is no content]ARF(A)→R(g)R(A),








and a commutative diagram (see (2.4)):


 [image: Axioms 04 00032 i018]



(3.2)




For [image: there is no content]:[image: there is no content]→K([image: there is no content][image: there is no content]λ)[image: there is no content]^λ→Ψ[image: there is no content]λ([image: there is no content][image: there is no content]λ)[image: there is no content]^, one has for any A∈[image: there is no content],



[image: there is no content](A)=((F(A),mA·λA),R(mA)·[image: there is no content][image: there is no content]).








Therefore, the A-component [image: there is no content] of the induced [image: there is no content]^-comodule structure α:ϕ[image: there is no content]λ→[image: there is no content]^ϕ[image: there is no content]λ on the functor ϕ[image: there is no content]λ induced by the commutative diagram (3.2) (see Section 2.14), is the composite:



[image: there is no content]:F(A)→[image: there is no content][image: there is no content]RFF(A)→R(mA)RF(A).








It then follows that, for any [image: there is no content]∈[image: there is no content][image: there is no content]λ, the [image: there is no content]-component t[image: there is no content] of the corresponding comonad morphism t:ϕ[image: there is no content]λU[image: there is no content]λ→[image: there is no content]^ is the composite:



t[image: there is no content]:F(A)→[image: there is no content][image: there is no content]RFF(A)→R(mA)RF(A)→R(h)R(A).



(3.3)




These observations lead to the following characterizations of Azumaya monads.



3.10 Theorem.

Let [image: there is no content] be a monad on [image: there is no content], [image: there is no content] an invertible monad BD-law, and [image: there is no content] a comonad right adjoint to [image: there is no content] (with [image: there is no content]). Then, the following are equivalent:


	(a)

	[image: there is no content] is an Azumaya monad;



	(b)

	


	(i)

	ϕ[image: there is no content]λ is comonadic; and



	(ii)

	ϕ[image: there is no content]λ is [image: there is no content]^-Galois, that is:

t[image: there is no content] in (3.3) is an isomorphism for any [image: there is no content]∈[image: there is no content][image: there is no content]λ or

[image: there is no content] is an isomorphism.









Proof. Recall first that the monad [image: there is no content]λ is of effective descent type means that ϕ[image: there is no content]λ is comonadic.

By Proposition 2.15, the functor [image: there is no content] making the triangle (3.2) commute is an equivalence of categories (i.e., the monad [image: there is no content] is Azumaya) if and only if the monad [image: there is no content]λ is of an effective descent type and the comonad morphism t:ϕ[image: there is no content]λU[image: there is no content]λ→[image: there is no content]^ is an isomorphism. Moreover, according to Theorem 2.12 in [6], t is an isomorphism if and only if for any object A∈[image: there is no content], the ϕ[image: there is no content]λ(A)-component tϕ[image: there is no content]λ(A):Fϕ[image: there is no content]λ(A)→Rϕ[image: there is no content]λ(A) is an isomorphism. Using now that ϕ[image: there is no content]λ(A)=(F(A),mAλ=mA·λA), it is easy to see that χA=tϕ[image: there is no content]λ(A) for all A∈[image: there is no content]. This completes the proof.        ☐

The existence of a right adjoint of the comparison functor [image: there is no content] can be guaranteed by conditions on the base category.



3.11. Right adjoint for [image: there is no content].

With the data given above, assume [image: there is no content] to have equalizers of coreflexive pairs. Then:


	(1)

	the functor [image: there is no content]:[image: there is no content]→([image: there is no content][image: there is no content]λ)[image: there is no content]^ (see 3.9) admits a right adjoint [image: there is no content]:([image: there is no content][image: there is no content]λ)[image: there is no content]^→[image: there is no content] whose value at ([image: there is no content],ϑ)∈([image: there is no content][image: there is no content]λ)[image: there is no content]^ is the equalizer:



 [image: Axioms 04 00032 i019]










	(2)

	for any A∈[image: there is no content], [image: there is no content][image: there is no content](A) is the equalizer:



 [image: Axioms 04 00032 i020]












Proof. (1) According to 2.16, [image: there is no content]([image: there is no content],ϑ) is the object part of the equalizer of:



A⇉γ[image: there is no content]ϑR(A),








where γ is the composite U[image: there is no content]λ→U[image: there is no content]λeU[image: there is no content]λϕ[image: there is no content]λU[image: there is no content]λ=U[image: there is no content]λF→U[image: there is no content]λtU[image: there is no content]λR^. It follows from the description of t that γ[image: there is no content] is the composite


A→eAF(A)→[image: there is no content][image: there is no content]RFF(A)→R(mA)RF(A)→R(h)R(A)








which is just the composite [image: there is no content], since:

	[image: there is no content][image: there is no content]·eA=RF(eA)·[image: there is no content]A by naturality of [image: there is no content] and


	[image: there is no content] because e is the unit for [image: there is no content].




(2) For any A∈[image: there is no content], [image: there is no content](A) fits into the diagram (3.2).        ☐



3.12 Definition.

Write [image: there is no content] for the subfunctor of the functor F determined by the equalizer of the diagram:



 [image: Axioms 04 00032 i021]








We call the monad [image: there is no content] central if [image: there is no content] is (isomorphic to) the identity functor.

Since [image: there is no content] is right adjoint to the functor [image: there is no content], [image: there is no content] is fully faithful if and only if [image: there is no content][image: there is no content]≃1.



3.13 Theorem.

Assume [image: there is no content] to admit equalizers of coreflexive pairs. Let [image: there is no content] be a monad on [image: there is no content], [image: there is no content] an invertible BD-law and [image: there is no content] a comonad right adjoint to [image: there is no content]. Then, the comparison functor [image: there is no content]:[image: there is no content]→([image: there is no content][image: there is no content]λ)[image: there is no content]^ is:


	(i)

	full and faithful if and only if the monad [image: there is no content] is central;



	(ii)

	an equivalence of categories if and only if the monad [image: there is no content] is central and the functor [image: there is no content] is conservative.





Proof. (i) follows from the preceding proposition.

(ii) Since [image: there is no content] is central, the unit [image: there is no content]:1→[image: there is no content][image: there is no content] of the adjunction [image: there is no content]⊣[image: there is no content] is an isomorphism by (i). If [image: there is no content] is the counit of the adjunction, then it follows from the triangular identity [image: there is no content][image: there is no content]·[image: there is no content][image: there is no content]=1 that [image: there is no content][image: there is no content] is an isomorphism. Since [image: there is no content] is assumed to be conservative (reflects isomorphisms), this implies that [image: there is no content] is an isomorphism, too. Thus, [image: there is no content] is an equivalence of categories.      ☐

Dualizing the notion of an Azumaya monad leads to Azumaya comonads.



3.14 Definition.

For a comonad [image: there is no content] on [image: there is no content], a comonad distributive law [image: there is no content] (see 2.4) satisfying the Yang–Baxter equation is called a comonad BD-law (or just a BD-law).

The pair ([image: there is no content],κ) is said to be an Azumaya comonad provided that the (obvious) comparison functor [image: there is no content]κ:[image: there is no content]→[image: there is no content][image: there is no content][image: there is no content]κ is an equivalence.

We leave it for the reader to dualize results about Azumaya monads to Azumaya comonads. Recall that comonad BD-laws are obtained from monad BD-laws by adjunctions (see 7.4 in [5]):



3.15 Proposition.

Let [image: there is no content] be a monad on [image: there is no content] and [image: there is no content] a monad BD-law. If F has a right adjoint functor R, then there is a comonad [image: there is no content] with a comonad YB-distributive law [image: there is no content], where [image: there is no content], [image: there is no content] and [image: there is no content]. Moreover, λ is invertible if and only if κ is so.

The next observation shows the transfer of the Galois property to an adjoint functor.



3.16 Proposition.

Assume [image: there is no content] to be a monad on [image: there is no content] with an invertible monad BD-law [image: there is no content] and [image: there is no content] an adjunction inducing a comonad [image: there is no content] with invertible comonad BD-law [image: there is no content] (seeProposition 3.15). Then, the functor ϕ[image: there is no content]λ is [image: there is no content]^-Galois if and only if the functor ϕ[image: there is no content]κ is [image: there is no content]˜-Galois.

Proof. By Theorem 3.10 and its dual, we have to show that, for any [image: there is no content]∈[image: there is no content][image: there is no content]λ, the composite:



t[image: there is no content]:F(A)→[image: there is no content][image: there is no content]RFF(A)→R(mA)RF(A)→R(h)R(A)








is an isomorphism if and only if, for any (A,θ)∈[image: there is no content][image: there is no content]κ, this is so for the composite:


[image: there is no content]








By symmetry, it suffices to prove one implication. Therefore, suppose that the functor ϕ[image: there is no content]λ is [image: there is no content]˜-Galois. Since [image: there is no content], δ is the composite:



R→[image: there is no content]RRFR→R[image: there is no content]FRRRFFR→RRmRRRFR→RRε¯RR.








Considering the diagram:



 [image: Axioms 04 00032 i022]








in which the top left triangle commutes by one of the triangular identities for [image: there is no content] and the other partial diagrams commute by naturality, one sees that [image: there is no content] is the composite:


F(A)→[image: there is no content][image: there is no content]RFF(A)→RmARF(A)→RF(θ)RFR(A)→Rε¯AR(A).








Since (A,θ)∈[image: there is no content][image: there is no content]κ, the pair [image: there is no content], being [image: there is no content] (see 2.1), is an object of the category [image: there is no content][image: there is no content]λ. It then follows that [image: there is no content]=[image: there is no content]. Since the functor ϕ[image: there is no content]λ is assumed to be [image: there is no content]˜-Galois, the morphism [image: there is no content], and, hence, also [image: there is no content], is an isomorphism, as desired.    ☐

In view of the properties of separable functors (see 2.19) and Definition 3.3, for an Azumaya monad [image: there is no content], [image: there is no content] is a separable monad if and only if F is a separable functor. In this case, ϕ[image: there is no content]λ is also a separable functor, that is the unit [image: there is no content] splits. Dually, for an Azumaya comonad [image: there is no content], [image: there is no content][image: there is no content]κ is separable if and only if the functor R is separable. Thus, we have:



3.17 Theorem.

Under the conditions of Proposition 3.16, suppose further that [image: there is no content] is a Cauchy complete category. Then, the following are equivalent:


	(a)

	[image: there is no content] is an Azumaya monad, and [image: there is no content] is a separable monad;



	(b)

	[image: there is no content] is an Azumaya monad, and the unit [image: there is no content] is a split monomorphism;



	(c)

	ϕ[image: there is no content]λ is [image: there is no content]^-Galois, and [image: there is no content] is a split monomorphism;



	(d)

	([image: there is no content],κ) is an Azumaya comonad, and the counit [image: there is no content] is a split epimorphism;



	(e)

	ϕ[image: there is no content]κ is [image: there is no content]˜-Galois, and [image: there is no content] is a split epimorphism;



	(f)

	ϕ[image: there is no content]κ is [image: there is no content]˜-Galois, and [image: there is no content][image: there is no content]κ is a separable comonad.





