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1. Introduction

The chemical evolution of a star like sun could be effectively explained by kinetic equations.
The kinetic equations explain the rate of change of chemical composition of a star in terms of the
thermonuclear reaction rates for destruction and production of the species involved. An arbitrary reaction
is characterized by the rate of change dN

dt
of a time dependent quantity N(t) between the destruction rate

d and production rate p. Here the destruction or production at time t depends not only on N(t) but also
on the past history N(τ), τ < t of the variable N . This may be formally represented by following [1,2]

dN(t)

dt
= −d(Nt) + p(Nt) (1)

where Nt denotes the function defined by Nt(t
∗) = N(t− t∗), t∗ > 0. It should be noted that d and p are

functionals and Equation (1) represents a functional-differential equation. If we consider a simplified
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form of Equation (1) we could consider the decay rate of a radio-active substance which is given by a
homogeneous differential equation

dN

dt
= −λN (2)

where N is the number density of the radio-active substance and λ is the decay constant. The solution
of this differential equation with initial condition N = N0 at t = 0 is

N(t) = N0e−λt (3)

If we consider a more general form of the differential Equation (2) for the decay rate of a radio-active
substance as

dN

dt
= −λNα (4)

we have the solution of the form

Nα(t) = N0[1 + a(α− 1)t]−
1

α−1 (5)

where a is a constant. One may get the solution in Equation (3) from Equation (5) as α → 1. These
types of problems arise in many experimental situations where one needs to switch from one family
of functions to another family. In 2005, Mathai [3,4] introduced the pathway model by which one can
switch among three different families of functions, say, type-1 beta families, type-2 beta families and
gamma families. We get three different functional forms by varying the pathway parameter α. The
pathway model in the real scalar case is defined as

f(x) =


c1|x|γ[1− a(1− α)|x|δ]

η
1−α , 1− a(1− α)|x|δ > 0,α < 1

c2|x|γ[1 + a(α− 1)|x|δ]−
η

α−1 ,−∞ < x <∞,α > 1

c3|x|γe−aη|x|
δ
,−∞ < x <∞,α→ 1

(6)

where a > 0, δ > 0,γ > 0,η > 0. c1, c2 and c3 are the normalizing constants when we consider
the functions as statistical densities. The three different functional forms are respectively generalized
type-1 beta, generalized type-2 beta and generalized gamma forms. By writing 1 − α = −(α − 1),
the generalized type-2 beta form can be obtained from generalized type-1 beta form. Both generalized
type-1 beta form and generalized type-2 beta form reduce to generalized gamma form as α→ 1.

Due to this switching property, the pathway model has been widely used in many areas.
In this paper, we use the pathway model to extend kinetic equations. The present paper is organized
as follows: In the next section we discuss the extended kinetic equation and its solution with a brief
description of the extended reaction rate probability integral. Connection of the extended kinetic equation
with fractional calculus is examined in Section 3. In Section 4 we try to solve fractional kinetic equations
and their various generalizations. Concluding remarks are given in Section 5.

2. Extended Kinetic Equations

The following discussion is based on [1,2]. If we consider a production and destruction of nuclei in
the proton-proton chain reaction, we can describe it by the equation

dNi

dt
= −

∑
j

NiNj〈σv〉ij +
∑
k,l 6=i

NkNl〈σv〉kl (7)
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whereNi is the number density of the species i over time. Here the summation is taken over all reactions,
productions or destructions of the species i. The number density Ni of the species i can be expressed by
the relation Ni = ρNA

Xi
Ai

where ρ is the mass density, Xi is the mass abundance, NA is the Avogadro
number andAi is the mass of species i in mass units. The mean life time τj(i) of species i for destruction
by species j is given by the relation [2]

λj(i) =
1

τj(i)
= Nj〈σv〉ij = ρNA

Xj

Aj
〈σv〉ij (8)

where λj(i) is the decay rate of i for interaction with j. 〈σv〉ij denotes the reaction probability for an
interaction involving species i and j defined as

