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Abstract:



The classical Cuntz semigroup has an important role in the study of C*-algebras, being one of the main invariants used to classify recalcitrant C*-algebras up to isomorphism. We consider C*-algebras that have Hopf algebra structure, and find additional structure in their Cuntz semigroups. We show that in many cases, isomorphisms of Cuntz semigroups that respect this additional structure can be lifted to Hopf algebra (bi)isomorphisms, up to a possible flip of the co-product. This shows that the Cuntz semigroup provides an interesting invariant of C*-algebraic quantum groups.
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1. Introduction


In this paper, we address two problems, the second depending on the first. The first problem arises as follows: in the algebraic setting, there is a product operation on modules over a Hopf algebra, as is discussed further at the end of Section 2, or in e.g., [1]. However, in the C*-algebraic quantum group setting, there are reasons, coming from the classification program for C*-algebras, motivating us to seek a Hilbert module version of this construction. It is desirable to allow some equivalence relations on the set of Hilbert modules, and naturally the equivalence relation should be compatible with the product operation. Drawing a parallel with the C*-algebraic Cuntz semigroup motivates the use of a coarser equivalence relation on Hilbert modules than the isomorphism relation that we first consider. These subtleties, as well as a desire to take advantage of known results about Cuntz semigroups, lead us to study the implied equivalence relation(s) on generators of Hilbert modules. We obtain an invariant for C*-algebraic quantum groups, generalizing the Cuntz semigroup for C*-algebras, that we term the Cuntz semiring. For C*-algebras, it is often true that if the algebras belong to the same class in a sense that we discuss later, then isomorphism at the level of Cuntz semigroups implies isomorphism at the level of C*-algebras. The second problem we study is to decide when a similar statement holds at the level of Cuntz semirings and C*-algebraic quantum groups. Ultimately, and perhaps inevitably, we will have to restrict our study to the Kac case in order to obtain results on the second problem, namely obtaining Hopf algebra isomorphism from Cuntz semigroup isomorphisms. This is because Cuntz semirings seem to have good stability properties under deformation, but in general, without restrictive conditions, C*-algebraic quantum groups do not.



The Elliott program [2] is to classify C*-algebras using K-theoretical invariants. Recently, in this program, a popular classifying functor on appropriate classes of C*-algebras has been the Cuntz semigroup. The partial solution to the second of the above problems thus fits into the framework of the Elliott program, generalized to the setting of C*-algebraic quantum groups, see [1,3,4] for related results. Our main result is probably Theorem 3 and its corollaries, such as Corollary 7 and Theorem 5.



There are two Cuntz semigroups that are commonly used, denoted here by Cu(A) and [image: there is no content] respectively. The first has better functorial properties; being, for example, continuous with respect to inductive limits, but the second was historically prior. The definition of the Cuntz semigroup, Cu(A), of a C*-algebra, [image: there is no content] can be given, in the Hilbert module picture, as follows: first, consider the set of countably generated Hilbert modules over the algebra, endowed with direct sum as the addition operation. There exists a certain order relation on such modules, related to, but more complicated than inclusion, although reducing to inclusion in some cases. Antisymmetrizing the order relation defines an equivalence relation on Hilbert modules, and the quotient of the set of countably generated Hilbert modules by this equivalence relation is the Hilbert module picture of the Cuntz semigroup, Cu(A). The semigroup [image: there is no content] is the subsemigroup of Cu(A) consisting of elements contained in [image: there is no content] See [5].



The Cuntz semigroup has become a standard technical tool for studying C*-algebras. We consider the case of C*-algebras with Hopf algebra structure, and, in Section 2, after developing some preliminaries, we define a convolution product on the Cuntz semigroup of a C*-algebraic quantum group, in the case of stable rank one, and establish a few of its properties. We find that the product has good behaviour in general, and that products with a fixed element are Cuntz semigroup morphisms. We generalize to higher stable rank in Section 3, where we furthermore relate our results to the operator picture of the Cuntz semigroup. Our main result at this point is that there is a (semi)ring structure on the Cuntz semigroup of a compact-type C*-algebraic quantum group: the main issue having been compatibility with the equivalence relations that define the Cuntz semigroup.



We now give an outline of what is covered in the various sections of the paper. In Section 2, we obtain a kind of Mazur–Ulam lemma, extended to the case of Hilbert modules. The classic Mazur–Ulam theorem, see [6], states that a surjective isometry of normed spaces is necessarily affine (or linear, depending on the exact form of the theorem). Our lemma extends the theorem slightly to the case of Hilbert modules, in such a way that the additional structure of a Hilbert module is taken into account. Our result gives a condition for a mapping of Hilbert modules that is an isometry in a certain weak sense to be in fact a unitary operator at the Hilbert module level. This technique is used to show that the product we define respects the complicated and delicate equivalence relations of the Cuntz semigroup. There is some relationship between the problem of showing that equivalence classes are respected and the problem of finding Hilbert module connections [7], and this is discussed briefly at the end of Section 2. In this section, there is also an example of the product, namely, the finite-dimensional case. It seems to be useful, and perhaps necessary, to have a product defined by a form of convolution, since this allows the Fourier transform—see [8] for information about the Fourier transform—to be brought to bear in proving Elliott-type results. We study the relationship of the product with convolution at the start of Section 4 and then develop the double dual picture of the Cuntz semigroup: this will be technically useful and is perhaps a timely contribution since double dual techniques are currently fashionable in the classification program for C*-algebras. The main result of Section 4 is that we obtain, in embryonic form, isomorphism results for C*-algebraic quantum groups. The overall main results are in Section 5, which also briefly considers the case of K-theory. The significance of these isomorphism results lies, first of all, in the implication that a relatively small object (the Cuntz semiring) completely characterizes a quantum group (at least in a given class); and secondly, in parallel with the C*-algebraic Elliott classification program. Most of the results of this classification program are obtained from theorems that show that within certain classes of C*-algebra, maps at the level of K-theory or the Cuntz semigroup can be lifted to C*-algebraic maps. It is quite often the case in the C*-algebraic setting that the K-theory groups must be regarded as being augumented by some additional information. The results that we obtain for C*-algebraic quantum groups are of precisely this sort. We have previously considered classifying C*-algebraic quantum groups by K-theory [1,4], but in those results, we considered the K-theory of the discrete dual, and made extensive use of discreteness, or even finiteness, in the proofs. In general, it seems most natural to classify using an invariant that lives on the compact-type side of the given C*-algebraic quantum group, thus we focus on the Cuntz semigroup and K-theory group of a compact-type C*-algebraic quantum group. The Cuntz semigroup is generally thought, in the context of the classification program for C*-algebras, to be the appropriate classifying functor for nonsimple C*-algebras. A C*-algebraic quantum group is nonsimple as a C*-algebra, therefore, a classification based on the Cuntz semigroup should ultimately have greater scope, in theory, than a classification based on K-theory. Nevertheless, we do briefly address the case of K-theory in the last section.



A Hopf algebra is a bi-algebra with an antipode map [image: there is no content] See [9,10] for information on Hopf algebras. Compact quantum groups were defined first by Woronowicz [11]. Multiplicative unitaries were introduced by Baaj and Skandalis in [12] (Chapter 4). A compact-type C*-algebraic quantum group is unital as an algebra, and has structure maps that are compatible with the C*-algebraic structure. Each compact-type C*-algebraic quantum group carries with it an algebraic quantum group as a dense subset, and an enveloping Hopf–von Neumann algebra. See [13] for a discussion. The algebraic elements of a compact-type C*-algebraic quantum group A will be denoted [image: there is no content] and the enveloping Hopf–von Neumann algebra by [image: there is no content] The dual object of a compact-type C*-algebraic quantum group is both a discrete multiplier Hopf algebra and a C*-algebra, [image: there is no content] The dual is called a discrete-type C*-algebraic quantum group. The condition of stable rank 1 is sometimes used below: being separable and of stable rank one means that there exists, at the level of normed algebras, a countable dense set of invertible elements. We assume the usual density properties, sometimes called cancellation properties, [image: there is no content] and [image: there is no content] We generally assume nuclearity, which is a mild technical condition, equivalent to co-amenability, that makes states on the Cuntz semigroup easier to handle and also improves the technical behavior of tensor products. See [14] for the equivalence of co-amenability and nuclearity, also observed by É. Blanchard. Nuclearity allows constructing faithful Haar states, and we assume that our C*-algebraic quantum groups have faithful Haar states. Our notation denotes co-products by [image: there is no content] antipodes by [image: there is no content] pairings by β(·,·), Haar states by [image: there is no content] and co-units by [image: there is no content] We denote the flip, on a tensor product, by σ.




