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Abstract:



A method for the solution of linear differential equations (DE) of non-integer order and of partial differential equations (PDE) by means of inverse differential operators is proposed. The solutions of non-integer order ordinary differential equations are obtained with recourse to the integral transforms and the exponent operators. The generalized forms of Laguerre and Hermite orthogonal polynomials as members of more general Appèl polynomial family are used to find the solutions. Operational definitions of these polynomials are used in the context of the operational approach. Special functions are employed to write solutions of DE in convolution form. Some linear partial differential equations (PDE) are also explored by the operational method. The Schrödinger and the Black–Scholes-like evolution equations and solved with the help of the operational technique. Examples of the solution of DE of non-integer order and of PDE are considered with various initial functions, such as polynomial, exponential, and their combinations.
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1. Introduction


Differential equations (DE) play an important role in pure mathematics and physics. They describe a broad range of physical processes and finding their solutions is of great importance. Only a few types of DE allow explicit analytical solutions. A vast literature is dedicated to the topic, and the contribution of scientists such as A.M. Mathai can hardly be overestimated (see, for example, [1,2]). Fractional calculus has rapidly drawn increasing attention from researchers in the last decade. They study the solutions of fractional reaction-diffusion, statistical, and other equations (see, for example, [3,4,5,6]. In many cases, expansion in series of orthogonal polynomials and their generalized forms with many indexes and variables as well as the usage of integral transforms are the most common tools to analytically solve DE.



The method of operational solution of DE demonstrated in [7,8,9,10] is applicable to a wide spectrum of physical problems, described by linear partial differential equations (PDE), such as propagation and radiation from charged particles [11,12,13,14,15,16,17,18,19], heat diffusion [20,21,22], including processes not described by Fourier law, and others [23,24,25]. In the context of the operational approach, the operational definitions for the polynomials through the operational exponent are very useful [26].The operational exponent is also applied when describing the fundamentals of structures in nature, including elementary particles and quarks [27,28,29]; such modern mathematical instruments are also used for the theoretical study of neutrino mixing [30,31,32] and for analysis of relevant experimental data [33,34,35]. The obtained solutions were formulated in terms of series of generalized forms of orthogonal polynomials of Hermite, Laguerre, more general Appèl, and some other polynomials [36,37], special functions of hyperbolic, elliptic Weierstrass and Jacobi-type, cylindrical Bessel-type, and generalized Airy-type functions.



While the role of various parameters in the solutions of DE and their physical meaning is most clear in the analytical form of the solutions, this last is not always available. Modern computer methods help to solve DE. The numerical approach is widely applied nowadays due to the revolutionary breakthrough in computational technique and technical support. Advanced numerical methods for the solution of fractional differential equations, formulated, for example, in [38,39,40,41], can be effectively executed with modern computers. In this context we note also semi-analytical models and numerical simulations of relaxation of hot electrons and holes [42], the diffusion of charge carriers, and the energy relaxation and transfer with respect to the electron excited states in crystals [43,44].



Different from these numerical computations, analytical solutions, when available, give clearer insight into the underlying physical processes. In the following we will apply the operational method to obtain exact solutions for some linear ordinary DE with non-integer derivatives and for evolution-type PDE, giving examples of solutions of Schrödinger-type and Black–Scholes-type equations, and their generalized forms with the Laguerre derivative operator.



The structure of the manuscript is as follows. In the first section we will explore generalized Hermite and Laguerre polynomials, the inverse derivative operator, the Laguerre derivative, and the relations between them; we will also touch on the Appèl polynomials. In the second section we will apply the orthogonal polynomials and inverse differential operators to find the solution of some non-integer order DE. In the third section we will construct convolution forms of solutions for DE with the help of special functions and integral transforms. In the fourth section we will consider the operational solutions for some PDE; in particular, we will consider the evolution partial differential equations of Schrödinger and Black–Scholes types. In every section we will consider examples of solutions with various initial functions, such as the functions [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]. Eventually, we will provide the results and the conclusions.