〈σv〉ij =

√
2

µ

∫ ∞
0

E
1
2f(E)σ(E)dE (9)

where µ is the reduced mass of the particles given by µ = m1m2

m1+m2
, E = µv2

2
is the kinetic energy of

the particles in the center of mass system. Consider the cross section σ(E) for low-energy non-resonant
reactions given by

σ(E) =
2∑
ν=0

S(ν)(0)

ν!
Eν−1e

−2π(µ
2 )

1
2 ZiZje

2

h̄E
1
2

(
E

B
� 1

)
(10)

where Zi and Zj are the atomic numbers of the nuclei i and j, e is the quantum of electric charge, h̄ is
the Planck’s quantum of action, B the nuclear barrier height, S(E) is the cross-section factor which is a
slowly varying function of energy over a limited energy range and which can be characterized depending
on the nuclear reaction. The density function of the relative velocities of the nuclei for a non-degenerate
and non-relativistic gas is assumed to be Maxwell-Boltzmann given as

fMBD(E)dE = 2π

(
1

πkT

) 3
2

e−
E
kT

√
EdE (11)

By substituting Equation (11) and Equation (10) in Equation (9) the reaction probability 〈σv〉ij is
obtained as

〈σv〉ij =

(
8

πµ

) 1
2
(

1

kT

) 3
2

2∑
ν=0

S(ν)(0)

ν!

∫ ∞
0

Eνe
− E
kT
−2π(µ

2 )
1
2 ZiZje

2

h̄E
1
2 dE (12)

If a deviation from the thermodynamic equilibrium with regard to their velocities is considered then
it results in a deviation from the Maxwell-Boltzmann velocity. In this context, we consider a more
general density function than Maxwell-Boltzmann density function by using the pathway model defined
in Equation (6). The pathway energy density function has the form

fPD(E)dE =
2π(α− 1)

3
2

(πkT )
3
2

Γ
(

1
α−1

)
Γ
(

1
α−1
− 3

2

)√E [1 + (α− 1)
E

kT

]− 1
α−1

dE (13)

for α > 1, 1
α−1
− 3

2
> 0. Replacing the Maxwell-Boltzmann density Function (11) by the pathway energy

density Equation (13), we get the extended thermonuclear reaction probability integral in the form

〈σv〉ij =

(
8

πµ

) 1
2
(
α− 1

kT

) 3
2 Γ

(
1
α−1

)
Γ
(

1
α−1
− 3

2

) 2∑
ν=0

S(ν)(0)

ν!

×
∫ ∞

0

Eν
[
1 + (α− 1)

E

kT

]− 1
α−1

exp

[
−2π

(µ
2

) 1
2 ZiZje

2

h̄E
1
2

]
dE (14)
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Putting y = E
kT

and x = 2π
(
µ

2kT

) 1
2 ZiZje

2

h̄
we get

〈σv〉ij =

(
8

πµ

) 1
2

(α− 1)
3
2

Γ
(

1
α−1

)
Γ
(

1
α−1
− 3

2

) 2∑
ν=0

(
1

kT

)−ν+ 1
2 S(ν)(0)

ν!
I1α(ν, 1, x,

1

2
) (15)

where
I1α(ν, 1, x,

1

2
) =

∫ ∞
0

yν[1 + (α− 1)y]−
1

α−1 e−xy
− 1

2 dy (16)

Following [5], by taking the Mellin transform of Equation (16) and simplifying, we get

MI1α(s) =
Γ(s)Γ(ν+ 1 + s

2
)Γ
(

1
α−1
− ν− 1− s

2

)
(α− 1)ν+1+ s

2 Γ
(

1
α−1

) (17)

where <(s) > 0,<(ν + 1 + s
2
) > 0,<

(
1
α−1
− ν− 1− s

2

)
> 0. By taking the inverse Mellin transform

we get,

I1α(ν, 1, x,
1

2
) =

1

(α− 1)ν+1Γ
(

1
α−1

) 1

2πi

∫
L

Γ(s)Γ(ν+ 1 +
s

2
)