2. The Gelfand–Naimark–Segal construction, and some useful Modules and Maps


There are two main techniques used in this section. The first is to observe that the inner product module [image: there is no content] where [image: there is no content] is a suitably chosen Hilbert space and A is a compact-type C*-algebraic quantum group, can be embedded in a natural way into [image: there is no content] and that furthermore a multiplicative unitary can be chosen in such a way that it has certain algebraic properties when restricted to the copy of [image: there is no content] inside [image: there is no content] This amounts to a linearized version of well-known properties of multiplicative unitaries. The second is an automatic continuity result for Hilbert space mappings that have suitable algebraic properties when restricted to a Hilbert module embedded inside a given Hilbert space. By the term automatic continuity, we mean that a mapping that is continuous with respect to one topology may be shown to be continuous in a stronger topology in the presence of suitable algebraic properties.



We briefly recall some relevant facts about Hilbert modules from [15], although our notation is as in [5], which is the foundational paper on Cuntz semigroups in the Hilbert module picture. An inner product module over a C*-algebra A is a right A-module E equipped with an A-valued mapping [image: there is no content] that is usually denoted [image: there is no content]. This map, usually called the inner product, is A-sesquilinear, meaning A-linear in the second entry, following [15] (p. 2). It must also be non-degenerate, in the sense that [image: there is no content] is zero if and only if x is zero, and positive-definite. Note that we are not allowing the inner product to be semi-definite. There is a natural norm obtained from the C*-norm of A, namely ∥x∥E:=∥x,x∥1/2. If the module is complete with respect to the norm, we have a (right) Hilbert A-module (and it is straightforward to complete an inner product module).



Definition 1.

Let [image: there is no content] and [image: there is no content] be unital C*-algebras with faithful states, denoted [image: there is no content] Let [image: there is no content] be a [image: there is no content]-linear map of countably generated inner product (Hilbert) A-modules [image: there is no content] and [image: there is no content] We say that V is a 2-isometric map with respect to [image: there is no content] and [image: there is no content] if [image: there is no content]





As defined above, the 2-isometric property is really just a new term for the familiar property of extending to an unitary or isometry on an enveloping Hilbert space: it seems better to reserve the term unitary for Hilbert module unitaries, which are A-linear. A 2-isometric map need not be an A-module map.



Multiplicative unitaries were introduced by Baaj and Skandalis in [12] (Chapter 4), see also [16]: given a compact quantum group A with coproduct [image: there is no content] and Haar state [image: there is no content] which is faithful on A (i.e., A is the reduced form of the compact quantum group), let [image: there is no content] be the Hilbert space [image: there is no content] let [image: there is no content] be [image: there is no content] Then, [image: there is no content] is dense in [image: there is no content] and one defines a multiplicative unitary [image: there is no content] by [image: there is no content] Another multiplicative unitary [image: there is no content] satisfying [image: there is no content] was introduced in the locally compact case by Kustermans and Vaes [17], see also the notes by Maes and van Daele [18]. The [image: there is no content]-linear map [image: there is no content] that will be constructed in Lemma 1 below could in fact be defined as: [image: there is no content] where W is the above multiplicative unitary, which is in [image: there is no content] (We should mention that although [image: there is no content] and [image: there is no content] are right Hilbert A-modules, this map V is not intended to be A-linear.)



Thus, Lemma 1 can be eventually deduced from the locally compact case, for example, starting from [17] (Proposition 3.17). We do, however, present a self-contained C*-algebraic proof below, for the reader’s convenience.



As a C*-algebraic preliminary, we remark that if A is a compact-type C*-algebraic quantum group with a faithful (Haar) state, assumed nuclear at the C*-algebraic level, we may construct the GNS Hilbert space [image: there is no content] associated with it, sometimes called a rigged Hilbert space. At the level of normed vector spaces, this construction embeds [image: there is no content] in [image: there is no content] which is itself embedded in [image: there is no content] The tensor product [image: there is no content] has a natural A-module and inner product module structure; an A-valued inner product is constructed by taking the (exterior) tensor product of inner products on A and [image: there is no content]. The fact that A and [image: there is no content] commute simplifies the proof of positive-definiteness; see also [15] (pp. 34–35).



Lemma 1.

Let A be a separable, nuclear, and compact-type C*-algebraic quantum group, with faithful right Haar state f. There exists a [image: there is no content]-linear map [image: there is no content] such that V(Δ(a)x)=aV(x), for all [image: there is no content] and [image: there is no content] This map is a 2-isometry with respect to the faithful states [image: there is no content] on [image: there is no content] as a Hilbert module over itself, and f on the inner product A-module [image: there is no content]





Proof. 

Let us first define the inverse map [image: there is no content] The domain space for the map is [image: there is no content] a Hilbert space with coefficients in [image: there is no content] regarded as infinite sequences [image: there is no content] of elements of [image: there is no content] Since A has a faithful Haar state, we may embed A in a Hilbert space by the GNS construction. Taking, then, a countable dense subset consisting of algebraic elements of A and applying the Gram–Schmidt process at the Hilbert space level, we obtain a countable basis [image: there is no content] for the Hilbert space. Since these elements [image: there is no content] are still (algebraic) elements of A, we then define a possibly unbounded map T by [image: there is no content] where the sum on the right is required to converge in norm. It is clear that the domain of this map is an A-module under the diagonal action of A and that [image: there is no content] The range is norm-dense in [image: there is no content] because of the density property [image: there is no content]



We now show T is continuous in an appropriate sense, by showing that it has the 2-isometric property. Let the sequence [image: there is no content] denote an element in [image: there is no content] We obtain, by the properties of the Haar state and the fact that the coproduct is a *-homomorphism:


(Id⊗f)T((ai)),T((aj))=(Id⊗f)∑ij(gi*⊗1)Δ(ai*aj)(gj⊗1)=∑ijf(ai*aj)gi*gj.



(1)







Applying f one more time, to both sides, we have:


[image: there is no content]











It follows from the basis property of the [image: there is no content] that the right hand side simplifies to [image: there is no content] which is evidently equal to [image: there is no content] This establishes the 2-isometric property. Denote the inverse map for T by [image: there is no content]



Extending T and V to (multiplicative) unitaries on [image: there is no content] shows that V is continuous with respect to the Hilbert space norm topology on [image: there is no content] Consider a sequence [image: there is no content] of algebraic elements of [image: there is no content] that converges in the (minimal) C*-tensor product norm on [image: there is no content] to some element of [image: there is no content] Thus, [image: there is no content] converges in this topology to some element L of [image: there is no content] We wish to show that this element L is actually in [image: there is no content] Thus we must compute the Hilbert space coefficients of L with respect to the second factor of this tensor product—in other words, apply to L the slice maps [image: there is no content] where the [image: there is no content] are the basis of [image: there is no content] that we constructed earlier.



We first show that the [image: there is no content] are algebraic elements, in [image: there is no content] When applied to an algebraic element of [image: there is no content] the map T takes [image: there is no content] to [image: there is no content] By [19] (Proposition 2.1), applied in [image: there is no content] it follows that this map has the algebraic inverse [image: there is no content] where r is the bi-linear map that takes a simple tensor [image: there is no content] to the product [image: there is no content] and σ is the tensor flip. Since the [image: there is no content] are algebraic elements of [image: there is no content], it follows that the sequence [image: there is no content] consists of algebraic elements of [image: there is no content]



We are now in a position to compute the required coefficients. We recall that the [image: there is no content] are algebraic elements of [image: there is no content] Applying the slice map [image: there is no content] to [image: there is no content] we have


Id⊗f(gj*·)V=(f(gj*r(·)⊗Id)(Id⊗S⊗Id)(Id⊗Δ),








where the linear functional [image: there is no content] can also be written, using properties of the pairing [image: there is no content] as


Gj:b⊗c↦β(b⊗c,(Id⊗S^)∘σ∘Δ(F(gj*))),



(2)




where [image: there is no content] is the Fourier transform of the element [image: there is no content] and σ is the tensor product flip. Equation (2) provides, for each fixed basis element [image: there is no content] a bounded linear functional, [image: there is no content] on the whole of the C*-algebraic tensor product [image: there is no content] The boundedness of [image: there is no content] and the fact that the sequence [image: there is no content] was chosen to converge in the C*-norm implies that


