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Abstract:

 An enrichment of a category of Dieudonné modules is made by considering Yang–Baxter conditions, and these are used to obtain ring and coring operations on the corresponding Hopf algebras. Some examples of these induced structures are discussed, including those relating to the Morava K-theory of Eilenberg–MacLane spaces.
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1. Introduction

Dieudonné modules appear as representations of Hopf algebras, in different settings. Categories of Hopf algebras are equivalent to those of Dieudonné modules, the equivalence being given by the functor that represents each Hopf algebra by its Dieudonné module. This equivalence suggests the definition of categories of Dieudonné modules, which can be enriched by considering universal bilinear products (or, in another direction, universal cobilinear coproducts), whose equivalent at the level of Hopf algebras give monoidal (or comonoidal) structures.

Here, we start with categories of Dieudonné modules in their own right, not simply as the equivalent of categories of Hopf algebras, and enrich them in a different way: we define Yang–Baxter operators on such Dieudonné modules, exploring some examples, and only then do we look at the effect these operators might have on the equivalent Hopf algebras.

In Section 2, we define Yang–Baxter operators for Dieudonné modules, presenting several examples. These come mostly from the Dieudonné modules for the Hopf algebras one obtains by applying Morava K-theory to Eilenberg–MacLane spaces. In Section 3, we review the equivalence between categories of Hopf algebras and of Dieudonné modules. For a (suitable) Hopf algebra H (over a perfect field of characteristic p), each coalgebra map [image: there is no content] induces a map on Dieudonné modules. If this map can be viewed as part of a Yang–Baxter operator, we analyze the conditions that the original coalgebra map must necessarily satisfy. Section 4 works in the opposite direction: maps of Dieudonné modules induce maps of Hopf algebras (via the category equivalence), and we apply this fact to construct, for each Yang–Baxter operator on a Dieudonné module [image: there is no content], a pair of ring structures on H. We also obtain a corresponding pair of coring structures on H (and a third one, induced by a diagonal map on [image: there is no content]). Both of these constructions can be viewed as a representation of the original Yang–Baxter operator, as can be confirmed by their application to the examples of Section 2.



2. Generalized Yang–Baxter Operators for Dieudonné Modules

Fix a prime p. [image: there is no content] will denote the ring of p-adic integers.

Definition 2.1. A Dieudonné module [image: there is no content] is a graded abelian group together with a degree-preserving [image: there is no content]-action and two homomorphisms F:[image: there is no content]→[image: there is no content] and V:[image: there is no content]→[image: there is no content], such that:



[image: there is no content]










[image: there is no content]










[image: there is no content]










[image: there is no content]










[image: there is no content]








The p in the fourth condition must be understood as p-times the identity morphism. The grading is usually over the non-negative integers.

In most cases, a Dieudonné module [image: there is no content] will be denoted just by M, and the inner grading will be implicit in our notation, as will be the actions of V and F on the degree of the elements on which they operate.

It is convenient to interpret Dieudonné modules M simply as (graded) left modules over the ring R=[image: there is no content][F,V]/(FV-p). We proclaim that [image: there is no content] and [image: there is no content], and put [image: there is no content] for any [image: there is no content] and [image: there is no content]. [image: there is no content] is defined as zero if this previous calculation of [image: there is no content] does not result in an integer. This alternative view of Dieudonné modules will be preferred throughout this work.

[image: there is no content] (or [image: there is no content], for short) denotes the category of (graded) Dieudonné modules, with morphisms what one would expect: graded group homomorphisms [image: there is no content] preserving the action of R; that is, such that [image: there is no content] for all [image: there is no content] and [image: there is no content].

Example 2.2. The ring R (with grading as above defined) is a Dieudonné module, with V and F acting by means of the ring operation.

Example 2.3. The polynomial ring [image: there is no content][F,V] is a Dieudonné module, with V and F acting by means of the ring operation (again, the grading is the one defined above).

The next two examples come from the Dieudonné modules associated with the Hopf algebras that are obtained when one applies Morava K-theory (with [image: there is no content]) to some Eilenberg–MacLane spaces. These Hopf algebras, and the corresponding Dieudonné modules, are periodically graded. We adapt this situation to our definition, by modifying the periodical grading into a [image: there is no content]-grading in a consistent way. The correspondence between categories of Hopf algebras and of Dieudonné modules will be discussed in Section 3.

Example 2.4. Fix [image: there is no content].

Consider, for each [image: there is no content] and [image: there is no content], an element [image: there is no content] of degree [image: there is no content]; Define N as the free [image: there is no content]/(p)-module generated by the [image: there is no content]; V acts on N by:



V([image: there is no content])=a(i-1)kifi≠na(0)k-1ifi=nandk≠00ifi=nandk=0








Furthermore,


F([image: there is no content])=0ifi≠0a(n-1)k+1ifi=0








This gives an action of R on N.

The previous elements [image: there is no content] generalize the [image: there is no content] one encounters in the Morava K-theory of Eilenberg–MacLane spaces. These were defined in [1]. By changing the notation, we can view them as belonging to a polynomial algebra. Put:

[image: there is no content] for [image: there is no content] and k∈[image: there is no content], with degree pknpn-1-m.



Define V([image: there is no content])=Vkm+1ifm≠nVk-10ifm=n








and


F([image: there is no content])=0ifm≠0Vk[image: there is no content]ifm=0








One can check, from the definition of degree for each [image: there is no content], that V divides the degree by p (for terms with degree a power of p) and F multiplies the degree by p.

We can interpret each [image: there is no content] as the m-th power of [image: there is no content] (and this last element has degree [image: there is no content]).