Proof. (a)⇒(b)⇒(c) follow by the preceding remarks.

(c)⇒(a) Since [image: there is no content] is assumed to be Cauchy complete, by Corollary 3.17 in [18], the splitting of e implies that the functor ϕ[image: there is no content]λ is comonadic. Now, the assertion follows by Theorem 3.10.

Since ε is the mate of e, ε is a split epimorphism if and only if e is a split monomorphism (e.g., 7.4 in [5]), and the splitting of ε implies that the functor ϕ[image: there is no content]κ is monadic. Applying now Theorem 3.10, its dual and Proposition 3.16 gives the desired result.        ☐




4. Azumaya Algebras in Braided Monoidal Categories


4.1. Algebras and modules in monoidal categories.

Let [image: there is no content] be a strict monoidal category ([17]). An algebra [image: there is no content] in [image: there is no content] (or [image: there is no content]-algebra, [image: there is no content]-monoid) consists of an object A of [image: there is no content] endowed with multiplication [image: there is no content] and unit morphism [image: there is no content], subject to the usual identity and associative conditions.

For a [image: there is no content]-algebra [image: there is no content], a left [image: there is no content]-module is a pair [image: there is no content], where V is an object of [image: there is no content] and [image: there is no content] is a morphism in [image: there is no content], called the left action (or [image: there is no content]-left action) on V, such that [image: there is no content] and [image: there is no content].

Left [image: there is no content]-modules are objects of a category [image: there is no content][image: there is no content] whose morphisms between objects f:[image: there is no content]→(W,ρW) are morphism [image: there is no content] in [image: there is no content], such that [image: there is no content]. Similarly, one has the category [image: there is no content][image: there is no content] of right [image: there is no content]-modules.

The forgetful functor [image: there is no content]U:[image: there is no content][image: there is no content]→[image: there is no content], taking a left [image: there is no content]-module [image: there is no content] to the object V, has a left adjoint, the free [image: there is no content]-module functor:



ϕA:[image: there is no content]→[image: there is no content][image: there is no content],V↦(A⊗V,mA⊗V).








There is another way of seeing the category of left [image: there is no content]-modules involving modules over the monad associated with the [image: there is no content]-algebra [image: there is no content].

Any [image: there is no content]-algebra [image: there is no content] defines a monad [image: there is no content]l=(A⊗-,η,μ) on [image: there is no content] by putting:


	[image: there is no content],


	[image: there is no content].




The corresponding Eilenberg–Moore category [image: there is no content][image: there is no content]l of [image: there is no content]l-modules is exactly the category [image: there is no content][image: there is no content] of left [image: there is no content]-modules, and [image: there is no content]U⊣F is the familiar forgetful-free adjunction between [image: there is no content][image: there is no content]l and [image: there is no content]. This gives in particular that the forgetful functor [image: there is no content]U:[image: there is no content][image: there is no content]→[image: there is no content] is monadic. Hence, the functor [image: there is no content]U creates those limits that exist in [image: there is no content].

Symmetrically, writing [image: there is no content]r for the monad on [image: there is no content], whose functor part is [image: there is no content], the category [image: there is no content][image: there is no content] is isomorphic to the Eilenberg–Moore category [image: there is no content][image: there is no content]r of [image: there is no content]r-modules, and the forgetful functor U[image: there is no content]:[image: there is no content][image: there is no content]→[image: there is no content] is monadic and creates those limits that exist in [image: there is no content].

If [image: there is no content] admits coequalizers, [image: there is no content] is a [image: there is no content]-algebra, (V,[image: there is no content])∈[image: there is no content][image: there is no content] a right [image: there is no content]-module and (W,ρW)∈[image: there is no content][image: there is no content] a left [image: there is no content]-module, then their tensor product (over [image: there is no content]) is the object part of the coequalizer:



[image: there is no content]










4.2. Bimodules.

If [image: there is no content] and [image: there is no content] are [image: there is no content]-algebras, an object V in [image: there is no content] is called an ([image: there is no content],[image: there is no content])-bimodule if there are morphisms [image: there is no content] and [image: there is no content] in [image: there is no content], such that [image: there is no content]∈[image: there is no content][image: there is no content], (V,[image: there is no content])∈[image: there is no content][image: there is no content] and [image: there is no content]. A morphism of ([image: there is no content],[image: there is no content])-bimodules is a morphism in [image: there is no content], which is a morphism of left [image: there is no content]-modules, as well as of right [image: there is no content]-modules. Write [image: there is no content][image: there is no content][image: there is no content] for the corresponding category.

Let [image: there is no content] be the trivial [image: there is no content]-algebra [image: there is no content]. Then, [image: there is no content][image: there is no content]=[image: there is no content][image: there is no content]=[image: there is no content], and for any [image: there is no content]-algebra [image: there is no content], the category [image: there is no content][image: there is no content][image: there is no content] is (isomorphic to) the category of left [image: there is no content]-modules A[image: there is no content], while the category [image: there is no content][image: there is no content][image: there is no content] is (isomorphic to) the category of right [image: there is no content]-modules [image: there is no content]A. In particular, [image: there is no content][image: there is no content][image: there is no content]=[image: there is no content].



4.3. The monoidal category of bimodules.

Suppose now that [image: there is no content] admits coequalizers and that the tensor product preserves these coequalizer in both variables (i.e., all functors V⊗-:[image: there is no content]→[image: there is no content], as well as -⊗V:[image: there is no content]→[image: there is no content] for V∈[image: there is no content] preservedcoequalizers). The last condition guarantees that if [image: there is no content], [image: there is no content] and [image: there is no content] are [image: there is no content]-algebras and if M∈[image: there is no content][image: there is no content][image: there is no content] and N∈[image: there is no content][image: there is no content][image: there is no content], then M⊗BN∈[image: there is no content][image: there is no content][image: there is no content],


	if [image: there is no content] is another [image: there is no content]-algebra and P∈[image: there is no content][image: there is no content][image: there is no content], then the canonical morphism:



[image: there is no content]








induced by the associativity of the tensor product, is an isomorphism in [image: there is no content][image: there is no content][image: there is no content],


	([image: there is no content][image: there is no content][image: there is no content],-⊗A-,[image: there is no content]) is a monoidal category.




Note that (co)algebras in this monoidal category are called [image: there is no content]-(co)rings.



4.4. Coalgebras and comodules in monoidal categories.

Associated with any monoidal category [image: there is no content]=([image: there is no content],⊗,I), there are three monoidal categories [image: there is no content]op, [image: there is no content]r and ([image: there is no content]op)r obtained from [image: there is no content] by reversing, respectively, the morphisms, the tensor product and both the morphisms and tensor product, i.e., [image: there is no content]op=([image: there is no content]op,⊗,I), [image: there is no content]r=([image: there is no content],⊗r,I), where [image: there is no content] and ([image: there is no content]op)r=([image: there is no content]op,⊗r,I) (see, for example, [23]). Note that ([image: there is no content]op)r=([image: there is no content]r)op.

Coalgebras and comodules in a monoidal category [image: there is no content]=([image: there is no content],⊗,I) are, respectively, algebras and modules in [image: there is no content]op=([image: there is no content]op,⊗,I). If [image: there is no content]=(C,δ,ε) is a [image: there is no content]-coalgebra, we write [image: there is no content][image: there is no content] (resp. [image: there is no content][image: there is no content]) for the category of right (resp. left) [image: there is no content]-comodules. Thus, [image: there is no content][image: there is no content]=([image: there is no content]op)[image: there is no content] and [image: there is no content][image: there is no content]=[image: there is no content]([image: there is no content]op). Moreover, if [image: there is no content]′ is another [image: there is no content]-coalgebra, then the category [image: there is no content][image: there is no content][image: there is no content]′ of ([image: there is no content],[image: there is no content]′)-bicomodules is [image: there is no content]([image: there is no content]op)[image: there is no content]′. Writing [image: there is no content]l (resp. [image: there is no content]r) for the comonad on [image: there is no content] with functor-part [image: there is no content] (resp. [image: there is no content]), one has that [image: there is no content][image: there is no content] (resp. [image: there is no content][image: there is no content]) is just the category of [image: there is no content]l-comodules (resp. [image: there is no content]r-comodules).



4.5. Duality in monoidal categories.

One says that an object V of [image: there is no content] admits a left dual, or left adjoint, if there exist an object [image: there is no content] and morphisms [image: there is no content]:I→V⊗[image: there is no content] and [image: there is no content]:[image: there is no content]⊗V→I, such that the composites:



V→[image: there is no content]⊗VV⊗[image: there is no content]⊗V→V⊗[image: there is no content]V,[image: there is no content]→[image: there is no content]⊗[image: there is no content][image: there is no content]⊗V⊗[image: there is no content]→[image: there is no content]⊗[image: there is no content][image: there is no content],








yield the identity morphisms. [image: there is no content] is called the unit and [image: there is no content] the counit of the adjunction. We use the notation ([image: there is no content],[image: there is no content]:[image: there is no content]⊣V) to indicate that [image: there is no content] is left adjoint to V with unit [image: there is no content] and counit [image: there is no content]. This terminology is justified by the fact that such an adjunction induces an adjunction of functors:


[image: there is no content]⊗-,[image: there is no content]⊗-:[image: there is no content]⊗-⊣V⊗-:[image: there is no content]→[image: there is no content],








as well as an adjunction of functors:


-⊗[image: there is no content],-⊗[image: there is no content]:-⊗V⊣-⊗[image: there is no content]:[image: there is no content]→[image: there is no content],








i.e., for any X,Y∈[image: there is no content], there are bijections:


[image: there is no content]([image: there is no content]⊗X,Y)≃[image: there is no content](X,V⊗Y)and[image: there is no content](X⊗V,Y)≃[image: there is no content](X,Y⊗[image: there is no content]).








Any adjunction ([image: there is no content],[image: there is no content]:[image: there is no content]⊣V) induces a [image: there is no content]-algebra and a [image: there is no content]-coalgebra,



[image: there is no content]V,[image: there is no content]=(V⊗[image: there is no content],V⊗[image: there is no content]⊗V⊗[image: there is no content]→[image: there is no content]⊗[image: there is no content]⊗VV⊗[image: there is no content],[image: there is no content]:I→V⊗[image: there is no content]),C[image: there is no content],V=(V⊗[image: there is no content],V⊗[image: there is no content]→[image: there is no content]⊗[image: there is no content]⊗VV⊗[image: there is no content]⊗V⊗[image: there is no content],[image: there is no content]:[image: there is no content]⊗V→I).








Dually, one says that an object V of [image: there is no content] admits a right adjoint if there exist an object [image: there is no content] and morphisms [image: there is no content]′:I→[image: there is no content]⊗V and [image: there is no content]′:V⊗[image: there is no content]→I, such that the composites:



[image: there is no content]→[image: there is no content]⊗[image: there is no content][image: there is no content]⊗V⊗[image: there is no content]→[image: there is no content]⊗[image: there is no content][image: there is no content],V→V⊗[image: there is no content]V⊗[image: there is no content]⊗V→[image: there is no content]⊗VV,








yield the identity morphisms.


