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Abstract: This paper provides a simplified representation of the exact density function of
R, the sample correlation coefficient. The odd and even moments of R are also obtained
in closed forms. Being expressed in terms of generalized hypergeometric functions, the
resulting representations are readily computable. Some numerical examples corroborate the
validity of the results derived herein.
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1. Introduction

Given {(Xi, Yi), i = 1, . . . , n}, a simple random sample of size n from a bivariate normal
distribution, the sample correlation coefficient,

R =
1

n

n∑
i=1

(
Xi − X̄
SX

)(
Yi − Ȳ
SY

)
(1)

where X̄ =
∑n

i=1 Xi/n , Ȳ =
∑n

i=1 Yi/n , S2
X =

∑n
i=1(Xi − X̄)2/n and S2

Y =
∑n

i=1(Yi − Ȳ )2/n , is
the maximum likelihood estimator of ρX,Y , Pearson’s product-moment correlation coefficient. Fisher [1]
obtained the following series representation of the density function ofR:

fR(r) =
2n−3

π(n− 3)!
(1− ρ2)

n−1
2 (1− r2)

n−4
2

∞∑
i=0

Γ2
(n+ i− 1

2

)(2 ρ r)i

i !
(2)

which converges for −1 < ρ r < 1 .
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Closed-form representations of the exact density of R are derived in Section 2. They are given in
terms of the generalized hypergeometric function,

p Fq(a1, . . . , ap; b1, . . . , bq; z) =
∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

k!
(3)

where, for example, (a1)k = Γ(a1 + k)/Γ(a1). More specifically, it will be shown that the exact density
ofR can be expressed as

g(r) =
2n−3

π(n− 3)!
(1− ρ2)

n−1
2 (1− r2)

n−4
2

×
[
Γ2
(n− 1

2

)
2F1
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2
,
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2
;
1

2
; ρ2r2

)
+ 2 ρ r Γ2

(n
2

)
2F1

(n
2
,
n

2
;
3

2
; ρ2r2

)]
(4)

for −1 < ρ r < 1, which simplifies to

g(r) = κ(n, ρ) (1− r2)
n
2
−2

2F1 (n− 1, n− 1; n− 1/2; (1 + ρ r)/2 ) (5)

where κ(n, ρ) = [(n− 2)B2
(
n−1

2
, n

2

)
(1− ρ2)

n−1
2 ]/[π 2n+1 B(n− 1, n)],B (a , b) = Γ(a)Γ(b)/Γ(a+ b)

denoting the beta function. For various results on the hypergeometric function 2F1(a, b ; c, z) and its
main properties, the reader is referred to Olver et al. [2], Chapter 15. Closed-form representations of
the odd and even moments ofR are provided in Section 3 and some numerical examples are included in
Section 4.

Fisher’s Z-transform is a well-known transformation of R whose associated approximate normal
distribution is known to present some shortcomings, especially when the sample size is small and |ρ| is
large, in which case the distribution ofR is markedly skewed. Winterbottom [3] showed that the normal
approximation requires large sample sizes to be valid. It is also known that, in the bivariate normal case,
the asymptotic variance of Fisher’s Z statistic does not depend on ρ. Furthermore, as pointed out by
Hotelling [4], the variance ofR changes with the mean. The density and moment expressions derived in
this paper remain accurate for any values of ρ and n.

2. The Exact DensityR

It should be noted that the series representation of the density function of R given in Equation (2)
converges very slowly. It was indeed observed that, in certain instances, more than 1000 terms may
be necessary to reach convergence. Closed-form representations of the exact density function of R are
derived in this section.

First, we note that the identity,

Γ[1/2]

k! Γ[1/2 + k]
=

22k

(2k)!
(6)

can be established by re-expressing the Legendre duplication formula,

Γ(2 k) = π−1/2 22k−1Γ(k) Γ(k + 1/2) (7)
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as
[2k Γ(2k)] = (Γ(1/2))−1 22k [k Γ(k)] Γ(1/2 + k)

Moreover, since Γ(3/2 + k) = (1/2 + k) Γ(1/2 + k) = (1/2) (2k + 1) Γ(1/2 + k) and
Γ(3/2) = (1/2) Γ(1/2), it follows from Equation (6) that

Γ(3/2)

k! Γ(3/2 + k)
=

22k

(2k + 1)!
(8)

In order to prove that the representation of the density function of given in Equation (4) is equivalent
to the series representation (2), it suffices to show that
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Now, letting k = 2j + 1, we establish that when k odd,
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Note that
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which, in view of Equation (8), proves the result.

