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Abstract: We propose a construction of a Hermite cubic spline-wavelet basis on the interval
and hypercube. The basis is adapted to homogeneous Dirichlet boundary conditions. The wavelets
are orthogonal to piecewise polynomials of degree at most seven on a uniform grid. Therefore, the
wavelets have eight vanishing moments, and the matrices arising from discretization of differential
equations with coefficients that are piecewise polynomials of degree at most four on uniform grids
are sparse. Numerical examples demonstrate the efficiency of an adaptive wavelet method with the
constructed wavelet basis for solving the one-dimensional elliptic equation and the two-dimensional
Black–Scholes equation with a quadratic volatility.
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1. Introduction

Wavelets are a powerful and useful tool for analyzing signals, the detection of singularities,
data compression and the numerical solution of partial differential and integral equations. One of
the most important properties of wavelets is that they have vanishing moments. Vanishing wavelet
moments ensure the so-called compression property of wavelets. This means that a function f that
is smooth, except at some isolated singularities, typically has a sparse representation in a wavelet
basis, i.e., only a small number of wavelet coefficients carry most of the information on f . Similarly as
functions, also certain differential and integral operators have sparse or quasi-sparse representation
in a wavelet basis. This compression property of wavelets leads to the design of many multiscale
wavelet-based methods for the solution of differential equations. The first wavelet methods used
orthogonal wavelets, e.g., Daubechies wavelets or coiflets [1,2]. Their disadvantage is that the most
orthogonal wavelets are usually not known in a closed form and that their smoothness is typically
dependent on the length of the support. The orthogonal wavelets that are known in a closed form
are Haar wavelets. They were successfully used for solving differential equations, e.g., in [3–5].
Another useful tool is the short Haar wavelet transform that was derived and used for solving
differential equations in [6–8]. Since spline wavelets are known in a closed form and they are smoother
and have more vanishing moments than orthogonal wavelets of the same length of support, many
wavelet methods using spline wavelets were proposed [9–11]. For a review of wavelet methods for
solving differential equations, see also [12,13].

It is known that spectral methods can be used to study singularity formation for PDE
solution [14–16]. Due to their compression property, wavelets can also be used to study singularity
formation for PDE solutions. The wavelet approach simply insists on analyzing wavelet coefficients
that are large in regions where the singularity occurs and very small in regions where the function
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is smooth and derivatives are relatively small. Many adaptive wavelet methods are based on this
property [17,18].

We focus on an adaptive wavelet method that was originally designed in [17,18] and later modified
in many papers [19–21], because it has the following advantages:

• Optimality: For a large class of differential equations, both linear and nonlinear, it was shown that
this method converges and is asymptotically optimal in the sense that the storage and number of
floating point operations, needed to resolve the problem with desired accuracy, depend linearly
on the number of parameters representing the solution, and the number of these parameters
is small. Thus, the computational complexity for all steps of the algorithm is controlled.

• High order-approximation: The method enables high order approximation. The order of
approximation depends on the order of the spline wavelet basis.

• Sparsity: The solutions and the right-hand side of the equation have sparse representation
in a wavelet basis, i.e., they are represented by a small number of numerically significant
parameters. In the beginning, iterations start for a small vector of parameters, and the size
of the vector increases successively until the required tolerance is reached. The differential
operator is represented by a sparse or quasi-sparse matrix, and a procedure for computing the
product of this matrix with a finite-length vector with linear complexity is known.

• Preconditioning: For a large class of problems, the matrices arising from a discretization using
wavelet bases can be simply preconditioned by a diagonal preconditioner, and the condition
numbers of these preconditioned matrices are uniformly bounded. It is important that the
preconditioner is simple, such as the diagonal preconditioner, because in some implementations,
only nonzero elements in columns of matrices corresponding to significant coefficients of solutions
are stored and used.

It should be noted that also other spline wavelet methods utilize some of these features, but to
our knowledge, there are no other wavelet methods than adaptive wavelet methods based on the ideas
from [17,18] that have all of these properties. For more details about adaptive wavelet methods, see
Section 6 and [17–23].

In this paper, we are concerned with the wavelet discretization of the partial differential equation:

−
d

∑
k,l=1

∂

∂xk

(
pk,l

∂u
∂xl

)
+

d

∑
k=1

qk
∂u
∂xk

+ p0u = f on Ω = (0, 1)d , u = 0 on ∂Ω. (1)