2. Operational Approach and Orthogonal Polynomials


First of all, we note that an inverse function is one that undoes another function: For [image: there is no content] the inverse is [image: there is no content], [image: there is no content]. The differential operators can be treated similarly. For the DE [image: there is no content], where [image: there is no content] is a differential operator, the inverse differential operator [image: there is no content] is defined, which undoes [image: there is no content], [image: there is no content], so that [image: there is no content]. Consider a common differential operator [image: there is no content]: [image: there is no content]. Its inverse is dx−1f(x)=F(x), which is an integral operator [image: there is no content], where C is the integration constant. The inverse derivative operator of the n-th order acts according to its definition:


[image: there is no content]



(1)




which is complemented by the definition for its zeroth order action:


[image: there is no content]



(2)




and its action on the unity gives


[image: there is no content]



(3)







It is elementary to demonstrate that, for example, the DE [image: there is no content] has the following particular integral [image: there is no content], and to prove the following identity:


[image: there is no content]



(4)







With the help of the above identity the action of the shifted inverse differential operator [image: there is no content] on [image: there is no content] can be expressed via the inverse differential operator [image: there is no content], as follows:


[image: there is no content]



(5)







Equation (5) might seem trivial, but it is particularly useful for the solution of a broad class of DE with shifted differential operators.



Traditionally, polynomial families are defined by their expansion in series. However, they can be defined operationally through the relationship with the exponential differential operators. We recall that, in general, an exponential of an operator can be viewed as the series expansion [image: there is no content]. The Hermite polynomials of two variables [45], if considered in the context of the operational approach [37], can be explicitly defined by the following operational rule [36] in addition to their series expansion [46]:


[image: there is no content]



(6)







For the first-order polynomial we obtain simply


Hn(1)(x,y)=(x+y)n,



(7)




and for the second-order polynomial we have the two-variable Hermite polynomials [image: there is no content]:


Hn(2)(x,y)=Hn(x,y)=ey ∂2∂x2[xn], Hn(x,y)=n!∑r=0[n/2] xn−2r yr(n−2r)! r!.



(8)







Thus, the Hermite polynomials of two variables are defined through the action of the heat operator [image: there is no content]:


[image: there is no content]



(9)




on the monomial [image: there is no content]. The heat operator (9) was thoroughly studied, for example, in [47]. The Hermite polynomials of two variables have the following generating function:


[image: there is no content]



(10)




and they actually represent another form of the common Hermite polynomials of one variable:


[image: there is no content]



(11)







Direct application of the operational definition (8) to the Hermite polynomials yields the following identity:


[image: there is no content]



(12)




which consists of a shift in the [image: there is no content] variable.



With the help of the following relation for Hermite polynomials:


[image: there is no content]



(13)




and with the operational identity:


[image: there is no content]



(14)




applied together with the operational rule (5), we obtain for the action of the heat diffusion operator [image: there is no content] on the polynomial-exponential function the following result:


[image: there is no content]



(15)







The Hermite, Laguerre, and some other polynomials belong to a more general family of Appèl polynomials [48], if viewed in the framework of the operational approach. For example, the two-variable Hermite polynomials belong to the family of Appèl polynomials [image: there is no content], which can be defined through the following generating function [47]:


[image: there is no content]



(16)




where it is assumed that a finite region of t exists, in which [image: there is no content] is expandable in Taylor series and this expansion converges. Then, with the help of the obvious identity: [image: there is no content], we can rewrite Equation (16) in the following operational form:


[image: there is no content]



(17)







Now, expanding the exponential in Equation (17) in series and equating the terms on the right- and left-hand sides of (17), we obtain the following definition for [image: there is no content]:


[image: there is no content]



(18)




where [image: there is no content] is the Appèl operator. In the case of the two-variable Hermite polynomials, the identity (18) becomes the operational definition (8) and Appèl operator for Hermite polynomials is realized by the exponential


[image: there is no content]



(19)







Let us assume that the inverse of the Appèl operator [image: there is no content] can be defined as [image: there is no content]. The main properties of the Appèl polynomials arise from the operational definition (18). For example, if the operators [image: there is no content] and [image: there is no content] commute: [image: there is no content], then, by acting with [image: there is no content] on both sides of (18), we obtain the following relation for [image: there is no content] and [image: there is no content]:


[image: there is no content]



(20)







Moreover, it follows from (18) that [image: there is no content] and [image: there is no content] are related to each other as follows:


[image: there is no content]



(21)







This allows us to introduce the multiplicative operator [image: there is no content] for Appèl polynomials:


[image: there is no content]



(22)




where [image: there is no content] is given by the Appèl operator as follows:


[image: there is no content]



(23)




and on account of [image: there is no content], where f′ is the derivative of f, we write:


[image: there is no content]