We now show that when k = 2i,
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The result is established by applying identity (7) wherein k is replaced by k − 1. Thus, one has the
following closed-form representation of the exact density function ofR:

g1(r) =
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A simplified representation of this expression can be obtained by making use of the
following identity listed under “Quadratic transformations with fixed a, b, z” on the Wolfram website,
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/17/02/10/ :
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which, on making the substitutions, a→ n− 1, b→ n− 1 and z → (1 + ρ r)/2, becomes
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Hence, the following form of the exact density function ofR:
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which, on letting k = n− 1 in Equation (6), gives
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Finally, the following representation of the density function of R is obtained on writing
(2n− 2)!/[(n− 3)!(n− 1)!] as (n− 2)Γ(2n − 1) /[Γ((n− 1)Γ(n)] = (n− 2)/B(n− 1, n) :
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Incidentally, this expression is more compact than that proposed by Hotelling [4].
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3. Closed Forms for the Moments ofR

It is shown in this section that the moments ofR can also be expressed in closed forms. The following
moment expressions are available in Anderson [5] pp. 151–152:
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We will show that when k is odd,
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and when k is even,
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where the generalized hypergeometric function, pFq(a1, . . . , ap; b1, . . . , bq; z), is as defined in
Equation (3).

Since
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then, according to Equation (19), when k is odd, one has
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4. Numerical Examples

When the series representations of the density function or the moments ofR are utilized, the number
of terms required to achieve convergence depends on the length of the observation vector, the underlying
correlation coefficient and the point at which the density function is evaluated in the former case or
the order of the required moment in the latter. In certain instances, even 1000 terms turn out to be
insufficient. The proposed closed-form expressions, which for all intents and purposes produce exact
numerical results, can be evaluated much more quickly.

Consider for example the case, n = 10 and ρ = −0.97. Table 1 reports the values of the probability
density function (PDF) of R, first determined from f(r) as specified by Equation (2), truncated to 500
and 1000 terms, and then, from g(r), the exact closed-form representation given in Equation (16), for
r = −0.99,−0.25, 0.05, 0.25, 0.95.

Table 1. PDF ofR as evaluated from f(r) truncated to m terms and g(r).

r f(r) [m = 500] f(r) [m = 1000] g(r) (Closed form)

−0.99 21.0839 21.1043 21.1043
−0.25 0.0000284304 0.0000284304 0.0000284304
0.05 2.15111× 10−6 2.15111× 10−6 2.15111× 10−6

0.25 4.20668× 10−7 4.20668× 10−7 4.20668× 10−7

0.95 4.61344× 10−11 1.1523× 10−11 1.15232× 10−11

Similarly, when n = 75 and ρ = 0.80, one obtains the numerical results appearing in Table 2.

Table 2. PDF ofR as evaluated from f(r) truncated to m terms and g(r).

r f(r) [m = 500] f(r) [m = 1000] g(r) (Closed form)

−0.90 1.08277× 10−18 1.07281× 10−18 1.57819× 10−59

−0.60 4.50675× 10−19 4.50675× 10−19 5.23693× 10−36

0.60 0.0128167 0.0128167 0.0128167
0.95 6.01144× 10−7 6.01144× 10−7 6.01144× 10−7

Certain moments of R are included Table 3 for some values of k, n and ρ, along with the computing
times associated with the evaluation of the truncated series representations of the moments given in
Equations (17) and (18) and the closed-form representations specified by Equations (19) and (20).
We observed that the computing times can be significantly reduced by making use of the closed-form
expressions. All the calculations were carried out with the symbolic computing software Mathematica,
the code being available from the author upon request.
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Table 3. Certain moments ofR and associated computing times in seconds.

Formula (n, ρ, k) kth moment Timing

(17) 1000 terms (800, 0.75, 7) 0.134421 0.468
(19) closed-form (800, 0.75, 7) 0.134421 0.032

(18) 1000 terms (200,−0.91, 12) 0.324631 0.577
(20) closed-form (200,−0.91, 12) 0.324631 0.047

(17) 1000 terms (8, 0.255, 23) 0.001752 0.327
(19) closed-form (8, 0.255, 23) 0.001752 5.72459× 10−16

(18) 1000 terms (60, 0.051, 36) 1.16476× 10−13 0.514
(20) closed-form (60, 0.051, 36) 1.16476× 10−13 6.67869× 10−16
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