(Id⊗f(gj*·))Vxi=(Gj(·)⊗Id)(Id⊗Δ)xi,



(3)




converges, with respect to [image: there is no content] in the C*-norm on A. Thus, the limit is an element of the C*-algebra A. This shows that the Hilbert space coefficients of L are in [image: there is no content] and therefore that L is in [image: there is no content] This means that V maps [image: there is no content] to [image: there is no content] Since V is inverse to [image: there is no content] and T is a 2-isometry with the property [image: there is no content] it follows that V is a 2-isometry with the property [image: there is no content] An alternative argument to show that L is in [image: there is no content], using metrics rather than coefficients, is, following [20] (pp. 182–183): since we have assumed that A is separable, the weak topology of [image: there is no content] is metrizable on bounded subsets. The sequence [image: there is no content] can be supposed to be in the unit ball of the Hilbert space [image: there is no content] and then Equation (3) implies that [image: there is no content] converges to L in [image: there is no content] with the C*-norm on the first factor and the metric [image: there is no content] on the second factor. ☐





An operator V having the property [image: there is no content] will be referred to as having the twisted-linear property. The twisted-linear property implies ordinary linearity over [image: there is no content] because the coproduct [image: there is no content] is a unital homomorphism and maps [image: there is no content] to [image: there is no content] for all complex scalars [image: there is no content] The 2-isometry V is, from the C*-algebraic point of view, a (restriction of an) unitary, but when using the twisted-linear property, it seems more natural to denote the inverse by [image: there is no content] instead of [image: there is no content]



The usual GNS construction provides an inner product module. The completion of [image: there is no content] in the norm provided by the inner product is (unitarily equivalent to) the standard Hilbert module, denoted [image: there is no content] Some authors, such as Lance, denote the standard Hilbert module by [image: there is no content] Thus, the above operator V maps [image: there is no content] into [image: there is no content] The “compact” operators [image: there is no content] are isomorphic to [image: there is no content] and the adjointable bounded operators [image: there is no content] are isomorphic to the multiplier algebra [image: there is no content] See [15,21].



We now take the first step towards defining a product on the Cuntz semigroup:



Definition 2.

If [image: there is no content] and [image: there is no content] are (right) Hilbert sub-modules of A, we denote by M1□M2 the (right) Hilbert sub-module of [image: there is no content] obtained by closing [image: there is no content] in the Hilbert module norm on [image: there is no content].





The main issue is to show that this product operation is well-behaved at the level of Cuntz equivalence classes of Hilbert modules. It will follow that the Cuntz semigroup of A is a (semi)ring.



The 2-isometry property can be strengthened in the case of A-module maps:



Proposition 1.

Suppose A is a compact-type C*-algebraic quantum group with faithful Haar state f and that [image: there is no content] and [image: there is no content] are inner product modules over [image: there is no content] Suppose that [image: there is no content] is an A-module map that is 2-isometric with respect to [image: there is no content] The map V is then isometric with respect to the norm on the inner product module.





Proof. 

We claim that if y is a positive element of [image: there is no content] then the C*-norm of y is given by the formula: [image: there is no content] where the supremum is over the nonzero elements b in [image: there is no content] and f is the given faithful state. From the A-linearity of V and the hypotheses, we will then have that [image: there is no content] Dividing the left side and the right side of the above by [image: there is no content] and then applying the claim, we have that [image: there is no content] from which it follows that [image: there is no content] In other words, V is isometric with respect to the usual norms on [image: there is no content] and [image: there is no content] as was to be shown. This argument uses the completeness of the algebra, A, but does not require the module, [image: there is no content] to be complete. Thus, the conclusion holds in inner product modules as well as in Hilbert modules.



The claim remains to be established. Given a positive element [image: there is no content], we have [image: there is no content] where the supremum over nonzero σ-weakly continuous positive linear functionals h and [image: there is no content] denotes the usual operator norm of a linear functional. By Sakai’s quadratic Radon–Nicodým theorem [22]—see also [23] (Corollary 1.6 and Theorem 2.6)—it follows that linear functionals of the form [image: there is no content] with b coming from the algebra are dense within the linear functionals in our class. (This is well-known, see, e.g., van Daele’s theory of multiplier Hopf algebras [19].) We thus have that [image: there is no content] where the norm in the denominator is the usual operator norm. The operator norm of a positive linear functional is equal to the value of the functional at [image: there is no content] so that [image: there is no content] ☐





Following [24] (Definition 3.2), two Hilbert A-modules are said to be isomorphic as Hilbert C*-modules if and only if there exists a linear bijective mapping F of one onto the other such that [image: there is no content] and [image: there is no content]. This form of isomorphism is well-known to be equivalent to several other slightly different forms of isomorphism, and thus we can push the result of the last proposition further. The next Theorem is a straightforward corollary of the last proposition, and can be seen as a kind of Mazur–Ulam theorem [6,25] for Hilbert modules. It gives conditions under which a mapping that is an isometry in a certain weak sense is in fact a unitary from one Hilbert module to another: unlike the classical Mazur–Ulam theorem, we definitely need to assume A-linearity.



Theorem 1.

Let [image: there is no content] be a surjective A-linear map between Hilbert A-modules, where A is a C*-algebra with faithful state, [image: there is no content] Then, if the map has any one of the following four properties, it has all of them:

	1.

	
F is a unitary element of the bounded adjointable operators [image: there is no content],




	2.

	
F is a Hilbert module isomorphism,




	3.

	
F is an isometry with respect to the norms on [image: there is no content] and [image: there is no content] and




	4.

	
F has the property [image: there is no content] where f is the given faithful state.











Proof. 

It is clear that the first property implies all the other properties. That the second property implies the first means showing that a mapping providing an isomorphism of Hilbert A-modules is automatically adjointable. This is shown in [26] (Theorem 1). See also the more recent reference [15] (Theorem 3.5.) For the proof that the third property implies the second, we use a result of Blecher’s [27] (Theorem 3.2), re-interpreted somewhat [24] (Proposition 3.3), which shows that a surjective A-linear Banach module map F of Hilbert A-modules that has the properties [image: there is no content] and [image: there is no content] is automatically an isomorphism of Hilbert modules. That the third property is implied by the fourth is Proposition 1. ☐





The following Proposition collects some known results, valid in the case of stable rank 1:



Proposition 2.

Let A be a separable C*-algebra of stable rank 1. Then,

	1.

	
The order relation in the Cuntz semigroup is an inclusion of Hilbert modules, and




	2.

	
The equivalence relation in the Cuntz semigroup is Hilbert module isomorphism.




	3.

	
Every element of Cu(A) is the supremum of a sequence of elements from [image: there is no content]




	4.

	
Every increasing sequence of elements of Cu(A) has a supremum in Cu(A), and




	5.

	
At the level of ordered monoids, Cu(A) is the completion of [image: there is no content]











Proof. 

Theorem 5.1 and Lemma 2.10 from [28] show that in the stable rank 1 case, Cu(A) is the completion of [image: there is no content] Definition 3.1. iii of [28] then gives that every element of Cu(A) is the supremum of a sequence of elements from [image: there is no content] That every increasing sequence of elements of Cu(A) has a supremum is Theorem 1 in [5], which incidently does not assume stable rank 1. Theorem 3 in [5] gives the order relation and equivalence relation in the stable rank 1 case. ☐





Theorem 2.

In a compact-type C*-algebraic quantum group A that is separable, nuclear, and of stable rank 1, if [image: there is no content][image: there is no content] and [image: there is no content] are Hilbert sub-modules of A, and [image: there is no content] is equivalent in the Cuntz semigroup to [image: there is no content] then M1□M3 is equivalent in the Cuntz semigroup to M2□M3.





Proof. 

The equivalence relation on the Cuntz semigroup can be taken to be, in the special case of stable rank 1, simply isomorphism classes of Hilbert modules, and the order relation to be inclusion of Hilbert modules. We consider [image: there is no content] which is an inner product sub-module of [image: there is no content], and [image: there is no content] an inner product sub-module of [image: there is no content] We have, from the hypothesis, that [image: there is no content] is isomorphic as a Hilbert [image: there is no content]-module to [image: there is no content] Denoting this isomorphism [image: there is no content] we compose with the twisted-linear maps [image: there is no content] and V of Lemma 1, obtaining [image: there is no content]



Summarizing these considerations in a diagram, we have:


M1⊗M2←FM1⊗M3V↓↓VV(M1⊗M2)⇠GV(M1⊗M3)



(4)




where the solid arrows are all 2-isometric maps. Thus, the map G defined by the dotted arrow above is a 2-isometric map. It is an A-module map by the twisted-linear property of [image: there is no content] By Proposition 1, this implies that the map G is isometric with respect to the norm on the inner product modules, which is the norm coming from the enveloping Hilbert module. If we take the closure of [image: there is no content] and [image: there is no content] with respect to the Hilbert module norm on [image: there is no content] the fact that G is an isometry in this norm allows us to extend G by continuity to an isometry of the closures. We now have an isometry [image: there is no content] Theorem 1 then gives a Hilbert module isomorphism of these Hilbert A-modules. ☐





Corollary 1.