Define M=[image: there is no content]/(p)[V0,V1,⋯]/(V0n=0,Vkn=Vk-10fork≠0).

From what was declared above, M is as a Dieudonné module. The relations in the quotient of the polynomial algebra are suggested by what occurs for the Morava K-theory of Eilenberg–MacLane spaces, which inspired the definition of the action of V (and F) on the polynomial algebra. This will be explored below.

Fix an integer j. Let [image: there is no content], where ik∈{0,1}. Define [image: there is no content] as the sequence [image: there is no content], a left translation, and [image: there is no content] as the sequence [image: there is no content], a right translation.

Theorem 2.5. ([2,3]) The periodically graded Dieudonné module D(K(n)¯*(K([image: there is no content]/(pj),q)) is a free [image: there is no content]/(pj) module on generators [image: there is no content], where [image: there is no content] and [image: there is no content], in degree [image: there is no content], with:



V(aI)=a[image: there is no content]ifi0=0(-1)q-1pa(i1,i2,⋯,i[image: there is no content],1)ifi0=1








and


F(aI)=pa[image: there is no content]ifi[image: there is no content]=0(-1)q-1a(1,i0,i1,⋯,in-2)ifi[image: there is no content]=1








We will not define here Dieudonné modules for periodically-graded Hopf algebras, and so, one must not interpret the object in the previous theorem as an instance of our definition of Dieudonné modules. The Dieudonné theory for periodically-graded Hopf algebras (and periodically-graded Hopf rings) is developed in [4]. We adapt this result to obtain a [image: there is no content]-graded Dieudonné module whose generators are modeled by those described above.

Example 2.6. Fix n and [image: there is no content] in [image: there is no content].

We consider maps of sets I:[image: there is no content]0→{0,1}, such that [image: there is no content], except eventually on n consecutive integers, say [image: there is no content], and, moreover, satisfying ∑j=0[image: there is no content]I(i+j)=q. We require also that any such I satisfies [image: there is no content]. Give each I degree ∑j=0[image: there is no content]I(i+j)pi+j.

For each I, define the left translation [image: there is no content] as [image: there is no content] for all [image: there is no content]. Define the right translation [image: there is no content] as [image: there is no content] for all k∈[image: there is no content] and [image: there is no content]. By construction, deg(s(I))=p-1deg(I) and deg(s-1(I))=pdeg(I).

Consider the free module M over [image: there is no content]/(pj) on all such maps. This can be given a Dieudonné module structure by putting [image: there is no content] and F(I)=ps-1(I).

We want to enrich the category [image: there is no content] with additional structure. This structure, via the equivalence between the category of Dieudonné modules and a corresponding category of Hopf algebras [5,6], will also add structure to those Hopf algebras H, and it will be interesting to see how that reflects on the operations in the definition of each H. One way to enrich [image: there is no content], giving it a braided group or quantum flavor, is to define generalized Yang–Baxter operators for Dieudonné modules.

Let M be a Dieudonné module in [image: there is no content] and A:M⊗[image: there is no content]M→M⊗[image: there is no content]M a bilinear morphism. [image: there is no content] denotes the identity morphism. For this A, define:



A12=A⊗[image: there is no content]1:M⊗[image: there is no content]M⊗[image: there is no content]M→M⊗[image: there is no content]M⊗[image: there is no content]M








and


A23=1⊗[image: there is no content]A:M⊗[image: there is no content]M⊗[image: there is no content]M→M⊗[image: there is no content]M⊗[image: there is no content]M








Definition 2.7. If M is a Dieudonné module in [image: there is no content], a generalized Yang–Baxter operator for M is an invertible bilinear map A:M⊗[image: there is no content]M→M⊗[image: there is no content]M, such that:



A12A23A12=A23A12A23(as a composition of maps)








That is, these [image: there is no content] satisfy braided group relations.

Example 2.8. For any Dieudonné module M, the identity map A:M⊗[image: there is no content]M→M⊗[image: there is no content]M is trivially a generalized Yang–Baxter operator.

Example 2.9. For any Dieudonné module M with a chosen basis, define A:M⊗[image: there is no content]M→M⊗[image: there is no content]M on basis elements by [image: there is no content] (and expand by linearity on both arguments).

This is an invertible map, and moreover, the Yang–Baxter condition is in this case satisfied on basis elements, for:



A12A23A12(x⊗y⊗z)=A12A23(y⊗x⊗z)=A12(y⊗z⊗x)=z⊗y⊗x








and


A23A12A23(x⊗y⊗z)=A23A12(x⊗z⊗y)=A23(z⊗x⊗y)=z⊗y⊗x.








Call this the switch Yang–Baxter operator.

Example 2.10. Define [image: there is no content] as the identity on all powers of V and F, except on those [image: there is no content] with [image: there is no content], where α([image: there is no content])=Fpk, and expand to R by linearity.

Furthermore, define [image: there is no content] as the identity on all powers of V and F, except on those [image: there is no content] with [image: there is no content], where β([image: there is no content])=[image: there is no content], and again, expand by linearity.

Both α and β are invertible: the inverse of α is similar to β, but exchange the role of the powers of V with those of F (the same happens for the inverse of β.)

Put [image: there is no content], which is invertible. Then, if S, T and U are any powers of V or F, we can easily check that A12A23A12(S⊗T⊗U)=A23A12A23(S⊗T⊗U), and so, A is a generalized Yang–Baxter operator.