× Γ

(
1

α− 1
− ν− 1− s

2

)
[x(α− 1)

1
2 ]−sds (18)

where L is a suitable contour which separates the poles of Γ(s) and Γ(ν + 1 + s
2
) from the poles of

Γ
(

1
α−1
− ν− 1− s

2

)
. Putting s = 2s′ and using Legendre’s duplication formula [6]

Γ(2z) = π−
1
2 22z−1Γ(z)Γ

(
z +

1

2

)
, z ∈ C (19)

we get

I1α(ν, 1, x,
1

2
) =

π−
1
2

(α− 1)ν+1Γ
(

1
α−1

) 1

2πi

∫
L′

Γ(s′)Γ(
1

2
+ s′)Γ(ν+ 1 + s′)

× Γ

(
1

α− 1
− ν− 1− s′

)[
(α− 1)x2

4

]−s′
ds′ (20)

=
π−

1
2

(α− 1)ν+1Γ
(

1
α−1

)G3,1
1,3

(
(α− 1)x2

4

∣∣2− 1
α−1

+ν

0, 1
2
,ν+1

)
(21)

where G3,1
1,3(.) is the G-function originally introduced by C.S. Meijer in 1936, see [5,7,8]. The G3,1

1,3(.)

used in Equation (21) converges for all (α−1)x2

4
, x 6= 0. The contour line L′ appearing in the integral in

Equation (20) is c− i∞ to c+ i∞ for 0 < c < 1
α−1
− ν− 1 so that all the poles of Γ(s′),Γ(1

2
+ s′) and

Γ(ν+ 1 + s′) lie to the left and all the poles of Γ
(

1
α−1
− ν− 1− s′

)
lie to the right. G3,1

1,3(.) is evaluated
as the sum of the residues at the poles of Γ(s′),Γ(1

2
+ s′) and Γ(ν+ 1 + s′).

In most of the cases the nuclear factor S(ν)(0) used in Equation (15) is approximately constant across
the fusion window. Hence taking S(ν)(0) = 0 for ν = 1 and ν = 2 and taking S0(0) = S(0) we get

〈σv〉ij =

(
8(α− 1)

µkT

) 1
2 1

πΓ
(

1
α−1
− 3

2

)S(0)G3,1
1,3

(
(α− 1)x2

4

∣∣2− 1
α−1

0, 1
2
,1

)
(22)



Axioms 2015, 4 416

The following derivations are adapted from [9]. From the Mellin-Barnes representation of
the G-function, G3,1

1,3( (α−1)x2

4
) appearing in Equation (20) with ν = 0, the poles of Γ(s′) are

s′ = 0,−1,−2, . . . ; the poles of Γ
(

1
2

+ s′
)

are s′ = −1
2
,−3

2
,−5

2
, . . . ; and the poles of Γ(1 + s′)

are s′ = −1,−2,−3, . . .. Here the poles of Γ(s′) and Γ(1 + s′) will coincide at all points except at
s′ = 0 and hence the pole s′ = 0 is a pole of order 1, s′ = −1

2
,−3

2
,−5

2
, . . . are each of order 1 and

s′ = −1,−2,−3, . . . are each of order 2. The sum of residues corresponding to the pole s′ = 0 is
given by

R1 =
√
πΓ

(
1

α− 1
− 1

)
(23)

The sum of the residues corresponding to the poles s′ = −1
2
,−3

2
,−5

2
, . . . is

R2 =
∞∑
r=0

(−1)r

r!
Γ(−1

2
− r)Γ(

1

2
− r)Γ(

1

α− 1
− 1

2
+ r)