The operation □ gives an associative product on the Cuntz semigroup of a separable compact C*-algebraic quantum group with faithful Haar state and stable rank 1.





Proof. 

Theorem 2 shows that the operation □ is well-defined at the level of the Cuntz semigroup, at least for Hilbert C*-modules that are sub-modules of [image: there is no content] In the proof of Theorem 2, we replace A by a matrix algebra over [image: there is no content] and V by [image: there is no content] obtaining a product on [image: there is no content] (We consider [image: there is no content], and then flip the two middle factors of the first tensor product, obtaining a map from [image: there is no content] to [image: there is no content]) We note that the product operation respects inclusion, in each variable separately. Extension of the product to Cu(A) thus follows by passage to order-completions, in each variable separately. In more detail, suppose that x is an element of [image: there is no content] and y is an element of Cu(A). Proposition 2.iii gives an increasing sequence [image: there is no content] of elements of [image: there is no content] that has supremum [image: there is no content] Then, x□yn is an increasing sequence of elements of [image: there is no content] and the supremum of this sequence, which exists by Proposition 2.iv, defines x□y. At the level of Hilbert modules, we view x□yn as a submodule of [image: there is no content], and then take the closure of the union of the submodules x□yn with respect to the Hilbert module norm. Then, we perform a similar process with respect to the other variable.



Associativity, with respect to multiplication, follows from co-associativity of the co-product. It is sufficient to consider the case of [image: there is no content] If we describe the A-modules M1□(M2□M3) and (M1□M2)□M3 purely algebraically, in both cases we obtain the same set of algebraic generators but with scalar actions given by [image: there is no content] and [image: there is no content] respectively. However, then the co-associativity of the coproduct gives that these are the same module. We thus obtain an A-module map from M1□(M2□M3) onto (M1□M2)□M3, and since V is a 2-isometric map, the map obtained is a composition of 2-isometric maps; hence it is itself 2-isometric, and thus a Hilbert module isomorphism (Theorem 1.) ☐





Remark 1.

Elements of [image: there is no content] can always be written, in the operator picture, as diagonal matrices with coefficients in [image: there is no content] The properties of the tensor product mapping [image: there is no content] used in the above proof give in the case of diagonal matrices: ab□cd=a□ca□db□cb□d. In an additive notation: a+b□c+d=a□c+a□d+b□c+b□d.





Thus, we have a distributive property for the product □ with respect to the additive structure of [image: there is no content] and since we extended to Cu(A) by taking completions at the monoid level, the product on Cu(A) inherits this property. We note that the product map with respect to a fixed element M gives a map from Cu(A) to Cu(A), defined by x↦M□x, that is well-behaved with respect to the semigroup structure. Moreover, the map given by taking a product with a fixed element respects the property of being a sub Hilbert module: in other words, if x is contained in y then M□x is contained in M□y. When applying the map to an increasing sequence of Hilbert modules, we obtain an increasing sequence of Hilbert modules, which however are not larger than the standard module, [image: there is no content]. In the proof of Corollary 1, see the end of the first paragraph of the proof, it is shown that, at least in the stable rank one case, the product map with respect to a fixed element will preserve the suprema of increasing sequences. Clearly, the product map will preserve the zero of the Cuntz semigroup. Thus, we see that the product map with respect to a fixed element gives a well-behaved mapping of Cuntz semigroups, namely a morphism of Cuntz semigroups in the terminology of [5]. (The general definition of a morphism does involve compact containment, however, in the stable rank one case, it is not necessary to consider compact containment of Hilbert modules.)



We note that we can obtain a left and a right product structure, one associated with the left Haar state and the other associated with the right Haar state. It is not clear if there exist further variations on the product than this. On the other hand, the fact that we can sometimes, as will be shown, use the product structure to obtain isomorphism results for C*-algebraic quantum groups suggests that the product has a certain canonical status.



Remark 2.

In the finite-dimensional case, the Cuntz semigroup simplifies considerably, and our product reduces to the simpler product considered in [1]. This product is defined by [image: there is no content] where [image: there is no content] and [image: there is no content] are algebraic modules over A, and [image: there is no content] is the algebraic restriction of rings operation induced by the coproduct homomorphism. This provides an interesting example of the product we have just defined. In the finite-dimensional case, the class of the support projection of the co-unit character will act as a unit for the product we have introduced. In general, no such support projection need exist. We will eventually see, from Proposition 3 and the properties of convolution, that if [image: there is no content] is the multiplicative identity of [image: there is no content] then [Id]□[a] is equivalent to [image: there is no content] for all positive a in [image: there is no content].





We have, in this section, added analytic structure to the algebraic restriction of rings operation from Remark 2. Another way to implement a restriction of rings operation at the level of Hilbert modules is via Kasparov’s inner tensor product [21]. This tensor product does not behave well functorially, though in some cases Hilbert module connections (introduced by Connes and Skandalis [7]) can be used instead. The connection technique does not seem applicable in our case.




3. Higher Stable Rank


In this section, we generalize Theorem 2 to the case of higher stable rank. As already pointed out, it is desirable for applications to reformulate our results in the operator picture of the Cuntz semigroup, and we do that in this section as well. The basic step in passing from the Hilbert module picture to the operator picture of the Cuntz semigroups is that we can work in terms of generators of Hilbert modules rather than the modules themselves. If we restrict attention to Hilbert modules over σ-unital C*-algebras, given a Hilbert module, we may in general choose a strictly positive element of the “compact” operators upon it as a generator. This fact is often summarized by saying that Hilbert modules over separable or σ-unital C*-algebras can be taken to be singly generated; see [5] (p. 39). To recover the Hilbert module from this strictly positive element, ℓ, we show that the element belongs to the compact operators on the Hilbert module [image: there is no content] and then consider [image: there is no content] There apparently remains a slight gap between the Hilbert module picture of the Cuntz semigroup and the operator picture, in which the elements of the Cuntz semigroup Cu(A) lie in [image: there is no content] The issue is that in one case, we have “compact” operators on [image: there is no content], and in the other case, we have elements of [image: there is no content] However, Kasparov has shown [29] (Section 1, Paragraph 14) that these two objects are in fact isomorphic. In the case of sub-Hilbert modules of [image: there is no content] the generator obtained is of course a positive element of the [image: there is no content]-algebra [image: there is no content] and we recover the module by considering the one-sided closed right ideal [image: there is no content] generated by the given algebra element, following the conventions in [5]. Thus, we have the operator picture of the Cuntz semigroup: for more information see [5] (Appendix 6).



We say that a is Cuntz subequivalent to [image: there is no content] denoted a⪯Cub, if there is a sequence [image: there is no content] such that [image: there is no content] goes to a in norm. Thus, for example, e*xe⪯Cux. We say that a and b are Cuntz equivalent if we have both a⪯Cub and a⪰Cub.



We recall an equivalence relation on positive elements of a C*-algebra, [image: there is no content] that was considered by Blackadar [30], and is denoted here by [image: there is no content] This equivalence relation is generated by the following two equivalence relations:

	
positive elements a and b are equivalent in a C*-algebra A if they generate the same hereditary subalgebra of [image: there is no content] and



	
positive elements a and b are equivalent in a C*-algebra A if there is an element [image: there is no content] such that [image: there is no content] and [image: there is no content]








The following known Lemma relates the equivalence relation [image: there is no content] on positive elements to properties of the Hilbert submodules of A that are generated by the given positive elements:



Lemma 2

([31] ([Proposition 4.3])). Let A be a C*-algebra, and let a and b be positive elements of [image: there is no content] The following are equivalent:

	1.

	
[image: there is no content] and




	2.

	
[image: there is no content] and [image: there is no content] are isomorphic as Hilbert A-modules.











A relationship between the equivalence relation [image: there is no content] and the Cuntz equivalence relation is given by the following known Lemma. We recall that the function [image: there is no content] is the function that is zero on [image: there is no content] and is equal to [image: there is no content] elsewhere. The functional calculus for C*-algebras lets us apply this function to a positive or self-adjoint element of a C*-algebra.



Lemma 3.

Let A be a C*-algebra. The following are equivalent:

	1.

	
a⪰Cub, and




	2.

	
for all [image: there is no content] we have [image: there is no content]




	3.

	
for all [image: there is no content] we have [image: there is no content] where [image: there is no content] has the factorization [image: there is no content] where [image: there is no content] is an element of A and [image: there is no content] is some function in [image: there is no content] bounded above by [image: there is no content]











Proof. 