4.6 Proposition.

Let V∈[image: there is no content] be an object with a left dual ([image: there is no content],[image: there is no content],[image: there is no content]).


	(i)

	For a [image: there is no content]-algebra [image: there is no content] and a left [image: there is no content]-module structure [image: there is no content] on V, the morphism:



t[image: there is no content]:A→A⊗[image: there is no content]A⊗V⊗[image: there is no content]→[image: there is no content]⊗[image: there is no content]V⊗[image: there is no content]








(the mate of [image: there is no content] under [image: there is no content](A⊗V,V)≃[image: there is no content](A,V⊗[image: there is no content])) is a morphism from the [image: there is no content]-algebra [image: there is no content] to the [image: there is no content]-algebra [image: there is no content]V,[image: there is no content].



	(ii)

	For a [image: there is no content]-coalgebra [image: there is no content] and a right [image: there is no content]-comodule structure [image: there is no content], the morphism:



t(V,[image: there is no content])c:[image: there is no content]⊗V→[image: there is no content]⊗[image: there is no content][image: there is no content]⊗V⊗C→[image: there is no content]⊗CC








(the mate of [image: there is no content] under [image: there is no content](V,V⊗C)≃[image: there is no content]([image: there is no content]⊗V,C)) is a morphism from the [image: there is no content]-coalgebra CV,[image: there is no content] to the [image: there is no content]-coalgebra [image: there is no content].







4.7 Definition.

Let V∈[image: there is no content] be an object with a left dual ([image: there is no content],[image: there is no content],[image: there is no content]).


	(i)

	For a [image: there is no content]-algebra [image: there is no content], a left [image: there is no content]-module [image: there is no content] is called Galois if the morphism t[image: there is no content]:A→V⊗[image: there is no content] is an isomorphism between the [image: there is no content]-algebras [image: there is no content] and [image: there is no content]V,[image: there is no content] and is said to be faithfully Galois if, in addition, the functor V⊗-:[image: there is no content]→[image: there is no content] is conservative.



	(ii)

	For a [image: there is no content]-coalgebra [image: there is no content], a right [image: there is no content]-comodule (V,[image: there is no content]) is called Galois if t(V,[image: there is no content])c:[image: there is no content]⊗V→C is an isomorphism between the [image: there is no content]-coalgebras CV,[image: there is no content] and [image: there is no content] and is said to be faithfully Galois if, in addition, the functor V⊗-:[image: there is no content]→[image: there is no content] is conservative.







4.8. Braided monoidal categories.

A braided monoidal category is a quadruple [image: there is no content], where ([image: there is no content],⊗,I) is a monoidal category, and τ, called the braiding, is a collection of natural isomorphisms:



τV,W:V⊗W→W⊗V,V,W∈[image: there is no content],








subject to two hexagon coherence identities (e.g., [17]). A symmetric monoidal category is a monoidal category with a braiding τ, such that [image: there is no content] for all V,W∈[image: there is no content]. If [image: there is no content] is a braided category with braiding τ, then the monoidal category [image: there is no content]r becomes a braided category with braiding given by [image: there is no content]. Furthermore, given [image: there is no content]-algebras [image: there is no content]=(A,mA,eA) and [image: there is no content]=(B,mB,eB), the triple:


[image: there is no content]⊗[image: there is no content]=(A⊗B,(mA⊗mB)·(A⊗τB,A⊗B),eA⊗eB)








is again a [image: there is no content]-algebra, called the braided tensor product of [image: there is no content] and [image: there is no content].
The braiding also has the following consequence (e.g., [24]):


	If an object V in [image: there is no content] admits a left dual ([image: there is no content],[image: there is no content]:I→V⊗[image: there is no content],[image: there is no content]:[image: there is no content]⊗V→I), then ([image: there is no content],[image: there is no content]′,[image: there is no content]′) is right adjoint to V with unit and counit:



[image: there is no content]′:I→[image: there is no content]V⊗[image: there is no content]→τ[image: there is no content],V-1[image: there is no content]⊗V,[image: there is no content]′:V⊗[image: there is no content]→τV,[image: there is no content][image: there is no content]⊗V→[image: there is no content]I.











Thus, there are isomorphisms ([image: there is no content])♯≃V and ([image: there is no content])*≃V, and one uses the:



4.9 Definition.

An object V of a braided monoidal category [image: there is no content] is said to be finite if V admits a left (and, hence, also a right) dual.

For the rest of this section, [image: there is no content]=([image: there is no content],⊗,I,τ) will denote a braided monoidal category.

Recall that a morphism [image: there is no content] in [image: there is no content] is a copure epimorphism (monomorphism) if for any X∈[image: there is no content], the morphism [image: there is no content] (and, hence, also, the morphism [image: there is no content]) is a regular epimorphism (monomorphism).



4.10 Proposition.

Let [image: there is no content] be a braided monoidal category admitting equalizers and coequalizers. For a finite object V∈[image: there is no content] with left dual ([image: there is no content],[image: there is no content],[image: there is no content]), the following are equivalent:


	(a)

	V⊗-:[image: there is no content]→[image: there is no content] is conservative (monadic, comonadic);



	(b)

	[image: there is no content]:[image: there is no content]⊗V→I is a copure epimorphism;



	(c)

	-⊗V:[image: there is no content]→[image: there is no content] is conservative (monadic, comonadic);



	(d)

	[image: there is no content]:I→V⊗[image: there is no content] is a pure monomorphism.





Proof. Since V is assumed to admit a left dual, it admits also a right dual (see 4.8). Hence, the equivalence of the properties listed in (a) (and in (c)) follows from 2.11. It only remains to show the equivalence of (a) and (b), since the equivalence of (c) and (d) will then follow by duality.

(a)⇒(b) If V⊗-:[image: there is no content]→[image: there is no content] is monadic, then it follows from Theorem 2.4 in [25] that each component of the counit of the adjunction [image: there is no content]⊗-⊣V⊗-, which is the natural transformation [image: there is no content]⊗-, is a regular epimorphism. Thus, [image: there is no content]:[image: there is no content]⊗V→I is a copure epimorphism.

(b)⇒(a) To say that [image: there is no content]:[image: there is no content]⊗V→I is a copure epimorphism is to say that each component of the counit [image: there is no content]⊗- of the adjunction [image: there is no content]⊗-⊣V⊗- is a regular epimorphism, which implies (see, e.g., [25]) that V⊗-:[image: there is no content]→[image: there is no content] is conservative.         ☐



4.11 Remark.

In Proposition 4.10, if the tensor product preserves regular epimorphisms, then (b) is equivalent to requiring [image: there is no content]:[image: there is no content]⊗V→I to be a regular epimorphism. If the tensor product in [image: there is no content] preserves regular monomorphisms, then (d) is equivalent to requiring [image: there is no content]:I→V⊗[image: there is no content] to be a regular monomorphism.



4.12. Opposite algebras.

For a [image: there is no content]-algebra [image: there is no content], define the opposite algebra [image: there is no content]τ=(A,mτ,eτ) in [image: there is no content] with multiplication [image: there is no content] and unit [image: there is no content]. Denote by [image: there is no content]e=[image: there is no content]⊗[image: there is no content]τ and by e[image: there is no content]=[image: there is no content]τ⊗[image: there is no content] the braided tensor products. Then, A is a left [image: there is no content]e-module, as well as a right e[image: there is no content]-module by the structure morphisms:



[image: there is no content]








By properties of the braiding, the morphism [image: there is no content] induces a distributive law from the monad ([image: there is no content]τ)l to the monad [image: there is no content]l satisfying the Yang–Baxter equation, and the monad [image: there is no content]l([image: there is no content]τ)l is just the monad ([image: there is no content]e)l. Thus, the category of [image: there is no content]l([image: there is no content]τ)l-modules is the category [image: there is no content]e[image: there is no content] of left [image: there is no content]e-modules. Symmetrically, the category of [image: there is no content]r([image: there is no content]τ)r-modules is the category [image: there is no content]e[image: there is no content] of right e[image: there is no content]-modules.



4.13. Azumaya algebras.

Given a [image: there is no content]-algebra [image: there is no content], by Proposition 3.2, there are two comparison functors:



[image: there is no content]l:[image: there is no content]→[image: there is no content][image: there is no content]l([image: there is no content]τ)l=[image: there is no content]e[image: there is no content],[image: there is no content]r:[image: there is no content]→[image: there is no content][image: there is no content]r([image: there is no content]τ)r=[image: there is no content]e[image: there is no content],








given by the assignments:


[image: there is no content]l:V⟼(A⊗V,A⊗A⊗A⊗V→A⊗mτ⊗VA⊗A⊗V→m⊗VA⊗V),










[image: there is no content]r:V⟼(V⊗A,V⊗A⊗A⊗A→V⊗mτ⊗AV⊗A⊗A→V⊗mV⊗A)








with commutative diagrams:


 [image: Axioms 04 00032 i023]



(4.1)




The [image: there is no content]-algebra [image: there is no content] is called left (resp. right) Azumaya provided ([image: there is no content]l,τA,A) (resp. ([image: there is no content]r,τA,A)) is an Azumaya monad.



4.14 Remark.

It follows from Proposition 3.8 that if [image: there is no content], the monad [image: there is no content]l (resp. [image: there is no content]r) is Azumaya if and only if ([image: there is no content]τ)l (resp. ([image: there is no content]τ)l) is. Thus, in a symmetric monoidal category, a [image: there is no content]-algebra is left (right) Azumaya if and only if its opposite is so.

A basic property of these algebras is the following.



4.15 Proposition.

Let [image: there is no content] be a braided monoidal category and [image: there is no content] a [image: there is no content]-algebra. If [image: there is no content] is left Azumaya, then A is finite in [image: there is no content].