[
(α− 1)x2

4

]− 1
2

+r

= −2πΓ

(
1

α− 1
− 1

2

)[
(α− 1)x2

4

] 1
2

1F2

(
1

α− 1
− 1

2
;

3

2
,
1

2
; − (α− 1)x2

4

)
(24)

where 1F2 is the hypergeometric function defined by

1F2(a; b, c; x) =
∞∑
r=0

(a)r
(b)r(c)r

xr

r!

where

(a)r =

{
a(a+ 1) · · · (a+ r − 1) if r ≥ 1, a 6= 0

1 if r = 0

The sum of the residues corresponding to poles s′ = −1,−2,−3, . . . . of order 2 can be obtained
as follows:

R3 =
∞∑
r=0

lim
s′→−1−r

∂

∂s′

[
(s′ + 1 + r)2Γ(1 + s′)Γ(s′)Γ

(
1

2
+ s′

)

× Γ

(
1

α− 1
− 1− s′

)(
(α− 1)x2

4

)−s′ ]
=
∞∑
r=0

lim
s′→−1−r

∂

∂s′

[
Γ2(2 + s′ + r)Γ

(
1
2

+ s′
)

Γ
(

1
α−1
− 1− s′

)
(s′ + r)2(s′ + r − 1)2 · · · (s′ + 1)2s′

(
(α− 1)x2

4

)−s′ ]
=
∞∑
r=0

lim
s′→−1−r

∂

∂s′
Φ(s′) (25)

where

Φ(s′) =
Γ2(2 + s′ + r)Γ

(
1
2

+ s′
)

Γ
(

1
α−1
− 1− s′

)
(s′ + r)2(s′ + r − 1)2 · · · (s′ + 1)2s′

(
(α− 1)x2

4

)−s′
We have

∂

∂s′
Φ(s′) = Φ(s′)

∂

∂s′
[ln(Φ(s′)]
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ln Φ(s′) = 2 ln [Γ(2 + s′ + r)] + ln

[
Γ

(
1

2
+ s′

)]
+ ln

[
Γ

(
1

α− 1
− 1− s′

)]
− s′ ln

(
(α− 1)x2

4

)
− 2 ln(s′ + r)− · · · − 2 ln(s′ + 1)− ln(s′)

∂

∂s′
[ln(Φ(s′)] = 2Ψ(2 + s′ + r) + Ψ

(
1

2
+ s′

)
+ Ψ

(
1

α− 1
− 1− s′

)
− ln

(
(α− 1)x2

4

)
− 2

s′ + r
− 2

s′ + r − 1
− · · · − 2

s′ + 1
− 1

s′

lim
s′→−1−r

{ ∂
∂s′

ln[Φ(s′)]} = Ψ

(
−1

2
− r
)

+ Ψ

(
1

α− 1
+ r

)
+ Ψ(1 + r)

+ Ψ(2 + r)− ln

(
(α− 1)x2

4

)
(26)

where Ψ(z) is a Psi function or digamma function (see Mathai [5]) and Ψ(1) = −γ, γ =

0.5772156649 . . . is Euler’s constant. Now

lim
s′→−1−r

Φ(s) =
(−1)1+r2

√
πΓ
(

1
α−1

+ r
)(

3
2

)
r
r!(1 + r)!

(
(α− 1)x2

4

)1+r

(27)

Then by using Equations (25)–(27) we get,

R3 =
∞∑
r=0

(−1)1+r2
√
πΓ
(

1
α−1

+ r
)(

3
2

)
r
r!(1 + r)!

(
(α− 1)x2

4

)1+r

×
[
Ψ

(
−1

2
− r
)

+ Ψ

(
1

α− 1
+ r

)
+ Ψ(1 + r) + Ψ(2 + r)− ln

(
(α− 1)x2

4

)]
=

(
2
√
π(α− 1)x2

4

) ∞∑
r=0

(
(α− 1)x2

4

)r [
Ar − ln

(
(α− 1)x2

4

)]
Br (28)

where

Ar = Ψ

(
−1

2
− r
)

+ Ψ

(
1

α− 1
+ r

)
+ Ψ(1 + r) + Ψ(2 + r) (29)

and

Br =
(−1)rΓ

(
1
α−1

+ r
)(

3
2

)
r
r!(1 + r)!

