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Abstract: We present a viable geometric solution for the detection of dynamic effects in complex
networks. Building on Forman’s discretization of the classical notion of Ricci curvature, we introduce
a novel geometric method to characterize different types of real-world networks with an emphasis on
peer-to-peer networks. We study the classical Ricci-flow in a network-theoretic setting and introduce
an analytic tool for characterizing dynamic effects. The formalism suggests a computational method
for change detection and the identification of fast evolving network regions and yields insights into
topological properties and the structure of the underlying data.
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1. Introduction

Complex networks are by now ubiquitous, both in every day life and as mathematical models for a
wide range of phenomena [1–4] with applications in such diverse fields as Biology [5,6], transportation
and urban planning [4,7,8], social networks like Facebook and Twitter [9], and—in its relevance dating
back to early work on networks—in communication and computer systems [2]. The latter belong to
the class of peer-to-peer networks whose structure is characterized by information transfer between
“peers”. With novel geometric methods we attempt to analyze structural properties and dynamics of
real-world networks, focusing on peer-to-peer networks as an exemplary use case.

While the body of theoretical research on the analysis of networks and related structures has been
focused on the properties of the various (discrete) Laplacians (see [10] for an overview on the state of
the art), a more recent and related direction concerns the geometrical characterization of real-world
and model type networks with discrete curvature, see [11–14].

Given that in geometry, curvature (intuitively, a measure quantifying the deviation of a geometrical
object from being flat) plays a central role, the drive for finding various discrete, expressive notions
of curvature capable of describing the structure of networks is most natural [1,2,15]. More recent
“geometric” approaches consider discrete definitions of curvature as in [13,16–18].

While somewhat esoteric for the “layman”, Ricci curvature plays a central role in Riemannian
Geometry and has recently proven to be a remarkably powerful tool, mainly given its role in the
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celebrated proof by G. Perelman of Poincare’s Geometerization Conjecture [19,20], following a path
laid down earlier by R. Hamilton [21]. Moreover, Ricci curvature proved itself to be unexpectedly
flexible and adaptable to various discrete and more general settings, mainly in the version introduced
by Y. Ollivier [11,22,23]. Various theoretical and practical applications have been explored in the
literature, see, for instance, [12,14,24–26].

Despite its practicability in theoretical settings, the Ollivier-Ricci curvature is limited in its
applicability on large, real-world networks. A major constraint is the high computational cost of
its calculation. The Ollivier-Ricci curvature necessitates the calculation of the so called earth mover’s
distance (also known as the Wasserstein 1-metric), which in turn requires solving a non-trivial linear
programming problem, thus rendering the computation unfeasible for truly large scale networks.
A further limitation comes as a direct consequence of the very definition of Ollivier’s concept: Given that
the curvature’s definition is intrinsically based on Optimal Transportation Theory, it is excellently suited
for the investigation of information transfer in communication networks. Yet it is less expressive as a
model for structurally different types of interaction networks as occurring in biology or social sciences.

However, there is an alternative notion of discrete Ricci curvature that is computationally
far simpler and equally suited to characterize complex systems. The definition, introduced by
Forman in [27], applies to a very generalized class of cellular structures that includes triangular
and polygonal meshes, as well as graphs (and therefore networks). Therefore, the Forman-Ricci
curvature is a natural candidate for a discrete Ricci curvature that can be universally adapted to any
type of network. After emerging as highly suited for rendering images [28–30] and complex network
analysis [31,32], we will explore its applicability on characterizing dynamic effects in complex systems.

In the present article, we continue and expand the program initiated partly by [31], namely
examining the relation of Forman-Ricci curvature with other geometric network properties, such as
the node degree distribution and the connectivity structure (For a systematic comparison of various
other network characteristics see [31]). Based on this analysis, we suggest characterization schemes
that yield insights into the dynamic structure of the underlying data as described in the following
section. The emphasis of the article lies on analyzing the class of peer-to-peer networks, of which we
provide two examples: Email communications [33] and information exchange with the file-exchange
system Gnutella [34,35].

The main part of the paper introduces a novel change detection method for complex
dynamic networks that exploits the Ricci flow on the edges with respect to the Forman curvature.
Efficient implementations of the formalism enable structural analysis of big data as we demonstrate
with the Gnutella example. For this, we walk the reader through the analysis of sets of peer-to-peer
networks with respect to change detection, providing an overview on the work flow of the method.

Future applications include the characterization of dynamic effects in various classes of real-world
networks and the analysis of the underlying data, as well as curating related data bases.