For example, if [image: there is no content], with [image: there is no content] and [image: there is no content], we get:



A12A23A12(Vn⊗Fpm⊗Vpq)=A12A23(Vn⊗Fpm⊗Vpq)=A12(Vn⊗Fpm⊗Vq)=Vn⊗Fpm⊗Vq








and


A23A12A23(Vn⊗Fpm⊗Vpq)=A23A12(Vn⊗Fpm⊗Vq)=A23(Vn⊗Fpm⊗Vq)=Vn⊗Fpm⊗Vq








Example 2.11. The previous example is a particular case of a more general situation. Suppose we look for [image: there is no content] and [image: there is no content] that map each power of F or V into another power of either (and not into a linear combination of more than one such power).

Then, if again [image: there is no content] and S, T and U are any powers of V or F, we get:



A12A23A12(S⊗T⊗U)=α2(S)⊗βαβ(T)⊗β(U)








and


A23A12A23(S⊗T⊗U)=α(S)⊗αβα(T)⊗β2(U)








An invertible A of this form will be a generalized Yang–Baxter operator if both α and β are idempotent and satisfy [image: there is no content].

This last equation is satisfied if, like in the previous example (where α and β where idempotent), the two operators commute, but that is not necessary.

Take for instance α([image: there is no content])=Fpk if [image: there is no content] or [image: there is no content], but [image: there is no content] and the identity elsewhere, and β([image: there is no content])=Fp2k if [image: there is no content] and the identity elsewhere.

Then, these homomorphisms do not commute:

If [image: there is no content], αβ([image: there is no content])=α(Fp2k)=Fp2k, but βα([image: there is no content])=β(Fpk)=Fpk.

However, if [image: there is no content], αβα([image: there is no content])=αβ(Fpk)=α(Fpk)=Fp2k and βαβ([image: there is no content])=βα(Fp2k)=β(Fp2k)=Fp2k.

Furthermore, if [image: there is no content], but [image: there is no content], αβα([image: there is no content])=αβ(Fpk)=α(Fpk)=Fpk and βαβ([image: there is no content])=βα([image: there is no content])=β(Fpk)=Fpk.

This, together with the fact that on all other powers of F or V, both α and β are the identity, proves that [image: there is no content] is a generalized Yang–Baxter operator.

Example 2.12. For the Dieudonné module in Example 2.4, define [image: there is no content] by β(Vkpr)=[image: there is no content] if [image: there is no content] and [image: there is no content], and the identity elsewhere.

Furthermore, define [image: there is no content] by α(Vkr(n-1))=Vkpr(n-1) if [image: there is no content] and [image: there is no content], and the identity elsewhere.

This gives a Yang–Baxter operator [image: there is no content].

This example is an expansion of Example 2.10. The limitations on the range of values that r may take (both for α and β above) allow for the behaviors of the [image: there is no content] to be mutually independent. The choice of those [image: there is no content] where β does not act as the identity comes from the relation [image: there is no content] in the Dieudonné ring for the Morava K-theory of Eilenberg–MacLane spaces, as described in [3,7].

Example 2.13. If, in the setting of the previous example, we allow the behaviors of the [image: there is no content] to affect those for different values of k; we can put:

β(Vkpr)=[image: there is no content] if [image: there is no content] and pr<(n+1)kn, and the identity elsewhere, and

α(Vkr(n-1))=Vkpr(n-1) if [image: there is no content] and r(n-1)<(n+1)kn, and the identity elsewhere.

This way, the only restrictions on the values of r are those that come from the order of each element in the polynomial algebra: since [image: there is no content] (and [image: there is no content]), we have Vk(n+1)kn=0 (and Vk(n+1)kn-1≠0). This reflects the relations between the various generators in the equivalent Hopf algebra.

Example 2.14. For the Dieudonné module in Example 2.6. and again inspired by the Morava K-theory generators [image: there is no content], put [image: there is no content] if [image: there is no content] (with [image: there is no content] and [image: there is no content]) and [image: there is no content] for [image: there is no content], and the identity elsewhere, and [image: there is no content] if [image: there is no content] (with [image: there is no content] and [image: there is no content]) and [image: there is no content] for [image: there is no content], and the identity elsewhere.

This example can be viewed as a generalization of Example 2.12: an element I:[image: there is no content]0→{0,1} where [image: there is no content] for all j, except for a certain index [image: there is no content] has an interpretation as a [image: there is no content]=V1n-1-i, with degree [image: there is no content].

These α and β form a Yang–Baxter operator [image: there is no content], since they are both idempotent and [image: there is no content] (for this last property, it is useful to notice that α and β cannot be both different from the identity on any given I).



3. The Influence of the Dieudonné Module Yang–Baxter Operators on the Corresponding Hopf  Algebras

Definition 3.1. The Witt polynomials [image: there is no content], for [image: there is no content], are given by:



[image: there is no content]








where [image: there is no content].
The Witt polynomials are important for the next result.

Theorem 3.2. ([8]) There exists a unique Hopf algebra structure on the polynomial algebra [image: there is no content][x0,x1,⋯], such that the Witt polynomials [image: there is no content] are primitive.

From now on, whenever we refer to the Hopf algebra [image: there is no content][x0,x1,⋯], we mean the free commutative algebra over the indeterminates together with the unique coproduct that makes the Witt polynomials primitive.

We can also consider just the algebra [image: there is no content][x0,x1,⋯,xk]. In this case, the coproduct defined from Theorem 3.2 restricts to a co-product in this finitely-generated algebra, and we will call [image: there is no content] the Hopf algebra [image: there is no content][x0,x1,⋯,xk] together with the restricted coproduct.