We assume that qk (x) ≥ Q > 0, that the functions pk,l , qk, p0 and f are sufficiently smooth and
bounded on Ω and that pk,l satisfy the uniform ellipticity condition:

d

∑
k=1

d

∑
l=1

pk,l (x) xkxl ≥ C
d

∑
k=1

x2
k , x = (x1, . . . , xd) , (2)

where C > 0 is independent of x. The discretization matrix for wavelet bases is typically not
sparse, but only quasi-sparse, i.e., the matrix of the size N × N has O (N × log N) nonzero entries.
For multiplication of this matrix with a vector, a routine called APPLYhas to be used [18,19,24].
However, it was observed in several papers, e.g., in [25], that “quantitatively the application of the
APPLY routine is very demanding, where this routine is also not easy to implement”. Therefore, in [25]
a wavelet basis was constructed with respect to which the discretization matrix is sparse, i.e., it has
O (N) nonzero entries, for Equation (1) if the coefficients are constant. The construction from [25]
was modified in [26,27] with the aim to improve the condition number of the discretization matrices.
Some numerical experiments with these bases can be found in [28,29]. In this paper, our aim is to
construct a wavelet basis such that the discretization matrix corresponding to (1) is sparse if the
coefficients pk,l , qk and p0 are piecewise polynomial functions of degree at most n on the uniform grid,
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where n = 6 for pk,l , n = 5 for qk and n = 4 for p0. Our construction is based on Hermite cubic splines.
Let us mention that cubic Hermite wavelets were constructed also in [25–27,30–35].

Example 1. We have recently implemented the adaptive wavelet method for solving the
Black–Scholes equation:

∂V
∂t
−

d

∑
k,l=1

ρk,l

2
σkσlSkSl

∂2V
∂Sk∂Sl

− r
d

∑
k=1

Sk
∂V
∂Sk

+ rV = 0, (3)

where (S1, . . . , Sd, t) ∈
(
0, Smax

1
)
× . . .×

(
0, Smax

d
)
× (0, T). We used the θ-scheme for time discretization

and tested the performance of the adaptive method with respect to the choice of a wavelet basis for
d = 1, 2, 3. Some results can be found in [28]. In the case of cubic spline wavelets, the smallest number
of iterations was required for the wavelet basis from [36]. The discretization matrix for most spline
wavelet bases is not sparse, but only quasi-sparse, and thus, the above-mentioned routine APPLY has to
be used. For wavelet bases from [25–27], the discretization matrix corresponding to the Black–Scholes
operator is sparse if volatilities σi are constant. However, in more realistic models, volatilities are
represented by non-constant functions, e.g., piecewise polynomial functions [37]. For the basis that
will be constructed in this paper, the discretization matrix is sparse also for the Black–Scholes equation
with volatilities σi that are piecewise quadratic.

2. Wavelet Bases

In this section, we briefly review the concept of a wavelet basis in Sobolev spaces and introduce
notations; for more details, see, e.g., [23]. Let H be a Hilbert space with the inner product 〈·, ·〉H and
the norm ‖·‖H , and let 〈·, ·〉 denote the L2-inner product. Let J be an index set, and let each index
λ ∈ J take the form λ = (j, k), where |λ| := j ∈ Z is a level. For v = {vλ}λ∈J , vλ ∈ R, we define:

‖v‖2 :=

(
∑

λ∈J
|vλ|2

)1/2

, l2 (J ) := {v : ‖v‖2 < ∞} . (4)

Our aim is to construct a wavelet basis in the sense of the following definition.

Definition 1. A family Ψ := {ψλ, λ ∈ J } is called a wavelet basis of H, if:

(i) Ψ is a Riesz basis for H, i.e., the closure of the span of Ψ is H, and there exist constants c, C ∈ (0, ∞),
such that:

c ‖b‖2 ≤
∥∥∥∥∥ ∑

λ∈J
bλψλ

∥∥∥∥∥
H

≤ C ‖b‖2 , for all b := {bλ}λ∈J ∈ l2 (J ) . (5)

(ii) The functions are local in the sense that diam (supp ψλ) ≤ C̃ 2−|λ| for all λ ∈ J , and at a given level j,
the supports of only finitely many wavelets overlap at any point x.

For the two countable sets of functions Γ, Γ̃ ⊂ H, the symbol
〈
Γ, Γ̃
〉

H denotes the matrix:〈
Γ, Γ̃
〉

H := {〈γ, γ̃〉H}γ∈Γ,γ̃∈Γ̃ . (6)

The constants cΨ := sup {c : c satisfies (5)} and CΨ := inf {C : C satisfies (5)} are called
Riesz bounds, and the number cond Ψ = CΨ/cΨ is called the condition number of Ψ. It is known
that:

cΨ =
√

λmin (〈Ψ, Ψ〉H), CΨ =
√

λmax (〈Ψ, Ψ〉H), (7)

where λmin (〈Ψ, Ψ〉H) and λmax (〈Ψ, Ψ〉H) are the smallest and the largest eigenvalues of the matrix
〈Ψ, Ψ〉H, respectively.
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Let M be a Lebesgue measurable subset of Rd. The space L2 (M) is the space of all Lebesgue
measurable functions on M, such that the norm:

‖ f‖ =

 ∫
M

| f (x)|2 dx

1/2

(8)

is finite. The space L2 (M) is a Hilbert space with the inner product:

〈 f , g〉 =
∫

M
f (x) g (x)dx, f , g ∈ L2 (M) . (9)

The Sobolev space Hs
(
Rd
)

for s ≥ 0 is defined as the space of all functions f ∈ L2
(
Rd
)

, such
that the seminorm:

| f |Hs(Rd) =

(
1

(2π)d

∫
Rd

∣∣∣ f̂ (ξ)∣∣∣2 |ξ|2s dξ

)1/2

(10)

is finite. The symbol f̂ denotes the Fourier transform of the function f defined by:

f̂ (ξ) =
∫
Rs

f (x) e−iξ·xdx. (11)