2. Methods

The change detection method introduced in this article is based on a network-analytic formulation
of the Ricci-flow using a discrete Ricci-curvature on networks introduced by R. Forman [27]. In this
section we define both the Forman-Ricci curvature and the Ricci flow on networks and demonstrate
their ability to characterize complex dynamic systems and their underlying data on the example of
a peer-to-peer network.

2.1. Forman-Ricci Curvature on Networks

In the classical context of smooth Riemannian manifolds (e.g., surfaces), Ricci curvature represents
an important geometric invariant that measures the deviation of the manifold from being locally
Euclidean by quantifying its volume growth rate. An essential property of this curvature is that it
operates directionally along vectors. For our discrete setting it follows directly that Forman’s curvature
is associated with the discrete analog of those vectors, namely the edges of the network.
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While Forman’s approach defines Ricci curvature on the very general setting of n-dimensional
cellular structures, we will concentrate on the simpler case of 1-dimensional weighted cellular spaces
that can be represented as a weighted network graph. We will not consider higher dimensional cases
here, since their technicalities would carry us well beyond the scope of the present paper and our
intended applications. For a theoretical introduction see [27].

In the 1-dimensional case, Forman’s Ricci curvature for a network edge is defined by the following
combinatorial formula

RicF(e) = ω(e)

ω(v1)

ω(e)
+

ω(v2)

ω(e)
− ∑

ω(ev1 )∼e,ev2∼e

[
ω(v1)√

ω(e)ω(ev1 )
+

ω(v2)√
ω(e)ω(ev2 )

] (1)

where

• e denotes the edge under consideration that connects the nodes v1 and v2;
• ω(e) denotes the (positive) weight on the edge e;
• ω(v1), ω(v2) denote the (positive) weights associated with the nodes v1 and v2, respectively;
• ev1 , ev2 denote the set of edges connected to nodes v1 and v2, respectively.

Note that in Equation (1) only edges parallel to a given edge e are taken into account, i.e., only
edges that share a node with e. We highlight that, by its very definition, Forman’s discrete curvature
is associated to edges and therefore ideally suited for the edge-based study of networks (connectivity,
directionality). Particularly, it does not require any technical artifice in extending a node curvature
measure to edges, as some other approaches do. In particular, there is no need to artificially generate
and incorporate two- or higher dimensional faces: Such an approach would impose severe constraints
on computability.

Additionally, a “good” discretization of Ricci curvature, such as Forman’s proves to be [27], will
capture the Ricci curvature’s essential characteristic of measuring the growth rate—a property that is of
special interest in the context of dynamic networks. Therefore, the Forman-Ricci curvature represents
a way of determining whether a network has the potential of infinite growth (negative curvature), or
can only attain a maximal-and therefore computable-size (positive curvature). In particular, a network
will be flat, i.e., it will have Forman-Ricci curvature equal to zero, if its growth and geodesics dispersion
rates will be similar to that of the Euclidean plane. This aspect represents a further motivation for
studying the Ricci curvature of networks, since it allows one to distinguish numerically between
expander type networks of negative curvature, such as information networks, and small world
networks that are, on average, of strictly positive curvature (see also [25]). We will further explore this
in a forthcoming article [36].

2.2. Characterizing Large Data Sets with Ricci Curvature

We now want to explore the Forman curvature as a tool for characterizing real-world networks.
Since this paper centers around peer-to-peer networks, we choose an example of email communication
from [33]. In such network graphs (denoted G), nodes describe correspondents (peers) and edges the
exchange of messages among the peers.

To characterize the network’s structure with curvature, we have to impose normalized
weighting schemes

ω : V(G) 7→ [0, 1] (nodes) (2)

γ : E(G) 7→ [0, 1] (edges) (3)

on both nodes and edges. Naturally, the busiest communicators should have the highest weights.
Therefore, we choose a combinatorial weighting scheme based on node degrees, i.e., the number of
connections for each node v:
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ω(v) =
1

deg(v) ∑
ei∼v

γ(ei) . (4)

Analogously, we want to weigh extensively used communication channels (edges) higher than
rarely used ones . For this, we calculate the minimum path length l between each pair of connected
nodes (vi, vj) and impose

γ(vi, vj) =

{
1
l , l ≤ 6, vi ∼ vj

0, else.
(5)

The motivation behind this choice of weights lies in the “small world”-property (i.e., a maximum
degree of separation of six [37]) that has been reportedly found in real-world. In accounting for this,
we only check for indirect connections up to a path length of six and scale the weights according to
the distribution. The resulting structure of the network is shown in Figure 1A, the size of the nodes
reflects their weights.