If we want to work in the graded case, start by giving each [image: there is no content] degree [image: there is no content]m for some fixed m∈[image: there is no content], and then, define [image: there is no content] to be the graded Hopf algebra corresponding to [image: there is no content]. We will also write [image: there is no content] for the Hopf algebra [image: there is no content][x0,x1,⋯].

Proposition 3.3. [8] Let [p]:[image: there is no content][x0,x1,⋯]→[image: there is no content][x0,x1,⋯] be p-times the identity map in the abelian group of Hopf algebra maps [image: there is no content][x0,x1,⋯]→[image: there is no content][x0,x1,⋯]. Then, [p]([image: there is no content])≅xi-1p(modp).

Next, we want to consider Hopf algebras over a perfect field [image: there is no content] with characteristic p. Define Hopf algebras H(k)=[image: there is no content]⊗CW(k)=[image: there is no content][x0,x1,⋯,xk]. In the graded case, write H(n)=[image: there is no content][x0,x1,⋯,xk], where [image: there is no content] for [image: there is no content] and each [image: there is no content] has degree [image: there is no content]m. Write [image: there is no content] for [image: there is no content][x0,x1,⋯].

Definition 3.4. For a Hopf algebra H over [image: there is no content], the Frobenius is the homomorphism [image: there is no content] taking an element x to the element [image: there is no content]. The Verschiebung [image: there is no content] is the dual to the Frobenius in the dual algebra.

The Verschiebung can be described as follows: if an element [image: there is no content] has p-fold co-product Ψp(x)=∑x′⊗x′⊗⋯⊗x′+∑notallyequaly′⊗y′′⊗⋯⊗yp+1, then the Verschiebung on x is [image: there is no content].

Since we are dealing with Hopf algebras over a perfect field [image: there is no content], both the Verschiebung and the Frobenius are homomorphisms of Hopf algebras.

All of our Hopf algebras will be bicommutative. We call such a (graded) Hopf algebra connected if H0≅[image: there is no content].

Define [image: there is no content] (or just [image: there is no content], for short) as the category of graded, connected, bicommutative Hopf algebras over [image: there is no content].

The Hopf algebras H(n)=[image: there is no content][x0,x1,⋯,xk] described above form a set of projective generators for [image: there is no content] [9].

We have a morphism v:H(n)=[image: there is no content][x0,x1,⋯,xk]→[image: there is no content][x0,x1,⋯,xk+1]=H(pn) given by inclusion. Furthermore, by Proposition 3.3, there exists a unique map of Hopf algebras [image: there is no content] making the following diagram commute.



 [image: Axioms 04 00177 i001]








This map satisfies [image: there is no content] and also [image: there is no content].

We now define Dieudonné modules for Hopf algebras in [image: there is no content].

Definition 3.5. The Dieudonné module for a Hopf algebra H∈[image: there is no content] is the graded abelian group:



{DnH}n≥1={Hom[image: there is no content](H(n),H)}n≥1








together with homomorphisms:


[image: there is no content]








and


[image: there is no content]








constructed from the previous maps f and v by composition on the left.
These homomorphisms reflect, thus, in Dieudonné modules, the Verschiebung and the Frobenius defined on Hopf algebras.

We have [image: there is no content] (here, p stands for p-times the identity map).

Furthermore, if [image: there is no content] with [image: there is no content], then the order of the identity map in Hom[image: there is no content](H(n),H(n)) is [image: there is no content], and so, [image: there is no content]DnH=0.

We have defined thus a functor D:[image: there is no content]→DM*. This functor provides the following equivalence of categories.

Theorem 3.6. ([5,6]) The above functor D has a right adjoint U:DM*→[image: there is no content], and the pair [image: there is no content] forms an equivalence of categories.

The proof confirms the fact that an abelian category with a set of small projective generators is equivalent to a category of modules over some ring [10,11].

Let H be a connected Hopf algebra. Given a Hopf algebra map [image: there is no content], there is a natural way to induce a map [image: there is no content] on the corresponding Dieudonné modules.

Suppose [image: there is no content]. Then, [image: there is no content]. We have a map [image: there is no content], given by inclusion, and another [image: there is no content], which is the identity on [image: there is no content] and is zero outside it.

Define [image: there is no content] by [image: there is no content], where i is the identity on [image: there is no content]. Furthermore, define [image: there is no content] by [image: there is no content], where in this case i is the identity on [image: there is no content].

The following compositions show the construction of two maps, one in [image: there is no content] and the other in [image: there is no content], from the maps above, and from [image: there is no content] and [image: there is no content].



[image: there is no content]










[image: there is no content]








Here, [image: there is no content] and [image: there is no content] are the projections into the first and the second factors, respectively.

[image: there is no content] thus gives rise to [image: there is no content] by

f⊗g⟼(f∘[image: there is no content]∘A∘Δ1)⊗(g∘[image: there is no content]∘A∘Δ2)

whenever [image: there is no content] and [image: there is no content].

If one writes [image: there is no content] for f∘[image: there is no content]∘A∘Δ1 and [image: there is no content] for g∘[image: there is no content]∘A∘Δ2, the induction above is f⊗g⟼[image: there is no content]⊗[image: there is no content].

This notation is not entirely indicative, since [image: there is no content] depends not only on f, but also on g (and the same goes for [image: there is no content]). We will write down this dependency explicitly, by using [image: there is no content]g and [image: there is no content]f instead of [image: there is no content] and [image: there is no content].

One can check what relations such an induced A must verify in order to be a generalized Yang–Baxter operator on the corresponding Dieudonné module for H and obtain in the process corresponding relations for the original A at the Hopf algebra level. Because of the dependency referred to in the previous paragraph, these relations can be difficult to read.