Proof. It is easy to see that when [image: there is no content] and [image: there is no content]e[image: there is no content] are viewed as right [image: there is no content]-categories (in the sense of [26]), [image: there is no content]l is a [image: there is no content]-functor. Hence, when [image: there is no content]l is an equivalence of categories (that is, when [image: there is no content] is left Azumaya), its inverse equivalence [image: there is no content] is also a [image: there is no content]-functor. Moreover, since [image: there is no content] is left adjoint to [image: there is no content]l, it preserves all colimits that exist in [image: there is no content]e[image: there is no content]. Obviously, the functor ϕ([image: there is no content]e)l:[image: there is no content]→[image: there is no content]e[image: there is no content] is also a [image: there is no content]-functor, and moreover, being a left adjoint, it preserves all colimits that exist in [image: there is no content]. Consequently, the composite [image: there is no content]·ϕ([image: there is no content]e)l:[image: there is no content]→[image: there is no content] is a [image: there is no content]-functor and preserves all colimits that exist in [image: there is no content]. It then follows from Theorem 4.2 in [26] that there exists an object [image: there is no content], such that [image: there is no content]·ϕ([image: there is no content]e)l≃[image: there is no content]⊗-. Using now that [image: there is no content]·ϕ([image: there is no content]e)l is left adjoint to the functor A⊗-:[image: there is no content]→[image: there is no content], it is not hard to see that [image: there is no content] is a left dual to A.       ☐



4.16. Left Azumaya algebras.

Let [image: there is no content] be a braided monoidal category and [image: there is no content] a [image: there is no content]-algebra. The following are equivalent:


	(a)

	[image: there is no content] is a left Azumaya algebra;



	(b)

	the functor A⊗-:[image: there is no content]→[image: there is no content] is monadic, and the left ([image: there is no content]e)l-module structure on it induced by the left diagram in (4.1) is Galois;



	(c)

	(i) A is finite with left dual ([image: there is no content],[image: there is no content]:I→A⊗[image: there is no content],[image: there is no content]:[image: there is no content]⊗A→I), and the functor A⊗-:[image: there is no content]→[image: there is no content] is monadic; and

(ii) the composite [image: there is no content]



A⊗A→A⊗A⊗[image: there is no content]A⊗A⊗A⊗[image: there is no content]→A⊗τA,A⊗[image: there is no content]A⊗A⊗A⊗[image: there is no content]→m⊗A⊗[image: there is no content]A⊗A⊗[image: there is no content]→m⊗[image: there is no content]A⊗[image: there is no content]








is an isomorphism (between the [image: there is no content]-algebras [image: there is no content]e and [image: there is no content]A,[image: there is no content]);



	(d)

	(i) A is finite with right dual ([image: there is no content],[image: there is no content]′:I→[image: there is no content]⊗A,[image: there is no content]′:A⊗[image: there is no content]→I), and the functor ϕ([image: there is no content]τ)l:[image: there is no content]→[image: there is no content]([image: there is no content]τ)l=[image: there is no content]τ[image: there is no content] is comonadic; and

(ii) the composite [image: there is no content]



A⊗A→[image: there is no content]′⊗A⊗A[image: there is no content]⊗A⊗A⊗A→[image: there is no content]⊗m⊗A[image: there is no content]⊗A⊗A→[image: there is no content]⊗τA,A[image: there is no content]⊗A⊗A→[image: there is no content]⊗m[image: there is no content]⊗A








is an isomorphism.





Proof. (a)⇔(b) follows by Proposition 2.13.

(a)⇔(c) If [image: there is no content] is a left Azumaya algebra, then A has a left dual by Proposition 4.15. Thus, in both cases, A is finite, i.e., there is an adjunction ([image: there is no content],[image: there is no content]:[image: there is no content]⊣A). Then, the functor [image: there is no content]⊗-:[image: there is no content]→[image: there is no content] is left adjoint to the functor A⊗-:[image: there is no content]→[image: there is no content], and the monad on [image: there is no content] generated by this adjunction is ([image: there is no content]A,[image: there is no content])l. It is then easy to see that the monad morphism t[image: there is no content]l:([image: there is no content]e)l→([image: there is no content]A,[image: there is no content])l corresponding to the left commutative diagram in (4.1), is just [image: there is no content]. Thus, t[image: there is no content]l is an isomorphism if and only if [image: there is no content] is so. It now follows from Theorem 3.5 that (a) and (c) are equivalent.

(a)⇔(d) Any left Azumaya algebra has a left (and a right) dual by Proposition 4.15. Moreover, if A has a right dual [image: there is no content], then the functor [image: there is no content]⊗- is right adjoint to the functor [image: there is no content]. The desired equivalence now follows by applying Theorem 3.10 to the monad [image: there is no content]l and using that the natural transformation χ is just [image: there is no content].         ☐



4.17 Proposition.

In any braided monoidal category, an algebra is left (resp. right) Azumaya if and only if its opposite algebra is right (resp. left) Azumaya.

Proof. We just note that if [image: there is no content] is a braided monoidal category and [image: there is no content] is a [image: there is no content]-algebra, then (τ-,A)-1:A⊗-→-⊗Aτ is an isomorphism of monads [image: there is no content]l→([image: there is no content]τ)r, while the symmetric (τA,-)-1:-⊗A→Aτ⊗- is an isomorphism of monads [image: there is no content]r→([image: there is no content]τ)l.      ☐

Under some conditions on [image: there is no content], left Azumaya algebras are also right Azumaya and vice versa:



4.18 Theorem.

Let [image: there is no content] be a [image: there is no content]-algebra in a braided monoidal category [image: there is no content] with equalizers and coequalizers. Then, the following are equivalent:


	(a)

	[image: there is no content] is a left Azumaya algebra;



	(b)

	the left [image: there is no content]e-module [image: there is no content] is faithfully Galois;



	(c)

	A is finite with right dual ([image: there is no content],[image: there is no content]′:I→[image: there is no content]⊗A,[image: there is no content]′:A⊗[image: there is no content]→I); the functor ϕ([image: there is no content]τ)l:[image: there is no content]→[image: there is no content]([image: there is no content]τ)l=[image: there is no content]τ[image: there is no content] is comonadic; and the composite [image: there is no content] in 4.16 (d) is an isomorphism;



	(d)

	A is finite with right dual ([image: there is no content],[image: there is no content]′:I→[image: there is no content]⊗A,[image: there is no content]′:A⊗[image: there is no content]→I); the functor -⊗A:[image: there is no content]→[image: there is no content] is monadic; and the composite [image: there is no content]1:



A⊗A→[image: there is no content]′⊗A⊗A[image: there is no content]⊗A⊗A⊗A→[image: there is no content]⊗τA,A⊗A[image: there is no content]⊗A⊗A⊗A→[image: there is no content]⊗m⊗A[image: there is no content]⊗A⊗A→[image: there is no content]⊗m[image: there is no content]⊗A








is an isomorphism (between the [image: there is no content]-algebras e[image: there is no content] and S[image: there is no content],A);



	(e)

	the right e[image: there is no content]-module [image: there is no content] is faithfully Galois;



	(f)

	[image: there is no content] is a right Azumaya algebra.





Proof. In view of Proposition 4.10 and Remark 4.11, (a), (b) and (c) are equivalent by 4.16.

Each statement about a general braided monoidal category [image: there is no content] has a counterpart statement obtained by interpreting it in [image: there is no content]r. Doing this for Theorem 4.16, we obtain that (d), (e) and (f) are equivalent.

(c)⇔(d) The composite [image: there is no content] is the upper path and [image: there is no content]1 is the lower path in the diagram



 [image: Axioms 04 00032 i024]








where [image: there is no content] and [image: there is no content]. The left square is commutative by naturality, the pentagon is commutative since τ is a braiding and the parallelogram commutes by the associativity of m. Therefore, the diagram is commutative, and hence, [image: there is no content]=[image: there is no content]1·τA,A, that is [image: there is no content] is an isomorphism if and only if [image: there is no content]1 is so. Thus, in order to show that (c) and (d) are equivalent, it is enough to show that the functor ϕ([image: there is no content]τ)l:[image: there is no content]→[image: there is no content]τ[image: there is no content] is comonadic if and only if the functor -⊗A:[image: there is no content]→[image: there is no content] is monadic. Since [image: there is no content] is assumed to have equalizers and coequalizers, this follows from Lemma 2.11 and Proposition 4.10.      ☐


4.19 Remark.

A closer examination of the proof of the preceding theorem shows that if a braided monoidal category [image: there is no content] admits:


	coequalizers, then any left Azumaya [image: there is no content]-algebra is right Azumaya,


	equalizers, then any right Azumaya [image: there is no content]-algebra is left Azumaya.




In the setting of 4.12, by Proposition 3.2, the assignment:



V⟼((A⊗V,A⊗A⊗V→mτ⊗VA⊗V),A⊗A⊗V→m⊗VA⊗V)








yields the comparison functor K:[image: there is no content]→([image: there is no content]([image: there is no content]τ)l)[image: there is no content]l^=([image: there is no content]τ[image: there is no content])[image: there is no content]l^.
Now, assume the functor A⊗-:[image: there is no content]→[image: there is no content] to have a right adjoint functor [A,-]:[image: there is no content]→[image: there is no content] with unit [image: there is no content]. Then, there is a unique comonad structure [image: there is no content] on [image: there is no content] (right adjoint to [image: there is no content]l; see Section 2.1), leading to the commutative diagram:



 [image: Axioms 04 00032 i025]



(4.2)




where Ψ=Ψ([image: there is no content]τ)l. This is just the diagram (3.2), and Theorem 3.10 provides characterizations of left Azumaya algebras.


4.20 Theorem.

Let [image: there is no content] be an algebra in a braided monoidal category [image: there is no content], and assume [image: there is no content] to have a right adjoint [image: there is no content] (see above). Then, the following are equivalent:


	(a)

	[image: there is no content] is left Azumaya;



	(b)

	the functor ϕ([image: there is no content]τ)l:[image: there is no content]→[image: there is no content]τ[image: there is no content] is comonadic, and for any V∈[image: there is no content], the composite:



χV:A⊗A⊗V→([image: there is no content])A⊗A⊗V[A,A⊗A⊗A⊗V]→[A,m⊗A⊗V][A,A⊗A⊗A]→[A,τA,A⊗V][A,A⊗A⊗V]→[A,m⊗V][A,A⊗V]








is an isomorphism;



	(c)

	A is finite; the functor ϕ([image: there is no content]τ)l:[image: there is no content]→Aτ[image: there is no content] is comonadic; and the composite:



[image: there is no content]








is an isomorphism.





Proof. (a)⇔(b) follows by Theorem 3.10.

(a)⇔(c) Since A turns out to be finite, there is a right dual ([image: there is no content],[image: there is no content]′,[image: there is no content]′) of A. Then, [image: there is no content]⊗-:[image: there is no content]→[image: there is no content] and [A,-]:[image: there is no content]→[image: there is no content] are both right adjoint to A⊗-:[image: there is no content]→[image: there is no content], and thus, there is an isomorphism of functors t:[A,-]→[image: there is no content]⊗- inducing the commutative diagram:



 [image: Axioms 04 00032 i026]



(4.3)




Rewriting the morphism [image: there is no content] from 4.16(d) yields the morphism [image: there is no content] in (c).       ☐

A symmetric characterization is obtained for right Azumaya algebras provided the functor [image: there is no content] has a right adjoint [image: there is no content].



4.21 Remark.

In [3], van Oystaeyen and Zhang defined Azumaya algebras [image: there is no content] in [image: there is no content] by requiring [image: there is no content] to be left and right Azumaya in our sense (see 4.13). The preceding Theorem 4.20 together with its right-hand version correspond to the characterization of these algebras in Theorem 3.1 in [3]. As shown in Theorem 4.18, if [image: there is no content] admits equalizers and coequalizers, it is sufficient to require the Azumaya property on one side.

Given an adjunction ([image: there is no content],ε:[image: there is no content]⊣V) in [image: there is no content], we know from 4.5 that [image: there is no content]V,[image: there is no content]=V⊗[image: there is no content] is a [image: there is no content]-algebra. Moreover, it is easy to see that the morphism [image: there is no content]⊗V⊗[image: there is no content]→[image: there is no content]⊗[image: there is no content][image: there is no content] defines a left [image: there is no content]V,[image: there is no content]-module structure on [image: there is no content], while the composite V⊗[image: there is no content]⊗V→V⊗[image: there is no content]V defines a right [image: there is no content]V,[image: there is no content]-module structure on V.