The equivalence of 1 and 2 follows from Lemma 2.4. iv in [32]. The equivalence of 2 and 3 follows from Cohen’s factorization theorem [33]. ☐





We also recall a known continuity property possessed by the Cuntz subequvalence relation:



Lemma 4.

If [image: there is no content] converges to x in norm, and xn⪯Cuy then x⪯Cuy.





Lemma 5.

Given a submodule M of the standard Hilbert module, [image: there is no content] not necessarily closed, there exists a positive element e of the “compact” operators on [image: there is no content] such that [image: there is no content] where the closure is taken in the topology coming from the Hilbert module norm.





Proof. 

Since [image: there is no content] is countably generated, so is [image: there is no content] Therefore, the “compact” operators [image: there is no content] are σ-unital, and a strictly positive element of [image: there is no content] will have the desired property, except that it is apparently not an element of [image: there is no content] However, Kasparov’s stabilization theorem [21] implies that [image: there is no content] is, after unitary equivalence, a direct summand in [image: there is no content] and thus that [image: there is no content] ☐





Observe that in the proof of Theorem 2, the hypothesis of stable rank 1 is used only to simplify the equivalence relation in the Cuntz semigroup to Hilbert module isomorphism. If we instead state the Theorem in terms of isomorphism of Hilbert modules, we can drop the hypothesis of stable rank 1. Thus, Lemma 2 and Theorem 2 imply the Corollary:



Corollary 2.

In a compact-type C*-algebraic quantum group A that is separable and nuclear, with a faithful Haar state, if [image: there is no content][image: there is no content] and b are positive elements of A, and [image: there is no content] then a positive operator generating the Hilbert A-module [a]□[b] is equivalent under [image: there is no content] to any positive operator generating the Hilbert A-module [a′]□[b].





The above Corollary says that the product operation is compatible with the equivalence relation [image: there is no content]. We now extend the Corollary to the Cuntz equivalence relation, which is in general a coarser equivalence relation than [image: there is no content]



Corollary 3.

In a compact-type C*-algebraic quantum group A that is separable and nuclear, with a faithful Haar state, if [image: there is no content][image: there is no content] and b are positive elements of A, and a is Cuntz equivalent to [image: there is no content] then [a]□[b] is Cuntz equivalent to [a′]□[b].





Proof. 

Suppose that a′⪰Cua. We will show that [a′]□[b]⪰Cu[a]□[b]. By Lemma 3 we have, for [image: there is no content] that [image: there is no content] where [image: there is no content] is in the hereditary subalgebra within A generated by [image: there is no content] At the level of Hilbert modules, [image: there is no content] is thus a submodule of the Hilbert module [image: there is no content] generated by [image: there is no content] Corollary 2, together with the already established fact that the product □ respects (in each variable separately) the ordering of Hilbert modules given by inclusion, now implies that [a−ε+]□[b] is isomorphic to a submodule of [a′]□[b]. However, then


[a−ε+]□[b]⪯Cu[a′]□[b].



(5)







We now aim to use Lemma 4 to deduce from the above that [a]□[b]⪯Cu[a′]□[b].



According to Definition 2, the product [a]□[b] is the closure of [image: there is no content] in [image: there is no content] Lemma 5 lets us insert a positive element [image: there is no content] obtaining [image: there is no content] It follows that the Hilbert module [a]□[b] is generated by the positive operator [image: there is no content] (The positivity comes from the fact that V extends to a unitary.) Replacing a by [image: there is no content] we consider


[image: there is no content]











For each [image: there is no content], this is a positive operator in [image: there is no content] that is Cuntz subequivalent to [a−ε+]□[b]. By Equation (5), this is in turn Cuntz subequivalent to [a′]□[b].



The operator [image: there is no content] depends norm-continuously on [image: there is no content] Applying Lemma 4 then shows that the limit of the [image: there is no content] is Cuntz subequivalent to [a′]□[b]. Thus, [a]□[b]⪯Cu[a′]□[b]. This shows that the product respects Cuntz subequivalence. The other subequivalence follows similarly, and thus the product respects Cuntz equivalence. ☐





The above Corollary shows that we have a well-defined product operation on elements of the Cuntz semigroup that come from elements of A. We extend to the stabilization, as expected:



Corollary 4.

The operation □ gives a product on the Cuntz semigroup Cu(A) of a separable compact-type C*-algebraic quantum group A with faithful Haar state. The product distributes over finite sums of elements of [image: there is no content].





Proof. 

Corollary 3 shows that the operation □ respects the Cuntz equivalence relation and subequivalence relation, at least when restricted to submodules of [image: there is no content] Replacing A by the stabilization of A lets us obtain unrestricted elements of the Cuntz semigroup. In the proof of Corollary 1, we replace A by [image: there is no content] and V by [image: there is no content] obtaining a product on Cu(A). Associativity follows as in that proof, and distribution over finite sums follows as in Remark 1 ☐






4. Hopf Algebra Maps from Cuntz Semigroup Maps: The Operator Picture and the Open Projection Picture


In this section, we show that algebra isomorphisms that induce maps on the Cuntz semigroup which respect the product, are in fact Hopf algebra isomorphisms or co-anti-isomorphisms. Algebra maps that induce maps on the Cuntz semigroup that respect the product □ will be called K-co-multiplicative maps. There is a Fourier transform on A — see [8] (Definition 3.4) — that can be defined as [image: there is no content] where V is a multiplicative unitary coming from the left regular representation, and [image: there is no content] is the (extension of the) left Haar state. In terms of linear functionals, this Fourier transform is given by, following Van Daele [19], see also [8], by [image: there is no content] where the elements a and b belong to a C*-algebraic quantum group [image: there is no content][image: there is no content] is the left Haar weight, and β(·,·) is the pairing with the dual algebra. Following [8] (Definition 3.10) and the discussion there, a well-behaved operator-valued convolution product, [image: there is no content] can be defined by the property [image: there is no content] where a and b are elements of a C*-algebraic quantum group [image: there is no content] and [image: there is no content] is the (unbounded) Fourier transform defined previously. The convolution operation takes a pair of positive operators to a positive operator.



We now assume tracial Haar state in order to establish a relationship between the operations □ and [image: there is no content]



At the start of Section 3, there is a discussion showing that elements of the Cuntz semigroup Cu(A) can be (non-uniquely) given as “compact” operators (in [image: there is no content]) which map [image: there is no content] to [image: there is no content] The next Proposition gives a choice of such an operator for the product [ℓ1]□[ℓ2].



Proposition 3.

Let A be a compact-type C*-algebraic quantum group with faithful tracial Haar state. Let [image: there is no content] and [image: there is no content] be positive elements of [image: there is no content] We may represent the product [ℓ1]□[ℓ2] of Theorem 2, in the operator picture of the Cuntz semigroup, by the positive operator V(ℓ1⊗ℓ2)V−1:A⊗H→A⊗H. (This operator is “compact” in the usual Hilbert module sense.) We have (Id⊗t)V(ℓ1⊗ℓ2)V−1=ℓ1⋄ℓ2 for all positive [image: there is no content] where t is the standard trace on [image: there is no content].





Proof. 

Since ℓ1A□ℓ2A is defined to be the closure of [image: there is no content] and since [image: there is no content], we have that ℓ1□ℓ2 is the closure of the (pre) Hilbert module [image: there is no content]



Now suppose that the Haar state is tracial. Regarding [image: there is no content] as being represented on the GNS Hilbert space coming from the Haar state on [image: there is no content] we note that the Haar state extends to the canonical (unbounded) trace on [image: there is no content] and that [image: there is no content] is then of trace class. We will denote both the Haar state and its extension to [image: there is no content] by [image: there is no content] Since [image: there is no content] extends to a unitary on [image: there is no content] it follows that [image: there is no content] is trace class, and positive, on the tensor product [image: there is no content] Being trace class under this representation implies that [image: there is no content] as a Hilbert module operator, is not just in the bounded adjointable operators, [image: there is no content] but is actually in the ideal of “compact” operators [image: there is no content] Applying the slice map [image: there is no content] to [image: there is no content] we have an element of [image: there is no content] Let [image: there is no content]



We next show [image: there is no content] If we apply [image: there is no content] to L and use the property that V maps the action of a on [image: there is no content] to the action of [image: there is no content] on [image: there is no content] we have [image: there is no content] Since [image: there is no content] is a tensor product of traces, it is a trace, and the right hand side of the above is equal to [image: there is no content] If we use the definition of the Fourier transform, [image: there is no content] to replace tracial Haar states by pairings with the Fourier transform, we can simplify this to [image: there is no content] However, this last expression is equal to [image: there is no content] Thus, we have shown that [image: there is no content] and since [image: there is no content] is equal to [image: there is no content] the nondegeneracy of the pairing implies that [image: there is no content] Thus, [image: there is no content] where L=(Id⊗φ)(ℓ1□ℓ2). This proves the result, with [image: there is no content] instead of [image: there is no content] but as already mentioned, in this representation the extended Haar state [image: there is no content] coincides with the usual unbounded trace [image: there is no content] ☐





The above Proposition shows that the Hilbert module [a]□[b] is generated by an operator having a certain form, and relates this operator to convolution, at least in the case that the Haar state is tracial. At present, the second statement, [image: there is no content] does not pass to Cuntz equivalence classes, because applying the slice map does not respect Cuntz equivalence. So at the moment this second statement is simply an identity at the level of operators.