We take a [image: there is no content] in [image: there is no content]. Then,



A12A23A12(f⊗g⊗h)=A12A23([image: there is no content]g⊗[image: there is no content]f⊗h)=A12([image: there is no content]g⊗[image: there is no content]f˜h⊗h˜[image: there is no content]f)=[image: there is no content]g˜[image: there is no content]f˜h⊗[image: there is no content]f˜h˜[image: there is no content]g⊗h˜[image: there is no content]f








and


A23A12A23(f⊗g⊗h)=A23A12(f⊗[image: there is no content]h⊗h˜g)=A23([image: there is no content][image: there is no content]h⊗[image: there is no content]h˜f⊗h˜g)=[image: there is no content][image: there is no content]h⊗[image: there is no content]h˜f˜h˜g⊗h˜g˜[image: there is no content]h˜f








The relations are then, for any f, g and h under the above assumptions,



[image: there is no content]g˜[image: there is no content]f˜h=[image: there is no content][image: there is no content]h[image: there is no content]f˜h˜[image: there is no content]g=[image: there is no content]h˜f˜h˜gh˜[image: there is no content]f=h˜g˜[image: there is no content]h˜f










4. Yang–Baxter Operators on Dieudonné Modules, Hopf Ring and Hopf Coring Structures

One defines a bilinear map for R-modules M, N and L as a map [image: there is no content] that satisfies:

(1) [image: there is no content]

(2) [image: there is no content]

(3) [image: there is no content]

for every [image: there is no content] and [image: there is no content].

We reprint here a result from [4], which works for categories of Hopf algebras over a perfect field of either zero or p characteristic. For our purposes here, the second part is what will be used in the deduction of the Yang–Baxter operators’ influence on the original Hopf algebras. In the present work, these will always be connected.

Lemma 4.1. Any bilinear pairing [image: there is no content] induces a bilinear pairing ∘ij′:[image: there is no content]⊗[image: there is no content]→Hi+j.

Proof. Suppose first that the characteristic of the base field is zero.

To define uniquely the map [image: there is no content], it is enough to fix its value on the primitives of [image: there is no content] (since this is a connected Hopf algebra), Suppose [image: there is no content], with x a primitive of [image: there is no content], is such an element (the other only possibility, a [image: there is no content] with y a primitive of [image: there is no content], can be dealt with similarly). If the degree of x is [image: there is no content], define the homomorphism x^∈Dn[image: there is no content] by [image: there is no content], [image: there is no content] and [image: there is no content] for [image: there is no content]. Define also [image: there is no content]∈D0[image: there is no content] by [image: there is no content]. Then, [image: there is no content] is in [image: there is no content], and we define [image: there is no content] as [image: there is no content]. (If the degree of x is not of the form [image: there is no content], define [image: there is no content].)

If the characteristic of the base field is a prime, we can run into additional problems. In this case, we have to work from the condition of connectedness. If x in [image: there is no content] has zero Verschiebung, then we can still define [image: there is no content] as in the reference above. If [image: there is no content] is non-zero, by connectedness, there exists an [image: there is no content], such that the repeated Verschiebung [image: there is no content] is zero, but [image: there is no content] is non-zero. If the degree of b is [image: there is no content], define x^∈Dn[image: there is no content] by [image: there is no content], [image: there is no content] and [image: there is no content] for [image: there is no content]. Then, [image: there is no content] is defined as [image: there is no content]. (If the degree of b is not of the form [image: there is no content], define [image: there is no content].) We can similarly define [image: there is no content] for y∈[image: there is no content]. If either x or y are primitives, this will coincide with what was done before. Finally, just define [image: there is no content].

This definition works for the general case of [image: there is no content].  ☐

The category of Dieudonné modules that we have defined has universal bilinear products [8]. This is the basis of the equivalence between categories of Hopf rings and of Dieudonné rings (which are Dieudonné modules with additional products) from [4,8].

Suppose you have a Yang–Baxter operator [image: there is no content], and suppose [image: there is no content]=[image: there is no content]∘A and [image: there is no content]=[image: there is no content]∘A are bilinear maps of Dieudonné modules. Then, the induced maps on [image: there is no content], [image: there is no content] and [image: there is no content], are maps of coalgebras that give H two structures of the Hopf ring [4]. The Yang–Baxter condition on the Dieudonné modules gives a relation between the two Hopf ring structures. Before we use this in our previous examples, we obtain a description of the equivalent Hopf algebra for each of the Dieudonné modules that were presented in Section 2, following the conclusions of Theorem 3.6.

Example 4.2. R, viewed as a Dieudonné module (as in Example 2.2), is equivalent to [image: there is no content], since clearly R≃Hom[image: there is no content](H(n),H(∞)).

Example 4.3. For Example 2.3, we have Hom[image: there is no content](H(n),CW(∞))≃[image: there is no content][F,V], and so, DCW(∞)≃[image: there is no content][F,V].

Example 4.4. The Dieudonné module from Example 2.4 was suggested by the one for the Hopf algebra [image: there is no content], where [image: there is no content] is the first Eilenberg–MacLane space K([image: there is no content]/(p),1). This and the Hopf ring for further Eilenberg–MacLane spaces are completely described in [1]. By analogy, in our example, we get that the Hopf algebra corresponding to M is a truncated polynomial algebra generated by the [image: there is no content], where the p-th algebra power of each of these generators is zero (for [image: there is no content], the algebra relations depend on elements [image: there is no content] that we are not considering in this example). The coalgebra structure is given by ψ([image: there is no content])=∑j=0ia(j)k⊗a(i-j)k.