(24)







For the Appèl polynomials [image: there is no content] the operators [image: there is no content] and [image: there is no content] stand for the multiplicative and derivative operators and this set of operators: [image: there is no content], realizes the Weyl–Heisenberg algebra. From the following relation for Appèl polynomials:


[image: there is no content]



(25)




it is easy to derive the following differential equation for Appèl polynomials:


[image: there is no content]



(26)




where [image: there is no content] is the derivative of [image: there is no content]. This equation is valid for all of the polynomials belonging to the Appèl family. Moreover, it is easy to recognize that Appèl polynomials satisfy the following recurrence:


[image: there is no content]



(27)







In the context of the Appèl polynomial family we obtain for the Hermite polynomials the following multiplicative operator [image: there is no content]:


[image: there is no content]



(28)







The differential equation for the Hermite polynomials as part of the Appèl polynomial family reads as follows:


[image: there is no content]



(29)







The Laguerre polynomials of two variables can be defined in the operational way or as a finite sum:


[image: there is no content]



(30)







The Laguerre polynomials of two variables, as well as the Hermite polynomials of two variables, are just another way for writing proper polynomials of one variable [47]:


[image: there is no content]



(31)







However, there is more than just another notation behind the introduction of this form with two variables in Hermite and Laguerre polynomials. It allows us to consider proper polynomials as solutions of partial differential equations (PDE) with proper initial conditions:


[image: there is no content]



(32)




for Laguerre polynomials [image: there is no content] and


[image: there is no content]



(33)




for Hermite polynomials [image: there is no content]. We introduce the Laguerre derivative LDx and then the two variable Laguerre polynomials can be operationally defined as follows:


Ln(x,y)=eyLD^x[(−x)nn!], LD^x=−D^xxD^x.



(34)







This operational definition is equivalent to the summation definition (30), which can be easily proved by direct execution of the action of LD^x on [image: there is no content]:


LD^x[(−x)nn!]=n[(−x)n−1(n−1)!].



(35)







The differential and multiplicative operators are formed by the operators


LDx=∂xx∂x=−P^ and M^=y−Dx−1,



(36)




which do not commute:


[LDx,Dx−1]​=−1.



(37)







Moreover, in the framework of the inverse derivative (see (1)) the following operational relationship exists between them 10:


LDx=∂∂Dx−1,



(38)




which immediately raises associations with the relationship between the momentum and the coordinate in quantum mechanics. This relationship allows us to solve operationally the differential equations with the Laguerre derivative operator [image: there is no content], as we will demonstrate in what follows. Directly from (36) and (38) we conclude that the Laguerre polynomials [image: there is no content], (30) and (34), can be expressed in terms of the inverse derivative operator (1) as follows:


[image: there is no content]



(39)







This relation is also particularly useful for solution of some types of DE, involving the Laguerre derivative. Moreover, the operational definition (34) and the relations (38) and (39) yield the following operational rule for the Laguerre polynomials:


[image: there is no content]



(40)







Framing classical polynomials in the Appèl family should be done with some caution. Strictly speaking, the two-variable Laguerre polynomials can be considered members of the Appèl family with respect to the y variable only. Indeed, they are not Appèl polynomials with respect to [image: there is no content]. However, the Laguerre polynomial family can be introduced in the context of the Appèl family in a way similar to (16) and (18) by the following substitution:


xn→(−x)nn!, D^x→LD^x.



(41)







In this way we obtain the following formula:


ln(x)=A(LD^x)[(−x)nn!].



(42)







With respect to the [image: there is no content] variable, the Laguerre polynomials, as defined in (30), certainly belong the Appèl family as they can be given by the following operational rule:


[image: there is no content]



(43)







Moreover, a hybrid family of polynomials exists, defined by the Appèl operator [image: there is no content] or, alternatively, defined by the following sum:


[image: there is no content]



(44)







Further study of their properties is beyond the scope of the present paper, but they are quite interesting, being in between those of Laguerre and Hermite polynomials. Moreover, for [image: there is no content] these polynomials reduce to the Legendre family. Studies of these and relevant polynomials were recently performed in [49,50,51].