Recall from [3] that an object V∈[image: there is no content] with a left dual ([image: there is no content],[image: there is no content],[image: there is no content]) is right faithfully projective if the morphism [image: there is no content]¯:[image: there is no content]⊗[image: there is no content]V,[image: there is no content]V→I induced by [image: there is no content]:[image: there is no content]⊗V→I is an isomorphism. Dually, an object V∈[image: there is no content] with a right dual ([image: there is no content],[image: there is no content]′,[image: there is no content]′) is left faithfully projective if the morphism [image: there is no content]′¯:V⊗[image: there is no content][image: there is no content],V[image: there is no content]→I induced by [image: there is no content]′:V⊗[image: there is no content]→I is an isomorphism.

Since, in a braided monoidal category, an object is left faithfully projective if and only if it is right faithfully projective (e.g., Theorem 3.1 in [4]), we do not have to distinguish between left and right faithfully projective objects, and we shall call them just faithfully projective.



4.22 Theorem.

Let [image: there is no content] be a braided closed monoidal category with equalizers and coequalizers. Let [image: there is no content] be a [image: there is no content]-algebra, such that the functor A⊗- admits a right adjoint [image: there is no content] (hence, -⊗A also admits a right adjoint [image: there is no content]). Then, the following are equivalent:


	(a)

	[image: there is no content] is left Azumaya;



	(b)

	[image: there is no content] is right Azumaya;



	(c)

	A is faithfully projective, and the composite:



[image: there is no content]








where [image: there is no content] is the unit of the adjunction A⊗-⊣[A,-], is an isomorphism;



	(d)

	A is faithfully projective, and the composite:



[image: there is no content]








where [image: there is no content] is the unit of the adjunction -⊗A⊣{A,-}, is an isomorphism.





Proof. That (a) and (b) are equivalent follows from Theorem 4.18.

(a)⇔(c) Since in both cases, A is finite and, thus, the functor A⊗-:[image: there is no content]→[image: there is no content] has both left and right adjoints, in view of Proposition 4.10, we get from Lemma 2.11 that the functor ϕ([image: there is no content]τ)l:[image: there is no content]→[image: there is no content]τ[image: there is no content] is comonadic if and only if the functor A⊗-:[image: there is no content]→[image: there is no content] is conservative. According to 2.5.1, 2.5.2 in [27], A is faithfully projective if and only if A is finite and the functor A⊗-:[image: there is no content]→[image: there is no content] is conservative, and hence, the equivalence of (a) and (c) follows by Theorem 4.20.

Similarly, one proves that (b) and (d) are equivalent.        ☐



4.23. Braided closed monoidal categories.

A braided monoidal category [image: there is no content] is said to be left closed if each functor V⊗-:[image: there is no content]→[image: there is no content] has a right adjoint [V,-]:[image: there is no content]→[image: there is no content]; we write ηV,[image: there is no content]V:V⊗-⊣[V,-]. [image: there is no content] is called right closed if each functor -⊗V:[image: there is no content]→[image: there is no content] has a right adjoint {V,-}:[image: there is no content]→[image: there is no content]; we write ηV,[image: there is no content]V:-⊗V⊣{V,-}. [image: there is no content] being braided left closed implies that [image: there is no content] is also right closed. Therefore, assume [image: there is no content] to be closed.

If [image: there is no content] is a [image: there is no content]-algebra and [image: there is no content]∈[image: there is no content][image: there is no content], then for any X∈[image: there is no content],



(V⊗X,A⊗V⊗X→[image: there is no content]⊗XV⊗X)∈[image: there is no content][image: there is no content],








and the assignment X→(V⊗X,[image: there is no content]⊗X) defines a functor V⊗-:[image: there is no content]→[image: there is no content][image: there is no content]. When [image: there is no content] admits equalizers, this functor has a right adjoint [image: there is no content][V,-]:[image: there is no content][image: there is no content]→[image: there is no content], where, for any (W,ρW)∈[image: there is no content][image: there is no content], [image: there is no content][V,W] is defined to be the equalizer in [image: there is no content] of:


[image: there is no content]








where one of the morphisms is [[image: there is no content],W] and the other one is the composition:


[V,W]→(A⊗-)V,W[A⊗V,A⊗W]→[A⊗V,ρW][A⊗V,W].








Symmetrically, for V,W∈[image: there is no content][image: there is no content], one defines {V,W}[image: there is no content].

The functor [image: there is no content]=Ψ·K:[image: there is no content]→([image: there is no content]τ[image: there is no content])[image: there is no content] (in diagram (4.2)) has as right adjoint [image: there is no content]:([image: there is no content]τ[image: there is no content])[image: there is no content]→[image: there is no content] (see 2.16), and since Ψ is an isomorphism of categories, the composition [image: there is no content]·Ψ is right adjoint to the functor K:[image: there is no content]→([image: there is no content]τ[image: there is no content])[image: there is no content]l^. Using now that [image: there is no content] (see 3.6) is an isomorphism of categories, we conclude that [image: there is no content]·Ψ·[image: there is no content] is right adjoint to the functor [image: there is no content]-1·K:[image: there is no content]→[image: there is no content]e[image: there is no content]. For any (V,h)∈[image: there is no content]e[image: there is no content], we put:



[image: there is no content]V:=[image: there is no content]·Ψ·[image: there is no content](V,h).








Taking into account the description of the functors [image: there is no content], Ψ and [image: there is no content], one gets that [image: there is no content]V can be obtained as the equalizer of the diagram:



V→([image: there is no content])V[A,A⊗V]⇉[A,A⊗e⊗V][A,e⊗A⊗V][A,A⊗A⊗V]⇉[A,h][A,h][A,V].








Symmetrically, for any (V,h)∈[image: there is no content]e[image: there is no content], we define V[image: there is no content] as the equalizer of the diagram:



V→([image: there is no content])V[A,V⊗A]⇉[A,V⊗e⊗A][A,V⊗A⊗e][A,V⊗A⊗A]⇉[A,h][A,h][A,V].








The functor [image: there is no content]-1·K:[image: there is no content]→[image: there is no content]e[image: there is no content] is just the functor A⊗-:[image: there is no content]→[image: there is no content]e[image: there is no content] and admits as a right adjoint the functor [image: there is no content]e[image: there is no content]:[image: there is no content]e[image: there is no content]→[image: there is no content] (see 4.23). As right adjoints are unique up to isomorphism, we get an alternative proof for Femić’s Proposition 3.3 in [4]:



4.24 Proposition.

Let [image: there is no content] be a braided closed monoidal category with equalizers. For any [image: there is no content]-algebra [image: there is no content],




	the functors:
	[image: there is no content](-),[image: there is no content]e[image: there is no content]:[image: there is no content]e[image: there is no content]→[image: there is no content]



	and the functors:
	(-)[image: there is no content],{A,-}e[image: there is no content]:[image: there is no content]e[image: there is no content]→[image: there is no content]





are isomorphic.
These isomorphisms allow for further characterizations of Azumaya algebras.



4.25 Theorem.

Let [image: there is no content] be a braided closed monoidal category with equalizers. Then, any [image: there is no content]-algebra [image: there is no content] is left (resp. right) Azumaya if and only if:


	(i)

	the morphism [image: there is no content] is a pure monomorphism, and



	(ii)

	for any (V,h)∈[image: there is no content]e[image: there is no content], with the inclusion iV:[image: there is no content]V→V, we have an isomorphism:



A⊗[image: there is no content]V→A⊗iVA⊗V→A⊗e⊗VA⊗A⊗V→hV;








(resp. for any (V,h)∈[image: there is no content]e[image: there is no content], with the inclusion iV:V[image: there is no content]→V, we have an isomorphism:



V[image: there is no content]⊗V→iV⊗AV⊗A→V⊗e⊗AV⊗A⊗A→hV.)












Proof. The [image: there is no content]-algebra [image: there is no content] is left Azumaya provided the functor [image: there is no content]l:[image: there is no content]→[image: there is no content]e[image: there is no content] is an equivalence of categories. It follows from Equation (2.6) that the composite:



h·(A⊗e⊗V)·(A⊗iV):A⊗[image: there is no content]V→V








is just the Ψ·[image: there is no content](V,h)-component of the counit of [image: there is no content]l⊣[image: there is no content] and, hence, is an isomorphism. Moreover, by Proposition 2.15, the functor ϕ([image: there is no content]τ)l:[image: there is no content]→[image: there is no content][image: there is no content] is comonadic, whence the morphism [image: there is no content] is a pure monomorphism (e.g., Theorem 2.1 in [18]). This proves one direction.
For the other direction, we note that, under Conditions (i) and (ii), the counit of the adjunction [image: there is no content]-1·[image: there is no content]l⊣[image: there is no content]·Ψ·[image: there is no content] (and hence, also, of the adjunction [image: there is no content]l=Ψ·K⊣[image: there is no content]) is an isomorphism and the functor ϕ([image: there is no content]τ)l (and hence, also, [image: there is no content]l) is conservative (e.g., Theorem 2.1 in [18]), implying (as in the proof of Theorem 3.13 (ii)) that [image: there is no content]l is an equivalence of categories.

The right version of the theorem follows by duality.       ☐



4.26 Definition.

A [image: there is no content]-algebra [image: there is no content] is called left (resp. right) central if there is an isomorphism I≃[image: there is no content]e[image: there is no content] (resp. I≃{A,-}e[image: there is no content]). [image: there is no content] is called central if it is both left and right central.



4.27 Proposition.

Let [image: there is no content] be a braided closed monoidal category with equalizers. Then:


	(i)

	any left (resp. right) Azumaya algebra is left (resp. right) central;



	(ii)

	if, in addition, [image: there is no content] admits also coequalizers, then any [image: there is no content] algebra that is Azumaya on either side is central.





Proof. (i) follows by Theorem 4.25, while (ii) follows from (i) and Theorem 4.18.    ☐

Recall that for any [image: there is no content]-algebra [image: there is no content], an [image: there is no content]e-module M is U[image: there is no content]e-projective provided for morphisms g:N→L and [image: there is no content] in [image: there is no content]e[image: there is no content] with U[image: there is no content]e(g) a split epimorphism, there exists an [image: there is no content] in [image: there is no content]e[image: there is no content] with [image: there is no content]. This is the case if and only if M is a retract of a (free) [image: there is no content]e-module [image: there is no content]e⊗X with some X∈[image: there is no content] (e.g., [28]). We apply this in the characterization of separable algebras.



4.28 Proposition.

The following are equivalent for a [image: there is no content]-algebra [image: there is no content]:


	(a)

	[image: there is no content] is a separable algebra;



	(b)

	[image: there is no content] has a section [image: there is no content] in [image: there is no content], such that:



[image: there is no content]










	(c)

	the left [image: there is no content]e-module [image: there is no content] is [image: there is no content]eU-projective;



	(d)

	the functor [image: there is no content]eU:[image: there is no content]e[image: there is no content]→[image: there is no content] is separable.