Example 4.5. For the Hopf algebra corresponding to the Dieudonné module in Example 2.6, we again adapt the periodically-graded situation from [1]. Each map I:[image: there is no content]0→{0,1} in the conditions of Example 2.6 (namely, non-zero, except eventually on the n consecutive integers [image: there is no content]) will correspond to an element of the form [image: there is no content], where the ∘ notation is inspired by the subjacent Hopf ring structure (which is not dealt with here). The algebra in question will be free on these elements (over [image: there is no content]), with the algebra product of an [image: there is no content] and an [image: there is no content] given by an element [image: there is no content] obtained by rearranging the [image: there is no content] and [image: there is no content] in increasing order of indexes, summing (mod two) the superscripts [image: there is no content] and [image: there is no content] for the same indexes and multiplying the result by the index of the permutation obtained from [image: there is no content] and [image: there is no content] by concatenation and by eliminating any repetitions of indexes that may appear in both of these sub-permutations. We determine also that this product should be zero if the resulting element is not of the form of those I in the definition of the original Dieudonné module (this has to do with I being nonzero only for q elements in a range of n consecutive natural numbers.)

As for the coalgebra structure, take a [image: there is no content], and define formally its coproduct as:



(a(i)[image: there is no content]⊗a(i)[image: there is no content])∘(a(i)[image: there is no content]⊗a(i+1)I(i+1)+a(i+1)I(i+1)⊗a(i)[image: there is no content])∘⋯∘(∑r=0ka(i+r)I(i+r)⊗a(n+i-r)I(n+i-r))∘⋯∘(∑r=0[image: there is no content]a(i+r)I(i+r)⊗a(n-1+i-r)I(n-1+i-r))








where we distribute (formally) in order to obtain a sum of elements given by ∘ “products” of the [image: there is no content].
We now turn to the Yang–Baxter operators for the Dieudonné modules from Section 2 and deduce the induced [image: there is no content] and [image: there is no content] on the corresponding Hopf algebras.

Example 4.6. Consider first the switch operator from Example 2.9.

Clearly, the induced [image: there is no content] and [image: there is no content] are projections onto the opposite factors: [image: there is no content]=[image: there is no content] and [image: there is no content]=[image: there is no content]. If we consider a Dieudonné module [image: there is no content] for a Hopf algebra H in [image: there is no content], the induced products on H can be deduced as follows.

Suppose [image: there is no content] is such that [image: there is no content], but [image: there is no content]. Then,

[image: there is no content](x,1)=[image: there is no content](x^,[image: there is no content])(ωkr)=[image: there is no content](ωkr)=0 and:

[image: there is no content](1,x)=[image: there is no content]([image: there is no content],x^)(ωkr)=x^(ωkr)=[x^(ωk)]r=[Vr-1(x)]r

This is a non-commutative ring structure that exists thus for any H in [image: there is no content]. The other one (also non-commutative) comes from:

[image: there is no content](x,1)=[image: there is no content](x^,[image: there is no content])(ωkr)=x^(ωkr)=[x^(ωk)]r=[Vr-1(x)]r and:

[image: there is no content](1,x)=[image: there is no content]([image: there is no content],x^)(ωkr)=[image: there is no content](ωkr)=0

Note that, as defined in the proof of Lemma 4.1, [image: there is no content](x,y)=[image: there is no content](x,1)[image: there is no content](1,y) (and the same happens for [image: there is no content]). This means that [image: there is no content] is right-sided, that is it can only be nonzero whenever x is one, and [image: there is no content] is left-sided (can only be nonzero whenever y is one).

Example 4.7. Continuing Example 2.10, identify [image: there is no content] with [image: there is no content], in the notation of Lemma 4.1, and [image: there is no content] with [image: there is no content], where f is the map mentioned just before Definition 3.5.

We have, for [image: there is no content], such that [image: there is no content], but [image: there is no content], [image: there is no content](x,1)=[image: there is no content](x^,[image: there is no content])(ωkr)=α(x^)(ωkr). This last value is equal to [image: there is no content], except if x^=[image: there is no content]=1∘fk and [image: there is no content], where it equals [image: there is no content]. Furthermore, [image: there is no content](1,x)=[image: there is no content]([image: there is no content],x^)(ωkr)=α([image: there is no content])(ωkr)=([image: there is no content])(ωkr)=0 by definition of [image: there is no content].

This gives the first of our two new ring operations on [image: there is no content]. It is clearly non-commutative, and moreover, [image: there is no content](x,y)=0 whenever [image: there is no content] (since, by definition, [image: there is no content](x,y)=[image: there is no content](x,1)[image: there is no content](1,y)).

For [image: there is no content], we get:

[image: there is no content](x,1)=[image: there is no content](x^,[image: there is no content])(ωkr)=β([image: there is no content])(ωkr)=([image: there is no content])(ωkr)=0, and

[image: there is no content](1,x)=[image: there is no content]([image: there is no content],x^)(ωkr)=β(x^)(ωkr)

This equals [image: there is no content], except if [image: there is no content] for some m and [image: there is no content] (so that [image: there is no content]), where it equals zero, since ω^pm∘v=[image: there is no content].

This second ring operation is also non-commutative. In this example, the relation between the induced products [image: there is no content] and [image: there is no content] comes from the original Yang–Baxter operator: α and β were both idempotent and satisfied the braid condition [image: there is no content]. This reflects on the elements x in [image: there is no content] for which [image: there is no content] or [image: there is no content] is nonzero.

The previous example worked from the generators of the corresponding polynomial algebra, and thus, the same deductions can be easily adapted to the situation of Example 4.3.