Eventually, let us note that umbral calculus can provide a common framework for known and new identities for orthogonal polynomials. Let us recall the identity [52]


[image: there is no content]



(45)




which, after defining the umbral variable [image: there is no content] 53, reads in its terms as follows:


[image: there is no content]



(46)







Therefore, as a consequence of the binomial theorem and of definition (46), we can write Equation (45) in the following useful form:


[image: there is no content]



(47)







Now with the help of identity (47), it is easy to generate new identities, such as the obvious consequence of Equation (47):


[image: there is no content]



(48)




which, together with


[image: there is no content]



(49)




yields the relation


[image: there is no content]



(50)







Moreover, from (50) and (47) more identities follow:


[image: there is no content]



(51)






[image: there is no content]



(52)







We can define the operator of umbral derivative [image: there is no content] [53] by the following rule:


[image: there is no content]



(53)




which, together with the multiplication condition:


[image: there is no content]



(54)




yields the following result for the commutator of the two operators [53]:


[image: there is no content]



(55)







Equation (55) allows us to use Weyl–Heisenberg algebra when needed. We can define the associated Hermite polynomials of two variables, with the operator [image: there is no content] as one of the variables, and thus we come to the following sum:


[image: there is no content]



(56)







The multiplication condition (54) does not define any new polynomial family and such Hermite polynomials [image: there is no content] satisfy the following relation


[image: there is no content]



(57)




and the following recurrences:


[image: there is no content]



(58)






[image: there is no content]



(59)




which are direct generalizations of the relevant terms for the two-variable Hermite polynomials [image: there is no content] equations. Indeed, Equation (59) is the umbral heat equation—the direct generalization of the heat Equation (33). It can be used to define the associated polynomials (56) in terms of the following operational equation:


Hn(a^,y) 1=eyΔ^2a a^n 1,



(60)




which is the generalization of definition (8). Further study of this topic represents stand-alone research; it will be addressed elsewhere.




3. Operational Solution of Some Non-Integer Ordinary DE


Let us consider a differential equation where ν is not necessarily an integer, shifted by the constant α derivative [image: there is no content]:


[image: there is no content]



(61)







Its particular integral formally reads


[image: there is no content]



(62)




and it can be found in the form of the integral if the well-known operational identity [26,47] is applied:


[image: there is no content]



(63)







For [image: there is no content] we obtain the following particular solution, involving the integrated weighted action of the operator [image: there is no content] on the initial function [image: there is no content]:


[image: there is no content]



(64)







Example 1.

It is inviting to choose the initial function for Equation (61) in the form of the monomial [image: there is no content]. The action of the heat diffusion operator [image: there is no content]on the monomial gives the Hermite polynomials according to their operational definition (30); the action of [image: there is no content]on the polynomial-exponential function is given in (15). With account for the generating function (10), we directly write the particular integral (62) for [image: there is no content]as follows:


[image: there is no content]



(65)









The resulting function (65) with the Hermite polynomial of two variables is characterized by the shift of the argument [image: there is no content]. Evidently, for [image: there is no content] we have Equation (66):


[image: there is no content]



(66)




whose solution in the integral form is nothing but a particular case of (64) with [image: there is no content]:


[image: there is no content]



(67)




and involves the action of the heat diffusion operator [image: there is no content] (9).



Example 2.

Let us choose the Gaussian initial function [image: there is no content]. Then, by means of the operational rule 47,


[image: there is no content]



(68)




we immediately get the desired solution:


[image: there is no content]



(69)









Now, let us consider the following equation with the Laguerre derivative LDx, where ν is not necessarily an integer:


(β −LDx)νY(x)=f(x), ν∈Reals.



(70)







Its operational solution is:


Y(x)=(β −LDx)−νf(x)=1Γ(ν)∫0∞e−β ttν−1et LDxf(x)dt.



(71)







The common change of variables [image: there is no content] in such cases transforms the solution of the fractional Laguerre Equation (70) into


Y(x)=(β −LDx)−νf(x)=1Γ(ν)∫−∞∞etνe−β eteet​LDxf(x)dt,



(72)




and in the particular case of [image: there is no content] we obtain the Laplace transforms [image: there is no content] for the Laguerre derivative operator LDx, where the substitution a→LDx has been performed.



Example 3.

For Equation (71) with the initial monomial [image: there is no content]the following particular integral arises:


Y(x)|f(x)=xn=(β −LDx)−νxn=(−1)nn!Γ(ν)∫0∞e−β ttn+ν−1Ln(x/t)dt.