The Open Projection Picture


The open projection picture presents the Cuntz semigroup in the form of projections together with an equivalence relation and states coming from traces, rather like in the case of a K-theory group. Although the equivalence relation is not the K-theory equivalence relation—and the ambient algebra is the double dual—there is nevertheless a parallel between Cuntz semigroups and K-theory groups. We will see that the Cuntz semiring is given by a ring of (equivalence classes of) certain projections from the enveloping Hopf von Neumann bi-algebra.



Recall that a weight on a C*-algebra is a map [image: there is no content] such that [image: there is no content] and [image: there is no content] for all x and y in [image: there is no content] and [image: there is no content] Weights appear naturally when we attempt to extend a trace from a C*-algebra to the enveloping von Neumann algebra. The next Lemma follows from [31] (Proposition 5.2), see also [34] (Propositions 4.1 and 4.4).



Lemma 6.

A densely defined semicontinuous tracial weight on a C*-algebra A extends uniquely to a normal tracial weight on the enveloping von Neumann algebra [image: there is no content].





We recall that an open projection is a projection in the enveloping von Neumann algebra of a C*-algebra that is the limit of an increasing net [image: there is no content] of positive elements of A in the [image: there is no content] topology. There is a bijective correspondence between open projections and hereditary sub-C*-algebras of [image: there is no content] given by p↦pA**p∩A. The open projection [image: there is no content] associated with an element [image: there is no content] is the strong limit of the sequence [image: there is no content] We write [image: there is no content] We note that the linear span of the open projections is dense (in norm) in [image: there is no content] This follows, for example, from the spectral theorem. Thus, elements of A can be approximated by linear combinations of projections of the double dual.



It is well-known that algebra traces correspond to states on the K-theory group. A similar statement, suitably interpreted, is true for Cuntz semigroups. We recall that the states on the Cuntz semigroup are the so-called dimension functions. In the case of exact or nuclear C*-algebras, we can define the dimension functions in a way that will be convenient later on. Given a trace [image: there is no content] on the algebra, and a positive element [image: there is no content] we may consider using Lemma 6 to extend the trace to a weight on the double dual, and then applying this weight to the open projection associated with a. Denoting this operation by [image: there is no content] the map [image: there is no content] is then a dimension function. Since it is necessary to allow the formation of direct sums, we must therefore consider the matrix algebras [image: there is no content] Thus, we should in fact replace the trace [image: there is no content] by [image: there is no content] where t is the standard trace on [image: there is no content] We may use the compact operators [image: there is no content] instead of the matrix algebras [image: there is no content] where [image: there is no content] and if this is done, then we tensor with the standard trace on [image: there is no content] when constructing dimension functions.



Following the discussion in [35], given a C*-algebraic quantum group, A, with coproduct [image: there is no content] we can consider [image: there is no content] in the universal representation, so that both [image: there is no content] and [image: there is no content] are subalgebras of [image: there is no content] We can thus extend the coproduct homomorphism [image: there is no content] obtaining, as is well-known, the enveloping Hopf (or Kac)–von Neumann algebra [image: there is no content] associated with [image: there is no content]



Proposition 4.

In a Kac–von Neumann bi-algebra, if [image: there is no content] and [image: there is no content] are open projections, and a and b are positive elements of the underlying compact-type C*-algebraic quantum group, the strong limit of [image: there is no content] is [image: there is no content].





Proof. 

The convolution product of positive operators is a positive operator (as follows from, e.g., [36] (Theorem 1.3.3.i)). Since [image: there is no content] is a positive operator, and similarly [image: there is no content] is positive, we have [image: there is no content] Since [image: there is no content] and [image: there is no content] are positive operators, we similarly have [image: there is no content] This shows that the sequence of positive operators [image: there is no content] increases and is bounded above, and therefore converges (strongly) in the von Neumann algebra (for example, by [37] (Lemma 2.4.4)).



That the limit is [image: there is no content] remains to be proven. Using an identity from [8] (Proposition 3.11), we have [image: there is no content] and [image: there is no content] where [image: there is no content] is the Haar weight on the Kac–von Neumann algebra (which extends the Haar state on the underlying compact-type C*-algebraic quantum group.) Since the coproduct homomorphism is normal, we have [image: there is no content] Since [image: there is no content] is a strongly convergent sequence in [image: there is no content] and since multiplication is jointly continuous, with respect to the strong topology, on norm-bounded subsets, it follows that the sequence [image: there is no content] converges in the strong topology. When we apply the slice map [image: there is no content] to the strongly convergent sequence [image: there is no content] we obtain the sequence of positive operators [image: there is no content] which we have shown to converge in the strong topology. Because the slice map [image: there is no content] is closed when viewed as an an operator, it follows that the limit of the sequence [image: there is no content] is [image: there is no content] and therefore that the strong limit of [image: there is no content] is [image: there is no content] ☐





The above Proposition shows that the formula [image: there is no content] given in Proposition 3 is well-behaved under passage to open projections:



Corollary 5.

Let A be a compact-type C*-algebraic quantum group with tracial Haar state. Let p and q be open projections of [image: there is no content] Let t be the standard trace on [image: there is no content] We have (Id⊗t**)(V(p⊗q)V−1)=p⋄q.





Applying the Haar state to both sides of the identity provided by using the above Corollary, we have a Corollary that remains valid at the level of Cuntz equivalence classes (because [image: there is no content] is an example of a state on the Cuntz semigroup, in the open projection picture, and therefore respects Cuntz equivalence):



Corollary 6.

Let A be a separable compact-type C*-algebraic quantum group with tracial Haar state, [image: there is no content] Let p and q be open projections of [image: there is no content] We have (φ**⊗t**)(p□q)=φ**(p)φ**(q), where t is the standard trace on [image: there is no content].





Remark 3.

Corollary 6 together with the already established twisted linear property shows that the product we have constructed has the properties required in Definition 2.1 of [38].





The dual object of a compact-type C*-algebraic quantum group A is, in the setting provided by [12], a discrete-type C*-algebraic quantum group. From the discussion at the start of Section 4, recall that there is a Fourier transform on [image: there is no content] defined by [image: there is no content] and a convolution product, [image: there is no content] in effect defined by [image: there is no content] We remark that the Fourier transform is invertible on its range, and that


β(a,w)=φ(aF−1(w))








for all w in the range of the Fourier transform. The next lemma gives some properties of C*-algebraic isomorphisms that intertwine Haar states: the continuity comes from the open mapping theorem.



Lemma 7.

Let [image: there is no content] be compact-type Hopf [image: there is no content]-algebras with faithful Haar states. Let [image: there is no content] be a [image: there is no content]-algebraic isomorphism that intertwines the left Haar states. Then, we have the identity FB∘f=f*−1∘FA, where [image: there is no content] denotes the Fourier transform, and f*−1 is the inverse map for [image: there is no content] the map induced by f on the dual algebras. The isomorphism f takes the domain of [image: there is no content] to the domain of [image: there is no content] The linear map f*−1 is continuous and takes the range of [image: there is no content] to the range of [image: there is no content]





We now consider the map induced on the dual by a K-co-multiplicative map.



Lemma 8.

Let A and B be compact-type Hopf C*-algebraic quantum groups that have a tracial Haar state, and are separable and nuclear at the C*-algebraic level. Let [image: there is no content] be a C*-isomorphism that is K-co-multiplicative and intertwines Haar states. The map [image: there is no content] induced by f on the dual algebra(s) satisfies φ(f*−1(y1y2))=φ(f*−1(y1)f*−1(y2)), for all finitely supported [image: there is no content] where φ is the Haar state of [image: there is no content]





Proof. 