Example 4.8. In Example 2.12, we again had a Yang–Baxter operator of the form [image: there is no content]. The Hopf algebra in Example 4.4 will then have two induced coalgebra structures, coming from [image: there is no content](x,y)=α(x) and [image: there is no content](x,y)=β(y) (where x and y are in the Dieudonné module).

The polynomial generators of the Hopf algebra are interpreted as elements in the Dieudonné module (as powers of the [image: there is no content]). This means that the induced [image: there is no content] and [image: there is no content] have the same behavior: [image: there is no content](x,y)=x for x and y in the Hopf algebra, except whenever [image: there is no content] with [image: there is no content], and [image: there is no content], where it is [image: there is no content]; [image: there is no content](x,y)=y for x and y in the Hopf algebra, except whenever [image: there is no content] with [image: there is no content] and [image: there is no content], where it is [image: there is no content]

Example 4.9. For the same Hopf algebra and the Yang–Baxter operator from Example 2.13, we get structures similar to those in the previous example, the difference being in the range of indexes where the generators of the algebra exist.

Example 4.10. For Example 2.14 and the Hopf algebra in Example 4.5, we have also [image: there is no content](I,J)=α(I) and [image: there is no content](I,J)=β(J), and so, the two new ring structures will be projections on the first and second factors, except if [image: there is no content] and [image: there is no content] for [image: there is no content] (with [image: there is no content] and [image: there is no content]), for which [image: there is no content](I,J)=s-1(I), and if [image: there is no content] and [image: there is no content] for [image: there is no content] (with [image: there is no content] and [image: there is no content]), for which [image: there is no content](I,J)=s(J).

The notion of bilinear map on Dieudonné modules has a dual, that of the cobilinear map, which is explored in [12].

A cobilinear map for R-modules M, N and L is a map [image: there is no content] satisfying:

(1) [image: there is no content]

(2) [image: there is no content]

(3) [image: there is no content]

for every [image: there is no content].

There exists a universal cobilinear map on the category of Dieudonné modules. In the connected case, this allows for the equivalence between the category of Dieudonné corings and a corresponding category of Hopf corings [12].

The following result is symmetric to Lemma 4.1.

Lemma 4.11. [12] Any cobilinear map [image: there is no content], where H, [image: there is no content] and [image: there is no content] are connected Hopf algebras in [image: there is no content], induces a cobilinear map [image: there is no content]:H→[image: there is no content]⊗[image: there is no content].

Proof. Since H is connected, it is enough to define [image: there is no content] on primitives and induced primitives [12].

Given a primitive [image: there is no content], pick a positive m and consider [image: there is no content]∈Hom[image: there is no content](H(m),H) given by [image: there is no content], [image: there is no content] and [image: there is no content] for [image: there is no content] (here, [image: there is no content] are the Witt polynomials).

Then, [image: there is no content] is in D[image: there is no content]⊗D[image: there is no content], and so, the projections on D[image: there is no content] and D[image: there is no content] are such that:



g1([image: there is no content])=α for some r and some α∈Hom[image: there is no content](H(r),[image: there is no content])








and


g2([image: there is no content])=β for some s and some β∈Hom[image: there is no content](H(s),[image: there is no content])








Define then [image: there is no content](q) as [image: there is no content].

If [image: there is no content] is an induced primitive (relative to the primitive q), we can still define [image: there is no content] and obtain α and β as before.

Put then [image: there is no content]([image: there is no content])=α((ωr)(n))⊗β((ωs)(n)).  ☐

Given H∈[image: there is no content], fix an element in [image: there is no content], for example [image: there is no content]. We can define two inclusions [image: there is no content] and [image: there is no content] by i1(x)=x⊗[image: there is no content] and i2(x)=[image: there is no content]⊗x.

For a Yang–Baxter operator [image: there is no content], suppose [image: there is no content]=A∘i1 and [image: there is no content]=A∘i2A are cobilinear maps of Dieudonné modules. Then, the induced maps [image: there is no content]:H→H⊗H and [image: there is no content]:H→H⊗H are algebra maps that give H two structures of Hopf coring [12]. We write down what these induced structures mean for the previous examples.

Example 4.12. For the switch operator A from Example 2.9 on any [image: there is no content], we get [image: there is no content](x)=A∘i1(x)=A(x⊗[image: there is no content])=[image: there is no content]⊗x and [image: there is no content](x)=A∘i2(x)=A([image: there is no content]⊗x)=x⊗[image: there is no content] for any [image: there is no content].

Thus, [image: there is no content]=i2 and [image: there is no content]=i1 in this case.

For a primitive [image: there is no content], we get [image: there is no content]([image: there is no content])=[image: there is no content]⊗[image: there is no content], and so, [image: there is no content](q)=1⊗q. For an induced primitive [image: there is no content], we get [image: there is no content]([image: there is no content])=1⊗[image: there is no content]([image: there is no content])=0. This defines the first coring operation on H.

For [image: there is no content], we get, similarly, [image: there is no content]([image: there is no content])=[image: there is no content]⊗[image: there is no content] for a primitive [image: there is no content], and so, [image: there is no content](q)=q⊗1 and [image: there is no content]([image: there is no content])=[image: there is no content]([image: there is no content])⊗1=0 for an induced primitive. This gives the second coring operation.

Example 4.13. Continuing Example 2.10, we get [image: there is no content](x)=A∘i1(x)=A(x⊗[image: there is no content])=α([image: there is no content])⊗β(x)=[image: there is no content]⊗β(x).