4.29 Proposition.

Consider [image: there is no content]-algebras [image: there is no content] and [image: there is no content], such that the unit [image: there is no content] of [image: there is no content] is a split monomorphism. If [image: there is no content]⊗[image: there is no content] is separable in [image: there is no content], then [image: there is no content] is also separable in [image: there is no content].

Proof. Since I is a retract of B in [image: there is no content], A is a retract of [image: there is no content] in [image: there is no content]e[image: there is no content]. Since [image: there is no content] is assumed to be separable in [image: there is no content], [image: there is no content] is a retract of [image: there is no content] in [image: there is no content][image: there is no content] and, hence, also in Ae[image: there is no content]. Thus, A is a retract of Ae⊗Be≃[image: there is no content] in Ae[image: there is no content]. Since Ae⊗Be=ϕ[image: there is no content]e(Be), it follows that [image: there is no content] is AeU-projective, and since retracts of a AeU-projectives are AeU-projective, A is AeU-projective, and [image: there is no content] is separable by Proposition 4.28.         ☐

Following [2], a finite object V in [image: there is no content] is said to be a progenerator if the counit morphism [image: there is no content]:[image: there is no content]⊗V→I is a split epimorphism. The following list describes some of its properties.



4.30 Proposition.

Assume [image: there is no content] to admit equalizers and coequalizers. For an algebra [image: there is no content] in [image: there is no content] with A admitting a left adjoint ([image: there is no content],[image: there is no content],[image: there is no content]) (see 4.5), consider the following statements:


	(1)

	A is a progenerator;



	(2)

	the morphism [image: there is no content]:I→A⊗[image: there is no content] is a split monomorphism;



	(3)

	the functor A⊗-:[image: there is no content]→[image: there is no content] is separable;



	(4)

	the unit morphism [image: there is no content] is a split monomorphism;



	(5)

	the functor A⊗-:[image: there is no content]→[image: there is no content] is conservative (monadic, comonadic);



	(6)

	A⊗[image: there is no content] is a separable [image: there is no content]-algebra.





One always has [image: there is no content] and [image: there is no content].

If I is projective (w.r.t. regular epimorphisms) in [image: there is no content], then [image: there is no content].

Proof. Since A admits a left adjoint ([image: there is no content],[image: there is no content],[image: there is no content]), the functor [image: there is no content]⊗-:[image: there is no content]→[image: there is no content] is left, as well as right adjoint to the functor A⊗-:[image: there is no content]→[image: there is no content]. For any V∈[image: there is no content], the composite:



V→[image: there is no content]⊗VA⊗[image: there is no content]⊗V→τ[image: there is no content],A-1⊗V[image: there is no content]⊗A⊗V








is the V-component of the unit of the adjunction A⊗-⊣[image: there is no content]⊗-:[image: there is no content]→[image: there is no content], while the morphism [image: there is no content]⊗A⊗V→[image: there is no content]⊗VV is the V-component of the counit of the adjunction [image: there is no content]⊗-⊣A⊗-:[image: there is no content]→[image: there is no content]. To say that [image: there is no content]:I→A⊗[image: there is no content] (resp. [image: there is no content]:[image: there is no content]⊗A→I) is a split monomorphism (resp. epimorphism) is to say that the unit (resp. counit) of the adjunction A⊗-⊣[image: there is no content]⊗- (resp. [image: there is no content]⊗-⊣A⊗-) is a split monomorphism (resp. epimorphism). From the observations in 2.17, one gets (1)⇔(2)⇔(3).
By Proposition 4.10, the properties listed in (5) are equivalent. Since [image: there is no content] admits equalizers, it is Cauchy complete, and (3)⇒(5) follows from Proposition 3.16 in [18].

If [image: there is no content] is a split monomorphism, then the natural transformation e⊗-:1[image: there is no content]→A⊗- is a split monomorphism; applying Proposition 2.20 to the pair of functors (A⊗-,1[image: there is no content]) gives that the functor A⊗-:[image: there is no content]→[image: there is no content] is separable, proving (4)⇒(3).

If A is a progenerator, then [image: there is no content]:[image: there is no content]⊗A→I has a splitting ζ:I→[image: there is no content]⊗A. Consider the composite:



ϕ:A→ζ⊗A[image: there is no content]⊗A⊗A→[image: there is no content]⊗m[image: there is no content]⊗A→[image: there is no content]I.








We claim that [image: there is no content]. Indeed, we have:



[image: there is no content]·[image: there is no content]⊗m·ζ⊗A·e=[image: there is no content]·[image: there is no content]⊗m·[image: there is no content]⊗A⊗e·ζ=[image: there is no content]·ζ=1.








The first equality holds by naturality, the second one, since e is the unit for the [image: there is no content]-algebra [image: there is no content], and the third one since, ζ is a splitting for [image: there is no content]:[image: there is no content]⊗A→I. Thus, [image: there is no content] implies [image: there is no content].

Now, if A is again a progenerator, then the morphism [image: there is no content]:[image: there is no content]⊗A→I has a splitting ζ:I→[image: there is no content]⊗A, and direct inspection shows that the morphism:



ξ=A⊗ζ⊗[image: there is no content]:A⊗[image: there is no content]→A⊗[image: there is no content]⊗A⊗[image: there is no content]








is a splitting for the multiplication A⊗[image: there is no content]⊗[image: there is no content] of the [image: there is no content]-algebra [image: there is no content]⊗[image: there is no content]* satisfying condition (b) of Proposition 4.28. Thus, [image: there is no content]⊗[image: there is no content]* is a separable [image: there is no content]-algebra, proving the implication (2)⇒(6).
Finally, suppose that I is projective (w.r.t. regular epimorphisms) in [image: there is no content] and that the functor A⊗-:[image: there is no content]→[image: there is no content] is monadic. Then, by Theorem 2.4 in [25], each component of the counit of the adjunction [image: there is no content]⊗-⊣A⊗- is a regular epimorphism. Since [image: there is no content]:[image: there is no content]⊗A→I is the I-component of the counit, [image: there is no content] is a regular epimorphism and, hence, splits, since I is assumed to be projective w.r.t. regular epimorphisms. Thus, A is a progenerator. This proves the implication (5)⇒(1).      ☐



4.31 Theorem.

Let [image: there is no content] be a braided monoidal category with equalizers and coequalizers. For an algebra [image: there is no content] in [image: there is no content], the following are equivalent:


	(a)

	[image: there is no content] is a separable left Azumaya [image: there is no content]-algebra;



	(b)

	A is a progenerator, and the morphism [image: there is no content]:A⊗A→A⊗[image: there is no content] in 4.16 (c) is an isomorphism between the [image: there is no content]-algebras [image: there is no content]e and [image: there is no content]A,[image: there is no content];



	(c)

	[image: there is no content] is a split monomorphism, and [image: there is no content]∈[image: there is no content]e[image: there is no content] is a Galois module.





Proof. (a)⇔(c) In view of Proposition 4.28, this is a special case of 3.17.

(b)⇔(c) is an easy consequence of Proposition 4.30 and Theorem 4.16.      ☐

To bring back our general theory to the starting point, let R be a commutative ring with identity and [image: there is no content] the category of R-modules. Then, for any M,N∈[image: there is no content], there is the canonical twist map [image: there is no content]. Putting [image: there is no content], then ([image: there is no content],-⊗R-,R,[-,-],τ) is a symmetric monoidal closed category. We have the canonical adjunction [image: there is no content].



4.32. Algebras in [image: there is no content].

For any R-algebra [image: there is no content], [image: there is no content] is an invertible (involutive) BD-law allowing for the definition of the (opposite) algebra [image: there is no content]τ=(A,m·τ,e). The monad [image: there is no content] is Azumaya provided the functor K:[image: there is no content]→AeM,



M⟼((A⊗RM,A⊗RA⊗RA⊗RM→A⊗Rmτ⊗RMA⊗RA⊗RM→m⊗RMA⊗RM),








is an equivalence of categories. Obviously, this holds if and only if A is an Azumaya R-algebra in the usual sense. We have the commutative diagram:


 [image: Axioms 04 00032 i027]



(4.4)




where [image: there is no content] is the restriction of scalars functor induced by the ring morphism [image: there is no content].
As is easily seen, for [image: there is no content]∈AτM, the [image: there is no content]-component t[image: there is no content]:A⊗RM→[A,M] of the comonad morphism t:ϕ(Aτ)lU(Aτ)l→[image: there is no content] corresponding to the functor [image: there is no content]=Ψ·K, takes any element [image: there is no content] to the map [image: there is no content]. Thus, writing [image: there is no content] for [image: there is no content], one has for [image: there is no content] and [image: there is no content],



t[image: there is no content](a⊗Rm)=(b↦(ba)·m).








In particular, for any N∈[image: there is no content], [image: there is no content]

Since the canonical morphism [image: there is no content] factors through the center of A, it follows from Theorem 8.11 in [18] that the functor A⊗R-:[image: there is no content]→AM (and hence, also, Aτ⊗R-:[image: there is no content]→AτM) is comonadic if and only if i is a pure morphism of R-modules. Applying Theorem 4.20 and using that K is an equivalence of categories if and only if [image: there is no content]=Ψ·K is so, we get several characterizations of Azumaya R-algebra.



4.33 Theorem.

An R-algebra A is an Azumaya R-algebra if and only if the canonical morphism [image: there is no content] is a pure morphism of R-modules and one of the following holds:


	(a)

	for any M∈AτM, there is an isomorphism:



A⊗RM→[A,M],a⊗Rm↦[b↦(ba)·m];










	(b)

	for any N∈[image: there is no content], there is an isomorphism:



A⊗RA⊗RN→[A,A⊗RN],a⊗Rb⊗Rn↦[c↦bca⊗Rn];










	(c)

	[image: there is no content] is finitely generated projective, and there is an isomorphism:



A⊗RA→[A,A],a⊗Rb↦[c↦bca];










	(d)

	for any [image: there is no content]-bimodule M, the evaluation map is an isomorphism:



A⊗RMA→M,a⊗Rm↦a·m.












Proof. (a) follows by Theorem 3.10; (b) and (c) are derived from Theorem 4.20.

(c) An R-module is finite in the monoidal category [image: there is no content] if and only if it is finitely generated and projective over R and Theorem 4.15 applies.

(d) is a translation of Theorem 4.25 into the present context.      ☐

For a (von Neumann) regular ring R, [image: there is no content] is always a pure R-module morphism, and hence, over such rings, (equivalent) Properties (a) to (d) are sufficient to characterize Azumaya algebras.




5. Azumaya Coalgebras in Braided Monoidal Categories

Throughout, [image: there is no content] will denote a strict monoidal braided category. The definition of coalgebras [image: there is no content]=(C,Δ,ε) in [image: there is no content] is recalled in 4.4.


5.1. The coalgebra [image: there is no content].

Let [image: there is no content] be a [image: there is no content]-coalgebra. The braiding [image: there is no content] provides a comonad BD-law allowing for the definition of the opposite coalgebra [image: there is no content]τ=(Cτ,Δτ=τC,C·Δ,ετ=ε) and a coalgebra:



[image: there is no content]e:=(C⊗Cτ,(C⊗τ⊗Cτ)(Δ⊗Δτ),ε⊗ε).