A C*-morphism [image: there is no content] with B non-degenerately represented on a Hilbert space can be extended to [image: there is no content] where [image: there is no content] is the von Neumann algebra generated by B in that representation. In the case that the representation of B is the universal representation, [image: there is no content] Thus, we may extend the C*-isomorphism [image: there is no content] to [image: there is no content] where [image: there is no content] and [image: there is no content] are the enveloping Kac–von Neumann algebras of A and [image: there is no content] respectively (in the universal representation).



A C*-isomorphism necessarily takes a hereditary subalgebra to a hereditary subalgebra, and therefore the extended map f takes an open projection to an open projection. From the hypothesis that the given map f respects the product □ on Cuntz equivalence classes, it follows that for open projections p and [image: there is no content] the two open projections f(p)□f(q) and f(p□q) are equivalent. In the open projection picture of the Cuntz semigroup, equivalence of open projections means precise equality under certain tracial weights, as discussed earlier. Thus,


(T**⊗t**)(f(p)□f(q))=(T**⊗t**)(f(p□q)),








where t is the standard trace on [image: there is no content][image: there is no content] is the normal extension of a trace T on B to the double dual (see Lemma 6), and p and q are open projections of [image: there is no content]



By Corollary 5, the above expression reduces to [image: there is no content]



Noting that the above expression is (bi)linear in p and q, we may replace p and q by finite linear combinations of open projections. By the spectral theorem, a positive operator can be written as the strong limit of an increasing sequence of elements [image: there is no content] that are finite linear combinations of open projections. Since f and [image: there is no content] are normal maps, and since the convolution of positive operators is positive, replacing p in the above by [image: there is no content] and taking the limit, we obtain the case where p is a positive operator. Doing the same with the other variables, we thus have [image: there is no content] where x and y are positive elements of [image: there is no content] We next suppose that x and y are algebraic elements.



Since f intertwines Haar states, Lemma 7 shows that [image: there is no content] Inserting this and the definition of convolution into the above, we conclude that, denoting the Fourier transforms of x and y by [image: there is no content] and [image: there is no content] respectively,


g(f*−1(x^)f*−1(y^))=g(f*−1(x^y^)),








where g is a linear functional of the form [image: there is no content] We now make a specific choice of trace [image: there is no content] Since the co-unit map of B is a *-homomorphism, it extends by Proposition 6 to a normal trace on [image: there is no content] and we use this as our choice of trace. A calculation with Fourier transforms, following for example Proposition 4.8 in [39], gives [image: there is no content] for all a in the domain of the Fourier transform, where [image: there is no content] denotes the co-unit homomorphism of [image: there is no content][image: there is no content] is the Fourier transform defined by the Haar state of [image: there is no content] and [image: there is no content] is the Haar weight of the dual algebra, [image: there is no content] We thus obtain


φ(f*−1(x^)f*−1(y^))=φ(f*−1(x^y^)),








where [image: there is no content] is the Haar weight of [image: there is no content]



We had supposed that [image: there is no content] and [image: there is no content] are the Fourier transforms of some algebraic elements, x and [image: there is no content] assumed to be positive at the C*-algebraic level. By passing to finite sums, we can drop the condition that the elements x and y are positive in the C*-algebra, since the usual C*-algebraic decomposition of a element into four positive elements can be made to work in any unital *-closed algebra, and the algebraic elements are a unital *-closed algebra (see, for example, [13] (Theorem 5.4.1)). We thus see that


φ(f*−1(y1y2))=φ(f*−1(y1)f*−1(y2)),



(6)




where [image: there is no content] are Fourier transforms of algebraic elements of [image: there is no content] We now show that [image: there is no content] are themselves algebraic elements, and that the algebraic elements of the dual are exactly the compactly supported elements of [image: there is no content] The Fourier transform takes the algebraic elements onto the algebraic elements—see for example [8] (Proposition 3.5 and Theorem 3.8)—and thus what remains to be shown is that the algebraic elements of [image: there is no content] are, in C*-algebraic terminology, the compactly supported elements of [image: there is no content] The algebraic elements [image: there is no content] in A are a dense compact-type algebraic quantum group. The dual of [image: there is no content] is a multiplier Hopf algebra. Thus, the dual of [image: there is no content] is an algebraic direct sum inside [image: there is no content] At the level of algebras, [image: there is no content] is a [image: there is no content]-direct sum of matrix algebras, and so the dual of [image: there is no content] is, as claimed, exactly the subalgebra of compactly supported elements inside [image: there is no content] It follows that the [image: there is no content] in the above expression (6) are compactly supported elements, as was to be shown. ☐





Lemma 9

([4] (Lemma 2.9)). Let A and B be compact-type C*-algebraic quantum groups. Let [image: there is no content] be a *-isomorphism, and let [image: there is no content] be its induced action on the dual. We suppose that the action [image: there is no content] on the dual is a Jordan *-isomorphism. Then, either [image: there is no content] is multiplicative, or [image: there is no content] is anti-multiplicative.





Proposition 5

([4] (Proposition 3.1)). Let A and B be compact-type C*-algebraic quantum groups, with tracial Haar states. Let [image: there is no content] be an algebra map, intertwining co-units. Let the induced map [image: there is no content] on the duals be Jordan. Then, f intertwines antipodes.





We now give a slight modification of the argument from Section 6 of [4].



Theorem 3.

Let A and B be compact-type C*-algebraic quantum groups with tracial Haar states. Let [image: there is no content] be a C*-isomorphism that intertwines Haar states and co-units. We suppose that the induced map on Cuntz semigroups intertwines the products □A and □B. Then, A and B are isomorphic or co-anti-isomorphic as Hopf algebras.





Proof. 

Note that [image: there is no content] intertwines the Haar states of [image: there is no content] and [image: there is no content] due to the fact that f intertwines the co-units of A and [image: there is no content] (See [39] (Proposition 4.8)). Thus, we may regard [image: there is no content] as a linear map that intertwines the trace on certain representations of [image: there is no content] and [image: there is no content] (Since the Haar states of [image: there is no content] and [image: there is no content] are tracial, they are in fact determined by the size of each block in the [image: there is no content]-direct sum decomposition of [image: there is no content] and [image: there is no content] Thus, the Haar state is actually encoded at the C*-algebraic level. See [40] (Proposition 2.1) and the discussion there.)



Let [image: there is no content] and [image: there is no content] be compactly supported elements of [image: there is no content] Lemma 8 shows [image: there is no content] where the map [image: there is no content] is the inverse of the pullback of the given map. The same proof holds for products of finitely many [image: there is no content] so that [image: there is no content] and [image: there is no content] (resp. [image: there is no content]) is the tracial Haar state of the discrete C*-algebraic quantum group [image: there is no content] (resp. [image: there is no content].) Thus, we have not only that [image: there is no content] and y have the same values under the trace on [image: there is no content] and [image: there is no content] but that this is true when y is replaced by [image: there is no content] A linear map of matrix algebras that preserves the trace of every power necessarily preserves the spectrum of elements. We conclude that [image: there is no content] preserves the spectrum of compactly supported elements.



Approximating a general element of the [image: there is no content]-direct sum of matrix algebras [image: there is no content] by compactly supported elements, we see that the map [image: there is no content] preserves the spectrum of operators in general. A bijective spectrum-preserving map of C*-algebras that are [image: there is no content]-direct sums of matrix algebras is a Jordan map [41] (Theorem 3.7). By Proposition 5, we then furthermore have that f intertwines antipodes. This implies (by, for example, [8] (Lemma 3.3)) that the pullback [image: there is no content] preserves the C*-involution. By Lemma 9, the pullback map [image: there is no content] is now either multiplicative or anti-multiplicative. We thus have, by duality, that f is either an isomorphism or an anti-isomorphism of bi-algebras. It follows from uniqueness of the Hopf algebra antipode(s) that f is a Hopf algebra (co-anti)isomorphism. ☐





If, in the conclusion of the above Theorem, the given map f is in fact a co-anti-isomorphism, it then follows that it reverses the product □. By hypothesis, f intertwines the products □A and □B. Therefore, either f cannot be a co-anti-isomorphism or the Cuntz semirings must be commutative. We thus have a remark:



Remark 4.

If, in the above Theorem, the Cuntz semirings are not commutative, then in fact we obtain a Hopf algebra isomorphism of A and [image: there is no content]





We also mention that the above Theorem can be interpreted as an obstacle to deformation of the co-product.



Remark 5.

Suppose that on a given unital C*-algebra, we have a family of co-products, parametrized by [image: there is no content] and suppose that it happens that the Cuntz semiring is invariant with respect to [image: there is no content] Suppose that the co-unit and tracial Haar state are also invariant with respect to [image: there is no content] By the above Theorem, all of these C*-algebraic quantum groups are bi-isomorphic.