(73)









Suppose the initial function [image: there is no content] is expandable in series of the Laguerre polynomials [image: there is no content]:


[image: there is no content]



(74)







Then with the help of (40), we readily write the solution (71) of Equation (70) in the integral form:


[image: there is no content]



(75)







Example 4.

Let us consider the initial exponential function [image: there is no content]. Then, the usage of the generalized Gleisher operational rule 10,


e−t LDxe−γ x=e−γ x1−γ t/(1−γt ),



(76)




gives the solution:


Y(x)=(β −LDx)−νe−γ x=1Γ(ν)∫0∞e−β ttν−1e−γ x1+γ tdt1+γ t.



(77)









Now, let us consider an ordinary DE like (61), with shifted Laguerre derivative LDx instead of the common derivative [image: there is no content]:


(β2−(LDx+α)2)νZ(x)=f(x).



(78)







Let us choose the initial function for (78) in the form of the particular case of the Bessel–Wright function:


[image: there is no content]



(79)




where


[image: there is no content]



(80)




is the particular case of the Bessel–Wright function [47]. In complete analogy with (63) we readily write the operational integral solution:


Z(x)=(β2 −LDx2)−νW0(−x2,2)=1Γ(ν)∫0∞e−β2 ttν−1et LDx2f(x)dt.



(81)







Now we should compute the action of the heat operator with Laguerre derivative LDx on the initial function [image: there is no content]. With the help of the operational definition of Laguerre polynomials (30) and of the Gleisher operational rule [10],


eLDx2 W0(−x2,2)=W0(−1/(1+4t), 2)/1+4t,



(82)




we obtain the particular integral as follows:


[image: there is no content]



(83)







The operational definitions of the polynomials and relevant operational rules allow writing solutions with ease for other types of equations too. For example, consider the following fractional order DE:


[image: there is no content]



(84)







Usage of the operational rule (63) immediately yields the integral solution for (84):


[image: there is no content]



(85)




which involves the operational exponent action: [image: there is no content], where we denoted the differential operator


D¯x=xd2x+(α+1)dx.



(86)







Consider the initial condition [image: there is no content]. Direct application of the operational definition of the generalized Laguerre polynomials [image: there is no content],


[image: there is no content]



(87)




immediately gives results in the particular integral of the generalized Laguerre polynomials with the exponential power weight:


[image: there is no content]



(88)







Now consider the other initial condition function: [image: there is no content]. To obtain the solution we exploit the generalized form of the Gleisher operational rule 47, which yields the solution


[image: there is no content]



(89)







We have demonstrated that the usage of the inverse derivative, combined with the operational formalism, provides a straightforward and easy way of solving some classes of linear DE. In what follows we will demonstrate how this technique allows solutions of partial differential equations (PDE).




4. Convolution Forms for Solution of DE


In what follows, we will apply the inverse differential operators in order to obtain the convolution forms of solution for Equation (61). The operational approach to the solution of Equation (61) involves the exponential operator technique, the inverse derivative formalism, and integral transforms. In general, for solution of equations with [image: there is no content] operational rule (5) can be applied, where


[image: there is no content]



(90)







We continue with account for (66), (67) and (9), and make use of the action of the heat diffusion operator [image: there is no content] (9) on [image: there is no content] with the help of the following chain rule:


[image: there is no content]



(91)




where y and α are the parameters. This results in the following particular solution for Equation (61), expressed as the integral:


[image: there is no content]



(92)




where [image: there is no content] is the heat operator (9) and [image: there is no content] is the well-known operator of translation:


[image: there is no content]



(93)







The action of the operator [image: there is no content] can be written in the form of the Gaussian integral transform:


[image: there is no content]



(94)







Therefore, apart from the phase factor, the solution (92) of Equation (61) consists of the integrated action of the heat operator [image: there is no content] and in the consequent translation by [image: there is no content] of the initial function [image: there is no content]:


[image: there is no content]



(95)




where the integrand function [image: there is no content] is (94), shifted by [image: there is no content]:


[image: there is no content]



(96)







Example 5.

The example of the Gaussian initial condition [image: there is no content]can be the illustration of the operational solution, described above. Accounting for (68), we directly write the solution of Equation (61), which is in turn a Gaussian:


[image: there is no content]



(97)









Note that from the general form of the solution (92), using the operational definition of the Hermite polynomials (8), we can directly obtain the solution (65) of the DE (61).