(30)

Thus the series representation for the reaction probability is

〈σv〉ij =

[
8(α− 1)

µkT

] 1
2 1

Γ
(

1
α−1
− 3

2

)S(0)

{
1√
π

Γ

(
1

α− 1
− 1

)

− 2Γ

(
1

α− 1
− 1

2

)[
(α− 1)x2

4

] 1
2

1F2

(
1

α− 1
− 1

2
;

3

2
,
1

2
; − (α− 1)x2

4

)
+

2(α− 1)x2

4
√
π

∞∑
r=0

(
(α− 1)x2

4

)r [
Ar − ln

(
(α− 1)x2

4

)]
Br

}
(31)

where Ar and Br are as defined in Equations (29) and (30). For detailed theory of extended reaction
rates and its series representations see Haubold and Kumar [10,11], Kumar and Haubold [12].
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The following discussion is adapted from [1]. The solution of the differential Equation (4) with initial
condition Ni(t) = 1 when t = 0 is

Nα
i (t)dt = [1 + (α− 1)cit]

− 1
α−1 dt (32)

When ci in Equation (32) is a constant, the total number of reactions in the time interval 0 ≤ t ≤ t0 is
obtained as∫ t0

0

Nα
i (t)dt =

∫ t0

0

[1 + (α− 1)cit]
− 1

α−1 dt =
1

ci(2− α)

{
[1 + (α− 1)cit0]−

2−α
α−1 − 1

}
(33)

Now [1 + (α− 1)cit0]−
2−α
α−1 − 1 is the probability that the lifetime of species i is ≤ t0 when t follows

a distribution with density function

f(t) = ci(2− α)[1 + (α− 1)cit]
− 1

α−1 , 0 ≤ t <∞, ci > 0, 1 < α < 2 (34)

or we have
Ni(t) =

f(t)

ci(2− α)
(35)

Equation (34) is the Tsallis statistics for α > 1, see [13,14] which can also be seen as a particular case
of the pathway model Equation (6) for α > 1. If ci in Equation (32) is a function of time, say ci(t), then
it should be replaced by

∫
ci(t)dt. When ci = ci(t) = dit where di > 0 is independent of t, then in this

case
∫
ci(t)dt = dit

2

2
, then

Ni(t) =
Γ
(

1
α−1
− 1

2

)
Γ
(

1
α−1

) [
π

2di(α− 1)

] 1
2

g(t) (36)

where

g(t) =
Γ
(

1
α−1

)
Γ
(

1
α−1
− 1

2

) [2di(α− 1)

π

] 1
2

[1 + (α− 1)
dit

2

2
]−

1
α−1 , 0 ≤ t <∞, di > 0, 1 < α < 2 (37)

The density in Equation (34) is the lifetime density of the destruction of the species i, with the
expected mean value

E(t) =
1

ci(3− 2α)
(38)

where E(·) is the expected value of (·). The mean value of the lifetime density function given in
Equation (37) is

E(t) =
Γ
(

1
α−1

)
Γ
(

1
α−1
− 1

2

) [2(α− 1)

πdi

] 1
2 1

2− α
(39)

Now as α→ 1 we get the expected mean lifetime

E(t) =

(
2

πdi

) 1
2

(40)

of the lifetime density function

g∗(t) =

(
2di
π

) 1
2

e−
dit

2

2 , 0 ≤ t <∞, di > 0 (41)
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considered by Haubold and Mathai [1].

From the lifetime density function given in Equation (34) and the mean lifetime Equation (38) we can
infer that

1. the expected lifetime of the species depends on the value of ci and α. As ci(3− 2α) increases the
expected lifetime decreases and vice versa.