The above remark thus says that within certain classes of C*-algebraic quantum groups, algebras that are nearby in an appropriate sense are bi-isomorphic. A slightly similar result, for the case of group algebras and using a different notion of closeness, is in [42].





5. Isomorphism Results and Remarks on K-Theory


It is interesting to be able to lift isomorphisms of Cuntz semirings to isomorphisms of C*-algebraic quantum groups. In order to deduce such results from the previous section, we need to recall some of the conclusions of the classification program for C*-algebras. In some cases, Cuntz semigroup maps can be lifted to algebra maps. A class of C*-algebras within which this is true will be called a classifiable class. An example of a class of nonsimple C*-algebras that is classifiable by Cuntz semigroups is the class of separable C*-algebras that are inductive limits of continuous-trace C*-algebras with one-dimensional tree spectrum given in [43]. We call this the CES class. By applying Theorem 3 to the C*-algebraic map provided by [43] we have the following Corollary:



Corollary 7.

Let A and B be compact-type C*-algebraic quantum groups, belonging to the CES class, or more generally some classifiable class, and having tracial Haar states. Let f:Cu(A)⟶Cu(B) be an isomorphism of Cuntz semigroups that intertwines the dimension functions coming from the Haar states and the co-units. We suppose that the induced map on Cuntz semigroups intertwines the products □A and □B. Then, A and B are isomorphic or co-anti-isomorphic as Hopf algebras.





We mention that the above result applies, for example, to a subclass of AT algebras. AT algebras are inductive limits of direct sums of matrix algebras over the group [image: there is no content] The above result can be viewed as related in spirit to Wendel’s classic theorem [44] on lifting group algebra isomorphisms to isomorphisms of groups: we have replaced the group algebra by a much more abstract object. However, perhaps the real significance of results such as the above is that they tell us that in many cases a compact-type Kac C*-algebraic quantum group is completely determined by a certain (semi)ring that is much smaller than the quantum group, together with a knowlege of the C*-algebraic class that the quantum group belongs to. The point is that a much smaller object summarizes most of the information in the quantum group.



Since the K-theory group is generally a smaller object than the Cuntz semigroup, we now briefly consider K-theory. In our earlier results [1,3,4], the idea was to lift maps from the K-theory ring of a finite or discrete C*-algebraic quantum group to bialgebra (co-anti)isomorphisms. For this to work, the K-theory should form a ring with respect to a convolution operation, as in our Proposition 3.



The methods we used previously depended on discreteness. Thus, the difficulty with a sweeping generalization of our earlier results is: it is not clear that the K-theory group of a compact-type C*-algebraic quantum group does form a (semi)ring with respect to a convolution product operation. (Note that, in the algebraic case, the restriction of rings operation does not respect projective modules, except in special cases. Thus, the algebraic product module [image: there is no content] need not be a projective module even if [image: there is no content] and [image: there is no content] are projective.) We address this issue next.



Clearly, we can consider the equivalence classes of the projections within the Cuntz semigroup. Moreover, in the stably finite case, equivalence of projections in the Cuntz semigroup is the same as ordinary equivalence of projections, in matrix algebras over A (see, for example, [45] (p. 641)). Let us now make the slightly stronger assumption of stable rank 1.



Recall that, in the unital case, the K-theory group of A can be defined as the enveloping group of the semigroup of equivalence classes of projections [image: there is no content] of A. This semigroup [image: there is no content] is, in the unital case, generated by the projections of [image: there is no content] and in the stable rank 1 case there is an injection ı of [image: there is no content] into [image: there is no content]



Elements of a Cuntz semigroup that are equivalent to a projection are called projection-class elements, and elements that are not equivalent to a projection are called purely positive elements.



Proposition 6.

In the tracial and stable rank 1 case, the Cuntz semiring product of two elements is purely positive if and only if one of the elements is purely positive.





Proof. 

In the stable rank 1 case, a positive operator is projection class if and only if either 0 is an isolated point of its spectrum, or 0 is not an element of its spectrum [46] (Proposition 3.12). Thus, an element is purely positive if and only if zero is a point of accumulation in the spectrum of some (any) operator representing it. The spectrum of an operator remains unchanged in a faithful representation (of a C*-algebra that it belongs to). Therefore, we can regard the operator [image: there is no content] given by Proposition 3 as an element of [image: there is no content] without altering its spectrum. However, then, V extends to a unitary, and the spectrum of the operator is equal to the spectrum of [image: there is no content]. The spectrum of [image: there is no content] is given by the set of all pairwise products {λμ|λ∈Sp(a),μ∈Sp(b)}. Since the spectrum of b is never empty, it follows that if the spectrum of a accumulates at zero, so does the spectrum of [image: there is no content]. Similarly, if the spectrum of b accumulates at zero, so does the spectrum of [image: there is no content]. The result follows. ☐





Thus, the product □ gives a product on the (image of) the semigroup of equivalence classes of projections, [image: there is no content] This gives a product on the semigroup [image: there is no content] but products on semigroups do not always pass to products on the enveloping group: the precise condition that is needed for products to extend in general is that the semigroup must be cancellative [47], and C*-algebras having the property that their semigroup of projections is cancellative are said to have cancellation. It is known that stable rank one implies cancellation [48] (Proposition 6.5.1). It then follows that:



Corollary 8.

If a unital and separable C*-algebraic quantum group A has a faithful tracial Haar state and has stable rank 1, then the product □ gives a product on [image: there is no content].





We now give an example of computing the product on K-theory in terms of the product on the projection monoid:



Example 1.

Recall that elements of [image: there is no content] are by definition formal differences of projections. The canonical product on K-theory is ([p1]−[q1])□([p2]−[q2]):=[p1□p2]+[q1□q2]−[p1□q2]−[q1□p2].



It is known that we can use the equivalence relations on K-theory to write any element in the form [image: there is no content] where [image: there is no content] is the identity element of [image: there is no content]. The decomposition is unique, up to equivalence of p, if we take n to be minimal. Recall that if [image: there is no content] is the multiplicative identity of [image: there is no content] then [Id]□[a] is equivalent to [image: there is no content] for all a (c.f. Remark 2.) Now the above product simplifies to


([p1]−[In])□([p2]−[Im])=[p1□p2]−[Ik].



(7)









We thus see that that the canonical product on K-theory coincides, in this case, with the “naive” product defined by the right hand side of Equation (7).



Choosing a K-theoretically classifiable class of C*-algebras, we expect to be able to lift K-theory ring maps to bi-algebra (anti)isomorphisms. The class of nonsimple Approximately Interval algebras, usually called AI algebras, satisfying a mild condition called the ideal property, are classifiable by K-theory and traces, see for example [49,50], and non-simple AI algebras that are of real rank zero are classified, in [51], by their [image: there is no content] and [image: there is no content] groups. The rather large class of approximately subhomogeneous (ASH) real rank zero C*-algebras is classified by their K-theory groups in [52].



We mention, for example, a variant of Theorem 3.



Theorem 4.

Let A and B be compact-type C*-algebraic quantum groups with tracial Haar states. Assume that A and B have stable rank one and real rank zero at the C*-algebra level. Let [image: there is no content] be a C*-isomorphism that intertwines Haar states and co-units. We suppose that the induced map on the [image: there is no content]-groups intertwines the products □A and □B. Then, A and B are isomorphic or co-anti-isomorphic as C*-algebraic quantum groups.





The proof is similar to the proof of Theorem 3, but simpler, because the real rank condition allows us to work with linear combinations of projection elements from the algebra and K-theory states on them, rather than open projections from the double dual.



In order to replace C*-isomorphisms by K-theory isomorphisms in Theorem 4, we must choose a class of C*-algebra that is classifiable by K-theory. We can, for example, choose ASH algebras: let [image: there is no content] denote the direct sum of K-theory groups used in [52], with a product on [image: there is no content] as defined by Equation (7). The K-theory state associated with the tracial Haar state is the map induced on [image: there is no content] by the Haar state.



Theorem 5.

Let A and B be compact-type C*-algebraic quantum groups with faithful tracial Haar states. Assume that A and B are slow dimension growth ASH algebras with real rank zero at the C*-algebra level. Let [image: there is no content] be an isomorphism that intertwines the K-theory state associated with the tracial Haar states. We suppose that the map on the [image: there is no content]-groups intertwines the products □A and □B. Then, A and B are isomorphic or co-anti-isomorphic as C*-algebraic quantum groups.





The condition of stable rank 1 has been dropped in the above because slow dimension growth implies [52] (Propositions 3.9 and 2.3) cancellation of projections, which is sufficient. We note that the above result applies to a subclass of AT algebras.
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