For the induced operation on the Hopf algebra [image: there is no content], consider first a Witt polynomial [image: there is no content] in [image: there is no content] (those form its primitive elements). We get:

[image: there is no content](ω˜i)=α(ω˜i)⊗[image: there is no content], and so, [image: there is no content]([image: there is no content])=α(ω˜i)([image: there is no content])⊗1. This works for the general case of Example 2.11. For 2.10, we get further that [image: there is no content](x) is the inclusion [image: there is no content], except on those [image: there is no content] for which [image: there is no content] is of the form [image: there is no content] with [image: there is no content], where it equals fk([image: there is no content])⊗1=0.

For induced primitives x, we get also the inclusion [image: there is no content], except on the elements of the same form, where it is zero.

The second possible operation comes from [image: there is no content](ω˜i)=[image: there is no content]⊗β(ω˜i). This gives [image: there is no content]([image: there is no content])=β(ω˜i)([image: there is no content])⊗1. This will be the identity, except on those [image: there is no content] with [image: there is no content], where one gets [image: there is no content], and so, [image: there is no content]([image: there is no content])=ω˜k([image: there is no content])⊗1=0. The same behavior reflects on induced primitives. Thus, the operations [image: there is no content] and [image: there is no content] are symmetric.

Example 4.14. The Yang–Baxter operator from Example 2.12 is also of the form [image: there is no content]. This means that the deductions in the previous example are also at hand.

The polynomial generators [image: there is no content] of the Hopf algebra are not primitive, since the coalgebra structure has, as a coproduct, ψ([image: there is no content])=∑j=0ia(j)k⊗a(i-j)k. These generators correspond to elements of the same nature in the Dieudonné module (we used the identification [image: there is no content] for [image: there is no content]). It is enough thus to define the induced operations, which are maps of algebras, on these generators. We get: [image: there is no content]([image: there is no content])=α([image: there is no content])⊗1=α(Vkn-1-i)⊗1. This becomes Vkn-1-i⊗1=[image: there is no content]⊗1 except if [image: there is no content] and [image: there is no content], where one gets [image: there is no content].

The second algebra structure comes from [image: there is no content]([image: there is no content])=1⊗β([image: there is no content])=1⊗β(Vkn-1-i). This becomes 1⊗Vkn-1-i=1⊗[image: there is no content], except if [image: there is no content] for some r, such that [image: there is no content] and [image: there is no content], where one gets 1⊗[image: there is no content]=1⊗a(n-1-r)k.

Example 4.15. Example 2.13 gives the same definitions for the induced products as the previous example. Nonetheless, in this case, the elements [image: there is no content] for different values of k are not independent, which means that the restrictions on the range of values that r and k may assume make for structures that differ from those in that example.

Example 4.16. Continuing Example 2.14, for the Hopf algebra in Example 4.5, we again have [image: there is no content], and so, [image: there is no content](x)=[image: there is no content]⊗β(x) and [image: there is no content](x)=α(x)⊗[image: there is no content]. Reading the definitions of α and β, on the generators I, we get then, as structures:

[image: there is no content](I)=1⊗s(I) if [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] for [image: there is no content], and [image: there is no content] elsewhere.

and [image: there is no content](I)=s-1(I)⊗1 if [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] for [image: there is no content], and [image: there is no content] elsewhere.

There is a different way of obtaining induced coring structures from Yang–Baxter operators. Consider again an operator [image: there is no content] and compose it with the diagonal map [image: there is no content]. This gives a map [image: there is no content], which again induces an algebra map [image: there is no content]. We look at this map for the different examples we had before.

Example 4.17. The switch operator from Example 2.9 induces the same [image: there is no content] as the identity operator, which is simply the diagonal: [image: there is no content](x)=sw∘Δ(x)=sw(x⊗x)=x⊗x for [image: there is no content].

For a primitive [image: there is no content], [image: there is no content]. On induced primitives, [image: there is no content]([image: there is no content])=[image: there is no content]([image: there is no content])⊗[image: there is no content]([image: there is no content])=0, and so, the switch operator on Dieudonné modules induces in this way the diagonal operator on the corresponding Hopf algebras (but nonzero only on primitives.)

Example 4.18. For Example 2.10 and the Hopf algebra [image: there is no content], [image: there is no content](x)=α(x)⊗β(x).

On Witt vectors, the induced [image: there is no content] becomes [image: there is no content]([image: there is no content])=α([image: there is no content])⊗β([image: there is no content]). From the considerations in Example 4.13, we see that [image: there is no content] is zero, except if [image: there is no content], and [image: there is no content] is not of the form [image: there is no content] with [image: there is no content], where it becomes the diagonal.

Example 4.19. For Example 2.12, we again have [image: there is no content](x)=α(x)⊗β(x) for x in the Dieudonné module. The considerations in Example 4.14 imply that the induced [image: there is no content] on the generators [image: there is no content] will be the diagonal, except if either [image: there is no content] (and [image: there is no content]) or [image: there is no content] for some r, such that [image: there is no content] (and [image: there is no content]). Both conditions cannot be satisfied simultaneously. This means that, because of the behavior of these particular α and β, one of the components in the image by [image: there is no content] of any element in the Hopf algebra will always be the identity.

Example 4.20. The previous example works also for the Yang–Baxter operator in Example 2.13 if we take into account the restrictions discussed in Example 4.15.

Example 4.21. From Example 2.14, we get that [image: there is no content] of a generator I can be the identity, [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] or [image: there is no content]. These values will depend, as before, on the range of the indexes at play. In particular, the last value, which corresponds to a [image: there is no content] where neither α nor β are the identity, occurs whenever [image: there is no content], that is if [image: there is no content] is the prime p. Since we must also have that [image: there is no content], this implies that [image: there is no content].
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