For the solution (64) of DE (61) with given initial function [image: there is no content] we have to calculate the action of the exponential differential operator [image: there is no content] in the exponential. This can be performed in a number of different ways. One of them consists in direct application of operational definitions, as we did in the case of the initial monomial [image: there is no content]. However, this is a rare case. The exponential operator of the second-order derivative can be reduced to the exponential of the first-order derivative if we apply the integral presentation for the exponential of a square of an operator [image: there is no content] [54]:


[image: there is no content]



(98)




in our case [image: there is no content]. The above formula then reads as follows:


[image: there is no content]



(99)







Accounting for the action of the translation operator [image: there is no content], we obtain the following particular integral (62) for the DE on non-integer order (61):


[image: there is no content]



(100)







Now, upon subject to the change of variables


[image: there is no content]



(101)




we end up with the following form of the particular solution for Equation (61):


[image: there is no content]



(102)







Several convolution forms are possible for the solution of (61). Indeed, for an arbitrary function [image: there is no content] in the r.h.s. of (61) and the real values of α and [image: there is no content] we can involve the generating function for Hermite polynomials (10) to disentangle two integrals in (102):


[image: there is no content]



(103)







It follows from Equation (103) that the solution of DE (61) can be written in the form of series


[image: there is no content]



(104)




involving the convolution [image: there is no content] with the power kernel:


[image: there is no content]



(105)







The respective coefficients in the series depend on the order of the equation, which can be a non-integer, and on the constants α, β as follows:


[image: there is no content]



(106)







Other convolution forms with different kernels are possible. Among them the Gaussian frequency kernel form is, perhaps, the most compact. Indeed, the integral form (102) of the solution of DE (61) can be viewed as the integral of the following convolution:


[image: there is no content]



(107)




where [image: there is no content] has the kernel


[image: there is no content]



(108)







The above expression involves the convolution with the Gauss frequency function kernel. Furthermore, the remaining integral can be taken, and it gives the Bessel function of the second kind [image: there is no content]:


[image: there is no content]



(109)







Note that for the integer order of the equation, [image: there is no content], we have semi-integer index of the Bessel function of the second kind, [image: there is no content], the latter easily expressed in elementary functions, for example: [image: there is no content], etc.



Thus, we have obtained the particular solution [image: there is no content] for DE (61) in the form of the integral, which appears in the form of the convolution with the initial function [image: there is no content]:


[image: there is no content]



(110)




with the kernel, containing the Bessel function of the second kind [image: there is no content], the exponential, and the n power of [image: there is no content]:


[image: there is no content]



(111)







Finally can we write the compact convolution form of the solution of DE (61) as follows:


[image: there is no content]



(112)







So far we have demonstrated that the usage of the inverse derivative and of the inverse differential operators constitutes a straightforward and easy way to solve some classes of linear DE. In what follows we will apply this concept to solve more complicated problems, formulated in terms of PDE.




5. Operational Solution for Evolution-Type Partial Differential Equations


The technique of the inverse differential and exponential operators is useful for finding solutions to a broad range of mathematical and physical problems. In what follows we shall demonstrate the solution of the evolution-type DE by the operational approach. Let us consider the Schrödinger equation for an electric charge in a constant electric field in imaginary time. It effectively corresponds to the case when the charge diffuses under a potential barrier in the electric field, so that the charge energy is lower than the height of the barrier. This process is governed by the Schrödinger equation upon the t → iτ, β → −β change:


[image: there is no content]



(113)




which is the common heat equation [image: there is no content] with the linear term [image: there is no content] in the r.h.s. The solution of DE (113) can be obtained operationally:


F(x,t)=eΦ(x,t;β) Θ^S^f(x)=eΦ(x,t;β)f(x+β t2,t),Φ(x,t;β)=13αt(βt)2+βtx,



(114)




and consists in the transform of the initial function [image: there is no content] by the operators [image: there is no content] and [image: there is no content]. Note that, although the solution for the Schrödinger equation in the electric field in real and in imaginary time, i.e., over and under the barrier, has the same structure (114), there is a fundamental difference between them. Indeed, the [image: there is no content] function for a particle in quantum mechanics is the amplitude of the probability of finding it at point x at moment t: [image: there is no content]. For the charge over the barrier, the solution [image: there is no content] of the Schrödinger equation is complex due to the complex phase [image: there is no content]; this does not trouble the probability [image: there is no content] over the barrier for [image: there is no content], which regularly converges.



Example 6.