2. 1
ci(2−α)

f(t)∆(t) can be interpreted as the amount of the net destruction in a small time interval
∆(t). As the net destruction is faster the lifetime becomes smaller.

3. Connection of Extended Kinetic Equation to Fractional Calculus

Let Φ1(t1) be an integrable function as defined in Equation (34) and Φ2(t2) = θ(t) be any integrable
function, then by the Mellin convolution property, we have

Φ(u) =

∫
t

1

t
Φ1(t)Φ2(

u

t
)dt =

∫
t

1

t
Φ1(

u

t
)Φ2(t)dt (42)

Then Φ(u), after substituting Φ1(t1) and Φ2(t2), takes the form

Φ(u) = ci(2− α)

∫ ∞
t=0

1

t
[1 + (α− 1)ci

u

t
]−

1
α−1θ(t)dt (43)

for α > 1 which can be considered as a generalized fractional Kober type operator of an integrable
function θ(t). Here as α→ 1− we have

Φ(u) = ci(2− α)

∫ ∞
t=0

t−1e−ci
u
t θ(t)dt (44)

More general cases can be seen in the paper Mathai and Haubold [15].

4. Fractional Kinetic Equation and Its Solution

The following discussion is based on [16,17]. In Equation (4), if instead of an ordinary classical
integral we use a fractional integral, we get the reaction equation as

N(t)−N0 = −cν0Dt
−νN(t),ν > 0 (45)

where 0Dt
−νN(t) represents the Riemann-Liouville fractional integral defined as

0Dt
−νf(t) =

1

Γ(ν)

∫ t

0

(t− u)ν−1f(u)du,ν > 0 (46)

with 0D
0
t f(t) = f(t). Taking Laplace transform, simplifying and then taking the inverse Laplace

transform one gets

N(t) = N0

∞∑
k=0

(−1)k(ct)kν

Γ(1 + kν)
= N0Eν(−cνtν) (47)



Axioms 2015, 4 420

where Eν(−cνtν) is the Mittag-Leffler function, introduced by M. G. Mittag-Leffler in 1903 [18] as

Eβ(z) =
∞∑
k=0

zk

Γ(βk + 1)
,β ∈ C,<(β) > 0, z ∈ C (48)

If we consider a generalization of the fractional kinetic equation considered by Mathai, Haubold and
Saxena [16,17] in the form

N(t)−N0t
ω−1Eγν,ω(−cνtν) = −cν0Dt

−νN(t),ν > 0,ω > 0,γ > 0 (49)

where Eγν,ω(.) is the generalized three parameter Mittag-Leffler function introduced by Prabhakar [19]
defined as

Eγβ,ρ(z) =
∞∑
k=0

(γ)kz
k

Γ(βk + ρ)k!
,β, ρ, γ ∈ C,<(β) > 0,<(ρ) > 0, z ∈ C (50)

then the solution of the fractional kinetic Equation (49) is

N(t) = N0t
ω−1Eγ+1

ν,ω (−cνtν) (51)

5. Conclusions

The linear and non-linear kinetic equations establish a connection between the Boltzmann-Gibbs
statistical mechanics and Tsallis non-extensive statistical mechanics. The pathway parameter α plays
a key role in switching between these two cases. The theory of extended reaction rates and its closed
form solutions can be seen in Haubold and Kumar [10] and Kumar and Haubold [12]. Further, the
fractional diffusion equation and its solution help us to understand the connection with the classical
Laplace transform. In 2013, the author has solved the fractional kinetic equations discussed here by
Pα-transform [20]. Various fractional differential equations and their solution by various transforms are
studied by many authors, see [21,22]. It should be noted that the Mittag-Leffler function arises in the
solution of a fractional diffusion equation whereas the exponential function arises in the solution of its
classical counterpart. A possible connection of the extended kinetic equation to fractional calculus can
be established through the procedure adopted here.
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