Figure 1. Characterization of a weighted and undirected peer-to-peer network (email
correspondence [33,38]) with Forman-Ricci-curvature; (A) Network plot. Node sizes are scaled with
respect to their node degrees; (B) (Weighted) node degree distribution; (C) Curvature map, representing
the Forman-Ricci-curvature along the network’s edges. The curvature map consists of a heat map of a
matrix where each entry (i, j) represents the Ricci curvature of the corresponding edge Ric(e = e(i, j)).
Light yellow entries resemble edges with low curvature, red entries resemble those with high curvature;
(D) Histogram showing the distribution of the Forman-Ricci-curvature.
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Using edge and node weights, we can now determine the Forman curvature distribution in the
network. A curvature map (Figure 1C) provides a planar representation that highlights clusters and
distinguished regions. The histogram (Figure 1D) shows the distribution of the curvature values allowing
for comparison with the node degree distribution (Figure 1B). By indicating a correlation between the
two distributions, the results highlight the strong influence of node degree weights on the network’s
topology. This is consistent with observations in email communications: Densely interconnected
communities form around busy communication channels and active correspondents.

2.3. Ricci-Flow with Forman Curvature

As mentioned earlier, the Ricci flow as a powerful geometric tool was devised by Hamilton [21]
and further developed by Perelman [19,20] in the course of his celebrated proof of the Poincare
conjecture. Since then, it has continued to be an active and productive field of study, both in terms
of theoretical questions, and also for diverse practical applications, including work by Gu et al.
(see, e.g., [39]). Those mainly build on a combinatorial version introduced by Chow and Luo [40].
However, other discretizations of the flow, with reported applications in network and imaging sciences,
are explored in the literature [25,41].

The classical Ricci flow is defined by

∂gij

∂t
= −RicF(gij)× gij (6)

where gij denotes the metric of the underlying manifold, here represented by the earlier introduced
weighting scheme of the network’s edges. Note that Equation (6) above shows that the Ricci flow
evolves a manifold proportionally to its Ricci curvature, by “pushing” faster the regions of higher
curvature. This is a fact that we exploit in our application to determine changes in dynamic
(peer-to-peer) networks.

The reader might note the resemblance with the classical Laplace (or more precisely
Laplace–Beltrami) flow that has become, by now, standard in Imaging and Graphics (see, e.g., [37,42]
and the references therein), defined as

∂I
∂t

= ∆I (7)

where I denotes the image, viewed as a parametrized surface in R3, and ∆ denotes, as customary,
the Laplacian. (The difference in sign is due to the two different conventions in defining the Laplacian).

The resemblance is neither accidental nor superficial. Indeed, the Ricci curvature can be viewed
as a Laplacian of the metric. We address the practical implications of this observation in the sequel and
a follow-up article by the authors [32] that addresses more theoretical questions of this matter.

In our discrete setting, lengths are replaced by the (positive) edge weights. Time is assumed to
evolve in discrete steps and each “clock” (i.e., time step) has a length of 1. With these constraints the
Ricci flow takes the form

γ̃(e)− γ(e) = −RicF(e)× γ(e) , (8)

where γ̃(e) denotes the new (updated) value of γ(e) with γ(e) being the original—i.e., given-one.
In this context, we want to discuss a few issues and observations regarding this last equation:

1. At each iteration step (i.e., in the process of updating γ̃(e) to γ(e)), the Forman curvature has to be
recomputed for each edge e, since it depends on its respective weight γ(e). This clearly increases
the computational effort on magnitudes, however, the computation task is less formidable than it
might appear at first.

2. As already stressed, we consider a discrete time model. Since for smoothing (denoising) a short
time flow has to be applied (because, by the theory for the smooth case, a long time flow
will produce a limiting state of the network), only a small number of iterations needs be
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considered. The precise number of necessary iterations is to be determined experimentally.
Even though a typical number can be found easily, best results may be obtained for slightly
different numbers—depending on the network, and the type and level of the noise, of course.

3. Ollivier also devised a continuous flow [11,22]. In the context of the present article, a continuous
setting is not required, but for other types of networks, where the evolution is continuous in
time, it might be preferable to implement the continuous variant, suitably adapted to the Forman
curvature, rather than to Ollivier’s one.

In addition to the Ricci flow above, one can consider the scalar curvature flow that in our case will
have the form:

d
dt

γ(ei) = −
1
2
(
scalF(v)− scalF(vi)

)
γ(ei) , (9)

where ei = ei(v, vi) denote the edges through the node v, and scalF(v) the (Forman) scalar curvature at
a node v, which we define by

scalF(v) = ∑
ei∼v

RicF(γ(ei)) . (10)

2.4. Characterizing Dynamic Data with Ricci Flow

The introduced Ricci-flow can be utilized to characterize dynamic data. Given snapshots of
a system at various (discrete) times {ti}, we analyze the Ricci flow on the corresponding network
representations. The flow yields insights into structural changes providing a tool to identify
“interesting” network regions. Applications include efficient change detection in large dynamic
data representing complex systems, as described in the following section.