With the induced distributive law of the comonad [image: there is no content]l over the comonad ([image: there is no content]τ)l, we have an isomorphism of categories [image: there is no content]([image: there is no content]τ)l[image: there is no content]l≃[image: there is no content]([image: there is no content]e)l=[image: there is no content]e[image: there is no content].



5.2 Definition.

(see 3.14) A [image: there is no content]-coalgebra [image: there is no content] is said to be left Azumaya provided for the functor [image: there is no content]l=C⊗-:[image: there is no content]→[image: there is no content], the pair ([image: there is no content]l,τC,C⊗-) is an Azumaya comonad, i.e., the comparison functor:



[image: there is no content]τ:[image: there is no content]→[image: there is no content]e[image: there is no content],V⟼(C⊗V,C⊗V→Δ⊗VC⊗C⊗V→C⊗Δτ⊗VC⊗C⊗C⊗V),








is an equivalence of categories. It fits into the commutative diagram


 [image: Axioms 04 00032 i028]



(5.1)




[image: there is no content] is said to be right Azumaya if the corresponding conditions for [image: there is no content]r=-⊗C are satisfied.

Similar to 4.15, we have:



5.3 Proposition.

Let [image: there is no content]=(C,Δ,ε) be a coalgebra in a braided monoidal category [image: there is no content]. If [image: there is no content] is left Azumaya, then C is finite in [image: there is no content].

Proof. Suppose that a [image: there is no content]-coalgebra [image: there is no content] is left Azumaya. Then, the functor C⊗-:[image: there is no content]→[image: there is no content] admits a right adjoint [C,-]:[image: there is no content]→[image: there is no content] by the dual of Proposition 3.4. Write ϑ for the composite [image: there is no content]. Then, for any V∈[image: there is no content], [image: there is no content]τ(V)=(C⊗V,ϑ⊗V), and thus, the V-component of the left [image: there is no content]e-comodule structure on the functor C⊗-:[image: there is no content]→[image: there is no content], induced by the commutative diagram (5.1), is the morphism [image: there is no content]. From 2.14, we then see that the V-component [image: there is no content] of the comonad morphism induced by the above diagram is the composite:



C⊗[C,V]→ϑ⊗[C,V]C⊗C⊗C⊗[C,V]→C⊗C⊗([image: there is no content]C)VC⊗C⊗V,








where [image: there is no content]C is the counit of the adjunction C⊗-⊣[C,-].
Next, let [image: there is no content] be the transpose of the morphism ([image: there is no content]C)I⊗V:C⊗[image: there is no content]⊗V→V, and consider the diagram:



 [image: Axioms 04 00032 i029]








In this diagram the rectangle is commutative by the naturality of composition. Since [image: there is no content] is the transpose of the morphism ([image: there is no content]C)I⊗V, the transpose of [image: there is no content], which is the composite C⊗[image: there is no content]⊗V→C⊗[image: there is no content]C⊗[C,V]→([image: there is no content]C)VV, is ([image: there is no content]C)I⊗V. Hence, the triangle in the diagram is also commutative. Now, since:



(C⊗C⊗([image: there is no content]C)I⊗V)·(ϑ⊗[image: there is no content]⊗V)=[image: there is no content]⊗V,








it follows from the commutativity of the diagram that [image: there is no content]⊗V=[image: there is no content]·(C⊗[image: there is no content]); since [image: there is no content] is assumed to be left Azumaya, both [image: there is no content] and [image: there is no content] are isomorphisms, and one concludes that C⊗[image: there is no content] is an isomorphism. Moreover, the functor C⊗-:[image: there is no content]→[image: there is no content] is comonadic, hence conservative. It follows that [image: there is no content] is an isomorphism for all V∈[image: there is no content]. Thus, the functor [C,I]⊗-:[image: there is no content]→[image: there is no content] is also right adjoint to the functor C⊗-:[image: there is no content]→[image: there is no content]. It is now easy to see that [image: there is no content] is right adjoint to C.     ☐
The dual of Theorem 3.5 provides the first characterizations of left Azumaya coalgebras.



5.4 Theorem.

For a [image: there is no content]-coalgebra [image: there is no content]=(C,Δ,ε), the following are equivalent:


	(a)

	[image: there is no content] is a left Azumaya [image: there is no content]-coalgebra;



	(b)

	the functor C⊗-:[image: there is no content]→[image: there is no content] is comonadic, and the left ([image: there is no content]e)l-comodule structure on it, induced by the commutative diagram (5.1), is Galois;



	(c)

	(i) C is finite with right dual (C♯,[image: there is no content]′:I→C♯⊗C,[image: there is no content]′:C⊗C♯→I); the functor C⊗-:[image: there is no content]→[image: there is no content] is comonadic; and

(ii) the composite [image: there is no content]



C⊗C♯→Δ⊗C♯C⊗C⊗C♯→C⊗Δ⊗C♯C⊗C⊗C⊗C♯→C⊗τ⊗C♯C⊗C⊗C⊗C♯→C⊗C⊗[image: there is no content]′C⊗C








is an isomorphism (between the [image: there is no content]-coalgebras [image: there is no content] and [image: there is no content]e);



	(d)

	(i) C is finite with left dual ([image: there is no content],[image: there is no content]:I→C⊗[image: there is no content],[image: there is no content]:[image: there is no content]⊗C→I), and the functor ϕ([image: there is no content]τ)l:[image: there is no content]→[image: there is no content]([image: there is no content]τ)l=[image: there is no content]τ[image: there is no content] is monadic; and

(ii) the composite [image: there is no content]



[image: there is no content]⊗C→[image: there is no content]⊗Δ[image: there is no content]⊗C⊗C→[image: there is no content]⊗τ[image: there is no content]⊗C⊗C→[image: there is no content]⊗Δ⊗C[image: there is no content]⊗C⊗C⊗C→[image: there is no content]⊗C⊗CC⊗C








is an isomorphism.





Proof. (a) and (b) are equivalent by the dual of Theorem 3.5.

The equivalences (a)⇔(c) and (a)⇔(d) follow from Proposition 5.3 by dualizing the proofs of the corresponding equivalences in Theorem 4.16.        ☐

Similarly, the dual form of Theorem 4.16 yields conditions for right Azumaya coalgebras [image: there is no content], that is making [image: there is no content]r=-⊗C an Azumaya comonad. Dualizing Theorem 4.18 gives:



5.5 Theorem.

Let [image: there is no content]=(C,Δ,ε) be a [image: there is no content]-coalgebra in a braided monoidal category [image: there is no content] with equalizers and coequalizers. Then, the following are equivalent:


	(a)

	[image: there is no content] is a left Azumaya coalgebra;



	(b)

	the left [image: there is no content]e-comodule [image: there is no content] is cofaithfully Galois;



	(c)

	there is an adjunction [image: there is no content]′,[image: there is no content]′:C⊣C♯; the functor -⊗C:[image: there is no content]→[image: there is no content] is comonadic; and the composite [image: there is no content] in 5.4 (c) is an isomorphism;



	(d)

	the right e[image: there is no content]-comodule [image: there is no content] is cofaithfully Galois;



	(e)

	[image: there is no content] is a right Azumaya coalgebra.





Under suitable assumptions, the base category [image: there is no content] may be replaced by a comodule category over a cocommutative coalgebra. For this, we consider the:



5.6. Cotensor product.

Suppose now that [image: there is no content]=([image: there is no content],⊗,I,τ) is a braided monoidal category with equalizers and [image: there is no content]=(D,Δ[image: there is no content],ε[image: there is no content]) is a coalgebra in [image: there is no content]. If (V,ρV)∈[image: there is no content][image: there is no content] and (W,ϱW)∈[image: there is no content][image: there is no content], then their cotensor product (over [image: there is no content]) is the object part of the equalizer:



[image: there is no content]








Suppose, in addition, that either:


	-

	for any V∈[image: there is no content], V⊗-:[image: there is no content]→[image: there is no content] and -⊗V:[image: there is no content]→[image: there is no content] preserve equalizers, or



	-

	[image: there is no content] is Cauchy complete, and [image: there is no content] is coseparable.





Each of these condition guarantee that for V,W,X∈[image: there is no content][image: there is no content][image: there is no content],


	V⊗DW∈[image: there is no content][image: there is no content][image: there is no content];


	the canonical morphism (induced by the associativity of the tensor product):



[image: there is no content]








is an isomorphism in [image: there is no content][image: there is no content][image: there is no content];


	([image: there is no content][image: there is no content][image: there is no content],-⊗D-,D,[image: there is no content]), where [image: there is no content] is the restriction of τ, is a braided monoidal category.




When [image: there is no content] is cocommutative (i.e., [image: there is no content]), then for any (V,ρV)∈[image: there is no content][image: there is no content], the composite [image: there is no content], defines a right [image: there is no content]-comodule structure on V. Conversely, if (W,ϱW)∈[image: there is no content][image: there is no content], then [image: there is no content] defines a left [image: there is no content]-comodule structure on W. These two constructions establish an isomorphism between [image: there is no content][image: there is no content] and [image: there is no content][image: there is no content], and thus, we do not have to distinguish between left and right [image: there is no content]-comodules. In this case, the cotensor product of two [image: there is no content]-comodules is another [image: there is no content]-comodule, and cotensoring over [image: there is no content] makes [image: there is no content][image: there is no content] (as well as [image: there is no content][image: there is no content]) a braided monoidal category with unit [image: there is no content].



5.7. [image: there is no content]-coalgebras.

Consider [image: there is no content]-coalgebras [image: there is no content]=(C,Δ[image: there is no content],ε[image: there is no content]) and [image: there is no content]=(D,Δ[image: there is no content],ε[image: there is no content]) with [image: there is no content] cocommutative. A coalgebra morphism γ:[image: there is no content]→[image: there is no content] is called cocentral provided the diagram:



 [image: Axioms 04 00032 i030]








is commutative. When this is the case, ([image: there is no content],γ) is called a [image: there is no content]-coalgebra.
To specify a [image: there is no content][image: there is no content]-coalgebra structure on an object C∈[image: there is no content] is to give C a [image: there is no content]-coalgebra structure ([image: there is no content]=(C,Δ[image: there is no content],ε[image: there is no content]),γ). Indeed, if γ:[image: there is no content]→[image: there is no content] is a cocentral morphism, [image: there is no content] can be viewed as an object of [image: there is no content][image: there is no content] (and [image: there is no content][image: there is no content]) via:



C→[image: there is no content]C⊗C→γ⊗CD⊗C,(C→[image: there is no content]C⊗C→C⊗γC⊗D→τC,DD⊗C),








and [image: there is no content] factors through the [image: there is no content] by some (unique) morphism Δ[image: there is no content]′:C→C⊗DC, that is Δ[image: there is no content]=iC,C·Δ[image: there is no content]′.
The triple [image: there is no content][image: there is no content]=(C,Δ[image: there is no content]′,γ) is a coalgebra in the braided monoidal category [image: there is no content][image: there is no content].