Let us consider the initial polynomial [image: there is no content]in the context of the Fourier heat conduction of DE (113). The operational definition of the Hermite polynomials (8) gives [image: there is no content], and the operator [image: there is no content]gives the shift: [image: there is no content]. The solution immediately appears in terms of the sum of the Hermite polynomials:


[image: there is no content]



(115)









Example 7.

Now let us choose the initial condition [image: there is no content]. This function for γ < 0 represents a pulse, the shape of which depends on the values of k and γ, and varies from a sudden surge to a flat, smooth spatial wave. This choice of the initial function allows for modeling heat pulses for experimental tests (see, for example, [55]). Now applying the operational rule (15), where, in our case [image: there is no content], and the shift by the translation operator [image: there is no content], we obtain the solution in the form of the Hermite polynomials


[image: there is no content]



(116)




with the common phase Φ written in the solution (114) and [image: there is no content]. For [image: there is no content]it immediately returns the result (115). For pure Fourier heat conduction [image: there is no content]and the solution further simplifies:


[image: there is no content]



(117)









It is easy to follow its evolution in time: for [image: there is no content] the coordinate dependence fades out: [image: there is no content], and the time dependence prevails. For relatively short times of the evolution of the initial heat pulse [image: there is no content], such that [image: there is no content], the solution is approximated by [image: there is no content] and for very short times [image: there is no content] the Hermite polynomials tend to [image: there is no content], which is in perfect agreement with our initial condition [image: there is no content].



Deeper consideration of the above topic is beyond the scope of the present paper. In forthcoming publications we will apply the operational method to explore and solve relativistic heat equations and other non-local extensions of the heat conduction.



Let us consider the following modification of the common Black–Scholes differential equation with the Laguerre derivative (see (30) and (36)) and the initial function [image: there is no content]:


[image: there is no content]



(118)




where ρ, λ, and μ are constants. Equation (118) is in fact the general form of the equation, which unifies the Laguerre heat equation and the matter diffusion equation with Laguerre derivative, as previously explored in [10,37]. In order to solve Equation (118), we employ the operational method. As usually in Black–Scholes DE, we distinguish the perfect square of the derivative, in this case of LDx=∂xx ∂x. Then the solution takes the form of the exponential


A(x,t)=exp{ρ t((LDL+λ/2)2−ε )}​g(x), ε=μ+(λ/2)2.



(119)







With the help of the operational identity (98), we reduce [image: there is no content] to the first-order Laguerre derivative in the exponential and thus the following solution for [image: there is no content] arises:


A(x,t)=exp(−εα2)π∫−∞∞exp(−σ2−σ αλ−2σα L​Dx) g (x)dσ,α=α(t)=ρ t.



(120)







The above integral form of the solution, provided the integral converges, contains the exponential Laguerre derivative, which acts on the initial function: [image: there is no content].



Example 8.

Let us consider the example of the polynomial initial function [image: there is no content]. Following the operational definition of the Laguerre polynomials (30), we directly write the solution for DE (118):


[image: there is no content]



(121)









Consequent integration results in the finite sum, involving gamma function [image: there is no content] and hypergeometric function 1F1:


A(x,t)|g(x)=∑ncnxn=e−α2μπ∑n(−1)n(n!)2∑r=0n(−x)r(2α)n−r(n−r)!(r!)2×(αλ2(ei(n−r)π−1) I+12(ei(n−r)π+1) J), I=Γ(1+n−r2)1F1(1−(n−r)2,32,−(αλ2)2), J=Γ(1+n−r2)1F1(−n−r2,12,−(αλ2)2). 



(122)







Now suppose the initial function [image: there is no content] can be expanded in series of the Laguerre polynomials: [image: there is no content]. The operational relationships (40) and (31) in this case immediately propose the solution of DE (118) in the following form:


[image: there is no content]



(123)







Now let us consider the general case of the initial function [image: there is no content]. Then the solution of DE (118), [image: there is no content] can be obtained in the following steps. With the help of the operational definitions (36) and with the inverse derivative Formula (1), we write the solution in terms of the operator of the inverse derivative [image: there is no content] and of the function [image: there is no content]:


[image: there is no content]



(124)




where [image: there is no content] is the image function, determined by the integral: [image: there is no content]. The exponential of the Laguerre derivative, acting on the initial function, yields the solution of the Laguerre diffusion equation 10:


[image: there is no content]



(125)







Hence, by applying the exponential differential operator to the function [image: there is no content]: [image: there is no content], we obtain the solution of the Laguerre diffusion equation:


[image: there is no content]



(126)







With account for the above relation (126) the solution of DE (118) becomes:


[image: there is no content]



(127)






[image: there is no content]



(128)







Example 9.