Let (ti)i∈I be a discrete time series with step size ∆t. Consider a complex dynamic system, the
behavior of which we have snapshots at times (ti) represented in weighted network graphs (Gi)i∈I .
Let ti and ti+1 be consecutive time points with corresponding graphs Gi and Gi+1. The weighting
schemes of the nodes

ω0
i,i+1 : V(G) 7→ [0, 1] (11)

and edges

γ0
i,i+1 : E(G) 7→ [0, 1] (12)

characterize the topological structure of the system at times ti and ti+1. We can estimate the Ricci-flow
for the time step ∆t by iterating k = 1, ..., K times over

γk+1
i,i+1(e) = γk

i,i+1(e)− ∆t× RicF(γ
k
i,i+1(e))× γk

i,i+1(e) (13)

resulting in modified weighting schemes γK
i and γK

i+1 respectively. We conjecture that the correlation
between these weighting schemes characterizes the flow. Regions that were subject to significant
change during the time ∆t can be identified by thresholding the resulting correlation matrix.

3. Application

3.1. Change Detection with Ricci Flow

A major challenge of modern data science lies in characterizing dynamic effects in large data
sets, such as structural changes in discrete time series of “snapshots” of a system’s state or frequently
updated large data bases. Commonly, network graphs are inferred from data representing interactions
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and associations in the underlying data. In the case of peer-to-peer networks, the network describes
the information flow (edges) between the peers (nodes).

We want to use the Forman-Ricci curvature to analyze dynamic changes in the structure of
such interaction networks obtained from large data sets. Specifically, we want to characterize the
information flow between the network’s nodes using the previously introduced Ricci flow. Our method
follows the formalism described in Section 1 and is schematically displayed in Figure 2.

Figure 2. Schematic overview of the change detection workflow; (A) We consider a set of
“snapshots” of a system or data base at discrete times (ti)i∈I with step size ∆t; (B) We infer
unweighted (binary) networks from each snapshot that represent the structure of the underlying
data. To simplify comparison, we normalize all networks; (C) By superimposing weighting
schemes based on “indirect connections”, we extend the unweighted networks to weighted ones
(see Section 1); (D) We calculate the Ricci flow for each time step ∆t by iterating over a the given
scheme; (E) For detection of changes, we compare the final (smoothed) weighting schemes after K
iterations; (F) To identify regions that were subject to significant change, we threshold the correlation
matrix obtained in (E). Light regions in the resulting map indicate such regions.

The analysis of the information flow can be used to detect changes or distinguished regions
of activity in the data. More precisely, we take advantage of the property of the classic Ricci flow
inherited by the suggested discretization, namely the faster evolution of regions with higher curvature.
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Thus, changes occurring in these parts of the network will be emphasized and can be detected by
characterizing the corresponding Ricci flow. In contrast to a mere comparison of the changes in
curvature, this allows for an analysis of the underlying dynamic effects and possibly predicting
the network’s future evolution. Applications include the curation of large open-access data bases
and the detection of rare events in experimental data, such as spiking neurons in measurements of
neuronal activity.

3.2. Analysis of Gnutella Peer-To-Peer Network

We consider a series of discrete time snapshots of a complex peer-to-peer system, represented as
network graphs (Gi)i∈I . To characterize the Ricci flow, we apply the earlier described formalism
pairwise, i.e., we iterate (K = 10) over (13) for snapshots (Gi, Gi+1) at consecutive time points
ti and ti+1. Here we use the file-exchange service Gnutella as an example, analyzing the peer-to-peer
networks resulting from exchange activities on two consecutive days (8 and 9 August 2002, [34,35]).
Figure 3 shows the networks infered from the data sets and the corresponding curvature maps
with the distribution of Forman Ricci curvature. We applied our change detection method with a
correlation threshold of thresh = 0.8 to detect regions of significant changes, i.e., groups of peers with
significant activity. The results are shown in Figure 4, represented as a heatmap of the thresholded
correlation matrix.