Conversely, any [image: there is no content][image: there is no content]-coalgebra, (C,Δ[image: there is no content]′:C→C⊗DC,ε[image: there is no content]:C→D) induces a [image: there is no content]-coalgebra:



[image: there is no content]=(C,C→Δ[image: there is no content]′C⊗DC→iC,CC⊗C,C→ε[image: there is no content]D→εDI),








and the pair ([image: there is no content],ε[image: there is no content]) is a [image: there is no content]-coalgebra.
Related to any [image: there is no content]-coalgebra morphisms γ:[image: there is no content]→[image: there is no content], there is the corestriction functor:



(-)γ:[image: there is no content][image: there is no content]→[image: there is no content][image: there is no content],(V,ϱV)↦(V,(γ⊗V)·ϱV),








and usually, one writes [image: there is no content]. If the category [image: there is no content][image: there is no content] admits equalizers, then one has the coinduction functor:


C⊗D-:[image: there is no content][image: there is no content]→[image: there is no content][image: there is no content],W↦(C⊗DW,Δ[image: there is no content]⊗DW),








defining an adjunction:


(-)γ⊣C⊗D-:[image: there is no content][image: there is no content]→[image: there is no content][image: there is no content].








Considering [image: there is no content] as a ([image: there is no content],[image: there is no content])-bicomodule by [image: there is no content], the corestriction functor is isomorphic to C⊗C-:[image: there is no content][image: there is no content]→[image: there is no content][image: there is no content].

If ([image: there is no content],γ) is a [image: there is no content]-coalgebra, then the category [image: there is no content][image: there is no content]([image: there is no content][image: there is no content]) can be identified with the category [image: there is no content][image: there is no content], and modulo this identification, the functor



C[image: there is no content]⊗D-:[image: there is no content][image: there is no content]→[image: there is no content][image: there is no content]([image: there is no content][image: there is no content])








corresponds to the coinduction functor C⊗D-:[image: there is no content][image: there is no content]→[image: there is no content][image: there is no content].


5.8. Azumaya [image: there is no content]-coalgebras.

Let [image: there is no content] be a cocommutative [image: there is no content]-coalgebra. Then, a [image: there is no content]-coalgebra [image: there is no content]=(C,Δ[image: there is no content],ε[image: there is no content]) is said to be left Azumaya provided the comonad ([image: there is no content]l,[image: there is no content]C,C⊗D-), where:



[image: there is no content]l=C⊗D-:[image: there is no content][image: there is no content]→[image: there is no content][image: there is no content],








is Azumaya, i.e., (see 3.14), the comparison functor [image: there is no content][image: there is no content]:[image: there is no content][image: there is no content]→C⊗DC[image: there is no content][image: there is no content] defined by:


V⟼(C⊗DV,C⊗DV→Δ[image: there is no content]⊗DVC⊗DC⊗DV→C⊗DΔ[image: there is no content][image: there is no content]⊗DVC⊗DC⊗DV)








is an equivalence of categories. In this setting, specializing Theorem 5.4 yields various characterizations of Azumaya [image: there is no content]-coalgebras. For vector space categories, Azumaya [image: there is no content]-coalgebras [image: there is no content] over a cocommutative coalgebra [image: there is no content] (over a field) were defined and characterized in Theorem 3.14 in [7].
Now, let R be again a commutative ring with identity and [image: there is no content] the category of R-modules. As an additional notion of interest, the dual algebra of a coalgebra comes in.



5.9. Coalgebras in [image: there is no content].

An R-coalgebra [image: there is no content]=(C,Δ,ε) consists of an R-module C with R-linear maps comultiplication [image: there is no content] and counit [image: there is no content] subject to coassociativity and counitality conditions. C⊗R-:[image: there is no content]→[image: there is no content] is a comonad, and it is customary to write [image: there is no content]M:=MR[image: there is no content] for the category of left [image: there is no content]-comodules. We denote by [image: there is no content] the comodule morphisms between M,N∈[image: there is no content]M. In general, [image: there is no content]M need not be a Grothendieck category, unless [image: there is no content] is a flat R-module (e.g., 3.14 in [29]).

The dual module [image: there is no content] has an R-algebra structure by defining for [image: there is no content], [image: there is no content] (the definition opposite to 1.3 in [29]), yielding the monad [image: there is no content]*=([image: there is no content],*.ε*), and there is a faithful functor:



Φ:[image: there is no content]M→[image: there is no content]*M,(M,ϱ)↦[image: there is no content]⊗RM→[image: there is no content]⊗ϱ[image: there is no content]⊗RC⊗M→[image: there is no content]⊗MM,








where [image: there is no content] denotes the evaluation map. The functor Φ is full if and only if for any N∈[image: there is no content],


αN:C⊗RN→HomR([image: there is no content],N),c⊗n↦[f↦f(c)n],








is injective, and this is equivalent to [image: there is no content] being locally projective (α-condition, e.g., 4.2 in [29]). In this case, [image: there is no content]M can be identified with the full subcategory σ[[image: there is no content]*C]⊂[image: there is no content]*M subgenerated by C as [image: there is no content]*-module (see [29,30]).
The R-module structure of C is of considerable relevance for the related constructions, and for convenience, we recall:



5.10 Remark.

For [image: there is no content] the following are equivalent:


	(a)

	[image: there is no content] is finitely generated and projective;



	(b)

	C⊗R-:[image: there is no content]→[image: there is no content] has a left adjoint;



	(c)

	HomR(C,-):[image: there is no content]→[image: there is no content] has a right adjoint;



	(d)

	[image: there is no content]⊗R-→HomR(C,-),f⊗R-↦(c↦f(c)·-), is a (monad) isomorphism;



	(e)

	C⊗R-→HomR([image: there is no content],-),c⊗R-↦(f↦f(c)·-), is a (comonad) isomorphism;



	(f)

	Φ:[image: there is no content]M→[image: there is no content]*M is a category isomorphism.





If this holds, there is an algebra anti-isomorphism [image: there is no content] and we denote the canonical adjunction by [image: there is no content].


5.11. The coalgebra [image: there is no content].

As in 5.1, the twist map [image: there is no content] provides an (involutive) comonad BD-law allowing for the definition of the opposite coalgebra [image: there is no content]τ=(Cτ,Δτ,ετ) and a coalgebra:



[image: there is no content]e:=(C⊗RCτ,(C⊗Rτ⊗RCτ)(Δ⊗RΔτ),ε⊗Rε).








The category [image: there is no content]eM of left [image: there is no content]e-comodules is just the category of [image: there is no content]-bicomodules (e.g., [31], 3.26 in [29]). A direct verification shows that the endomorphism algebra of C as a [image: there is no content]e-comodule is just the center of [image: there is no content], that is,


Z([image: there is no content])=Hom[image: there is no content]e[image: there is no content]⊂[image: there is no content]Hom[image: there is no content]≃[image: there is no content].








If [image: there is no content] is locally projective, an easy argument shows that [image: there is no content] is also locally projective as an R-module, and then, [image: there is no content]eM is a full subcategory of ([image: there is no content]e)*M.



5.12 Definition.

An R-coalgebra [image: there is no content] is said to be an Azumaya coalgebra provided [image: there is no content] is an Azumaya comonad (on [image: there is no content]), i.e., (see 3.14) the comparison functor K:[image: there is no content]→[image: there is no content]eM defined by:



M⟼(C⊗RM,C⊗RM→Δ⊗RMC⊗RC⊗RM→C⊗Δτ⊗RMC⊗C⊗RC⊗RM)








is an equivalence of categories. We have the commutative diagram:


 [image: Axioms 04 00032 i031]








By Proposition 2.15, the functor K is an equivalence provided:


	(i)

	the functor C⊗R-:RM→RM is comonadic, and



	(ii)

	the induced comonad morphism C⊗RHomR(C,-)→[image: there is no content]e⊗R-

is an isomorphism.





If R≃End[image: there is no content]e(C)≃Z([image: there is no content]), the isomorphism in (ii) characterizes C as a [image: there is no content]e-Galois comodule as defined in 4.1 in [32], and if [image: there is no content] is finitely generated and projective, the condition reduces to an R-coalgebra isomorphism C⊗R[image: there is no content]≃Ce.

An R-coalgebra [image: there is no content]=(C,Δ,ε) is said to be coseparable provided C⊗R-:[image: there is no content]→[image: there is no content] is a separable comonad. This is equivalent to requiring [image: there is no content] to split in [image: there is no content]eM. For more characterizations of these coalgebras, we refer to Section 3 and 3.29 in [29].

For any coseparable coalgebra [image: there is no content], Z([image: there is no content]) is a direct summand of [image: there is no content].

Indeed, let [image: there is no content] denote the splitting morphism for Δ; we obtain the splitting sequence of Z([image: there is no content])-modules:



[image: there is no content]≃Hom[image: there is no content]e(C,C⊗RC)→Hom[image: there is no content]e(C,ω)Hom[image: there is no content]e[image: there is no content]≃Z([image: there is no content]).








For an Azumaya coalgebra [image: there is no content], the free functor ϕ([image: there is no content]τ)l:[image: there is no content]→[image: there is no content]τM is monadic by the dual of Theorem 3.5, and hence, in particular, it is conservative. It then follows that, for each X∈[image: there is no content], the morphism [image: there is no content] is surjective. For [image: there is no content], this yields that [image: there is no content] is surjective (hence, splitting). By Theorem 3.17, this means that [image: there is no content] is also a coseparable coalgebra.

It follows from the general Hom-tensor relations that the functor K:[image: there is no content]→[image: there is no content]eM has a right adjoint [image: there is no content]eHom(C,-):[image: there is no content]eM→[image: there is no content] (e.g., 3.9 in [29]), and we denote the unit and counit of this adjunction by [image: there is no content] and [image: there is no content], respectively.

Besides the characterizations derived from Theorem 5.4, we have from Theorem 3.17:



5.13. Characterization of Azumaya coalgebras.

For an R-coalgebra [image: there is no content], the following are equivalent:


	(a)

	[image: there is no content] is an Azumaya coalgebra;



	(b)

	


	(i)

	[image: there is no content]X:C⊗R[image: there is no content]eHom(C,X)→X is an isomorphism for any X∈[image: there is no content]eM,



	(ii)

	[image: there is no content]M:M↦[image: there is no content]eHom(C,C⊗RM) is an isomorphism for any M∈[image: there is no content].







	(c)

	C is a [image: there is no content]e-Galois comodule; [image: there is no content] is a central R-algebra; and the functor C⊗R-:RM→RM is comonadic;



	(d)

	[image: there is no content]* is an Azumaya algebra.





As shown in Proposition 5.3, an Azumaya coalgebra [image: there is no content] is finite in [image: there is no content], that is [image: there is no content] is finitely generated and projective (see Remark 5.10). Coalgebras [image: there is no content] with [image: there is no content] finitely generated and projective for which [image: there is no content] is an Azumaya R-algebra were investigated by Sugano in [8]. As an easy consequence, he also observed that an R-algebra [image: there is no content] with [image: there is no content] finitely generated and projective is Azumaya if and only if [image: there is no content] is an Azumaya coalgebra.
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