Let us consider the particular case of the Bessel–Wright function [47] [image: there is no content], [image: there is no content], for [image: there is no content]as the initial function: [image: there is no content]. Its image is [image: there is no content]. The operational identity (98) and the function (128) together yield, in accordance with the previously computed in [10], the result:


[image: there is no content]



(129)




where [image: there is no content]is the particular case of the Bessel–Tricomi function [56]: [image: there is no content], [image: there is no content]. A relationship with the Bessel functions exists: [image: there is no content]. Finally, we have obtained the solution of DE (118) with the initial condition [image: there is no content]in the form of the integral (127) of the exponentially weighted function (129).






6. Results


We have obtained solutions for some ordinary DE of non-integer order with shifted derivatives. In particular, we derived the integral form of the particular solution [image: there is no content] for real values of ν. The integrand involves the operators of heat propagation [image: there is no content] and translation [image: there is no content], which act on the function [image: there is no content]. Moreover, the convolution form of these solutions [image: there is no content] and the integrals of other convolutions with several kernels different from each other are obtained. The comprehensive solution with the kernel, involving the Bessel function of the second kind with power-exponential weight, is obtained. Other integral forms of the solution with the convolutions with the Gaussian frequency kernel and with the monomial kernel are also obtained. We considered the examples of the Gaussian distribution [image: there is no content] and of the monomial [image: there is no content] and found explicit solutions for them in terms of integrals and series of Hermite polynomials. We operationally solved the DE with Laguerre derivatives: (x ∂2x+(α+1)∂x)νF(x)=f(x) and demonstrated the examples of solutions for the functions [image: there is no content], [image: there is no content] and for the Bessel–Wright function [image: there is no content]. The obtained operational solutions are expressed in terms of the integrals of generalized Laguerre polynomials and Bessel functions.



The linear evolution-type PDEs were solved by the operational technique. In particular, the Black–Scholes equation with the Laguerre derivative L​Dx=∂xx ∂x was solved operationally. The example of the initial polynomial was considered. By using the operational definitions for Hermite polynomials we obtained explicit solutions in the form of the polynomials of [image: there is no content] with the coefficients, given by [image: there is no content] and 1F1 functions. The solution of the Black–Scholes type equation with Laguerre derivative LDx for the Bessel–Wright function [image: there is no content] is obtained in the integral form, involving Bessel–Tricomi function [image: there is no content]. We have obtained the operational solution of a Fourier-type heat equation with an additional term, describing the heat exchange with the environment, for the initial distribution [image: there is no content], which describes a heat pulse for γ < 0. We also obtained the solution of the Schrödinger equation for a charge in electric field in real and in imaginary time, i.e., over and under the potential barrier, and demonstrated that in real time, i.e. under the barrier, the solution is purely real, contrary to that over the barrier. Thus [image: there is no content] diverges for [image: there is no content] in the case of the real solution and [image: there is no content], but converges otherwise, as a square of the amplitude [image: there is no content] of the probability function should behave (see also [57]).




7. Conclusions


In the present work we advocate the operational approach for solution of linear DE and the use of inverse differential operators, which allow direct and straightforward finding of solutions. The latter include the action of the operator of heat conduction and the operator of shift and dilatation. The operational approach involves operational definitions for Hermite and Laguerre orthogonal polynomials. In this way, we avoid cumbersome calculations and directly obtain the results of the action of proper exponential differential operators on the initial functions. If the DE contains the Laguerre derivatives, the commutation relationship between the inverse derivative operator and the Laguerre derivative operator helps in solving DE. Complemented by the usage of the integral transforms where needed, the operational technique yielded solutions of relatively complicated DE, such as Black–Scholes-type DE with Laguerre derivative, etc. Thus, our research demonstrates that the operational approach for solution of linear DEs is advantageous for its ease. The solutions are derived directly based on the operational definitions and on commutation relationships. Operational study of more complicated equations, describing heat propagation accounting for wave and ballistic heat transfer and, for equations, modeling other physical processes, is possible. It will be performed in forthcoming publications.
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