Figure 3. We analyze an Internet peer-to-peer network representing Gnutella file exchanges on two
consecutive days (8 and 9 August 2002, from [34,35]); (A) Network plot (left) and curvature map (right)
displaying the distribution of Forman curvature for a Gnutella snapshot on 8 August; (B) Analogous
plots for a Gnuttela snapshot from the following day, 9 August.
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Figure 4. Detection of changes and regions of distinguished activity in Gnutella snapshots of two
consecutive days [34,35] with Ricci flow and a parameter choice of K = 10 and thresh = 0.8
(the relatively small number of iteration steps was chosen for the sake of computation time). The figure
shows a heat map of the correlation matrix of the edges’ Ricci-curvature. Highlighted spots correspond
to single edges and assortments of edges and nodes (clusters) with high activity (flow).

Light spots in the heatmap correspond to network regions with large flow and structural changes,
allowing for detection and localization of dynamic effects. The method provides a clear representation
of dynamic changes in networks, especially in terms of the community structure of the network.
Given the intrinsic community structure of a network (clusters), which can also be infered from
evaluating the curvature, one can examine the influence of the flow on this specific structural property.

4. Discussion and Future Work

The dawning age of big data opens up great numbers of possibilities and perspectives to gain
insights into the principles of nature, humanity and technology through the collection and (statistical)
analysis of data. However, the vast amount of available data challenges our analysis methods leading
to an increased need of automated tools that can perform rapid and efficient data evaluations.

Networks are an efficient and commonly used data representation, emphasizing interactions and
associations. This representation is ideal for analyzing structures within the data under geometric
aspects. We have used networks to characterize peer-to-peer systems and analyze dynamic effects in the
information transfer between its peers. In particular, we introduced a method for detecting changes in
these dynamics. Possible applications of this theoretical framework include denoising of experimental
data and identification of “interesting” groups of data points and activities of network regions.

The geometric methods used in the present article build on R. Forman’s work on Ricci curvature
in networks and the corresponding Ricci flow. Future work, especially two follow-up articles by the
authors [32,36], will expand the range of geometric tools used in the methods and develop a deeper
understanding of theoretical aspects. In what follows, we want to name and discuss some extensions
and theoretical considerations that we shall address in future work.

One important fact, whose implications we shall discuss later on, is the so called Bochner-Weitzenboeck
formula (see, e.g., [43]), which relates graph Laplacian and Ricci curvature through an algebraic–geometric
approach. More precisely, it prescribes a correction term for the standard Laplacian (or
Laplace–Beltrami) operator, in terms of the curvature of the underlying manifold. Given that the
Laplacian plays a key role in the heat equation (see, e.g., [43]), it is easy to gain some basic physical
intuition behind the phenomenon of curvature and flow: The heat evolution on a curved metal plate
differs from that on a planar one in a manner that is evidently dependent on the shape (i.e., curvature)
of the plate.
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This suggests a number of possible future directions:

1. A task that is almost self evident, is to further experiment with very large data sets (numbers of
data points in the order of ten thousand and more);

2. Another natural target is the use of our method on different types of networks, with special
emphasis on Biological Networks;

3. A statistical analysis regarding the Ricci flow, similar to the one presented here and in [31], should
also be performed on various standard types of networks in order to confirm and calibrate the
characterization and classifying capabilities of the Ricci curvature and flow.

Slightly more demanding are future experiments and comparisons with the related flows, namely

1. The Forman curvature versions of the scalar and Laplace–Beltrami flows. Especially the last one
seems to be promising for network denoising, as applications of the analogous flow in image
processing showed [44]. Moreover, the Forman-Ricci curvature comes naturally coupled with
a fitting version of the so called Bochner Laplacian (and yet with another, intrinsically connected,
rough Laplacian). This aspect is subject to ongoing work and will be covered in a forthcoming
paper by the authors.

2. As for the short time Ricci flow, a statistical analysis should be undertaken to validate the
classification potential of the long term Ricci flow. A more ambitious, yet still feasible, future
direction would be to explore network stability by considering the long time Forman-Ricci flow (as
opposed to the short time one employed for denoising). This approach would exploit, in analogy
with the smooth case [19,20], the propensity of the Ricci flow to preserve and quantify the overall,
global Geometry (i.e., curvature) and essential topology of the network. This would allow us
to study the evolution of a network “under its own pressure” and to detect and examine such
catastrophic events as virus attacks and denial of service attempts. Given the basic numerical
simplicity of our method, this approach might prove to be an effective alternative to the Persistent
Homology method (see, e.g., [6]) for the 1-dimensional case of networks. Moreover, the Ricci
flow does not need to make appeal to higher dimensional structures (namely simplicial complexes)
that are necessary for the Persistent Homology based applications, with clear computational
advantages (see, e.g., the code described in [45]), but also theoretically rigor. Furthermore, the
here defined Ricci flow can be applied on weighted networks, whereas Persistant Homology
requires unweighted complexes.
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