The space Hs
(
Rd
)

is a Hilbert space with the inner product:

〈 f , g〉Hs(Rd) =
1

(2π)d

∫
Rd

f̂ (ξ) ĝ (ξ)
(

1+ |ξ|2s
)

dξ, f , g ∈ Hs
(
Rd
)

, (12)

and the norm:
‖ f‖Hs(Rd) =

√
〈 f , f 〉Hs(Rd). (13)

For an open set M ⊂ Rd, Hs (M) is the set of restrictions of functions from Hs
(
Rd
)

to M equipped
with the norm:

‖ f‖Hs(M) = inf
{
‖g‖Hs(Rd) : g ∈ Hs (M) and g|M = f

}
. (14)

Let C∞
0 (M) be the space of all continuous functions with the support in M, such that they have

continuous derivatives of order r for any r ∈ R. The space Hs
0 (M) is defined as the closure of C∞

0 (M)

in Hs
(
Rd
)

. It is known that:
‖ f‖H1(M) = | f |H1(M) + ‖ f‖ , (15)

where:
| f |H1(M) =

√
〈∇ f ,∇ f 〉 (16)

is the seminorm in H1 (M) and∇ f denotes the gradient of f .

3. Construction of Scaling Functions

We start with the same scaling functions as in [25–27,30–34]. Let:

φ1(x) =


(x + 1)2 (1− 2x) , x ∈ [−1, 0],

(1− x)2 (1+ 2x) , x ∈ [0, 1],

0, otherwise,

φ2(x) =


(x + 1)2 x, x ∈ [−1, 0],

(1− x)2 x, x ∈ [0, 1],

0, otherwise.

(17)

For j ≥ 3 and x ∈ [0, 1], we define:
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φj,2k+l−1 (x) = 2j/2φl
(
2jx− k

)
for k = 1, . . . , 2j − 1, l = 1, 2,

φj,1 (x) = 2j/2φ2
(
2jx
)

, φj,2j+1 (x) = 2j/2φ2
(
2j (x− 1)

)
,

(18)

and:
Φj =

{
φj,k, k = 1, . . . , 2j+1

}
, Vj = span Φj. (19)

The scaling functions φj,k on the level j = 3 are displayed in Figure 1.
Then, the spaces Vj form a multiresolution analysis. We choose dual space Ṽj as the set of all

functions v ∈ L2 (0, 1), such that v restricted to the interval
(

k−1
2j−2 , k

2j−2

)
is a polynomial of degree less

than eight for any k = 1, . . . , 2j−2, i.e.,

Ṽj =

{
v ∈ L2 (0, 1) : v|( k−1

2j−2 , k
2j−2

) ∈ Π8

(
k− 1
2j−2 ,

k
2j−2

)
for k = 0, . . . , 2j−2

}
, (20)

where Π8 (a, b) denotes the set of all polynomials on (a, b) of degree less than eight. Let:

Wj = Ṽ⊥j ∩Vj+1, (21)

where Ṽ⊥j is the orthogonal complement of Ṽj with respect to the L2-inner product. If a function g is a
piecewise polynomial of degree n, we write deg g = n.
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Figure 1. Scaling functions on the level j = 3.

Lemma 1. Let the spaces Wj, j ≥ 3, be defined as above. Then, all functions g ∈ Wi and h ∈ Wj, i, j ≥ 3,
|i− j| > 2, satisfy:

〈a g, h〉 = 0,
〈
b g′, h

〉
= 0,

〈
c g′, h′

〉
= 0, (22)

where a, b, c are piecewise polynomial functions, such that a, b, c ∈ Ṽp, p ≤ max (i, j), deg a ≤ 4, deg b ≤ 5
and deg c ≤ 6.

Proof of Lemma 2. Let us assume that j > i + 2. We have g ∈ Wi ⊂ Vi+1 ⊂ Vj−2 ⊂ Ṽj, deg g ≤ 3,
a ∈ Ṽj, deg a ≤ 4, and thus, ag ∈ Ṽj. Since h ∈ Wj and Wj is orthogonal to Ṽj, we obtain 〈a g, h〉 = 0.
Similarly, the relation 〈b g′, h〉 = 0 is the consequence of the fact that bg′ ∈ Ṽj and h ∈ Wj.
Using integration by parts, we obtain:〈

c g′, h′
〉
= −

〈
c′ g′ + c g′′, h

〉
. (23)
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Since c′ g′ + c g′′ ∈ Ṽj and h ∈Wj, we have 〈c g′, h′〉 = 0. The situation for j < i + 2 is similar.

Therefore, the discretization matrix for the Equation (1) is sparse. Let Ψj be a basis of Wj.
The proof that:

Ψ = {ψλ, λ ∈ J } = Φ3 ∪
∞⋃

j=3

Ψj. (24)

is a Riesz basis of the space L2 (0, 1), and that Ψ is a Riesz basis of the space H1
0 (0, 1) when normalized

with respect to the H1-norm is based on the following theorem [25,38].

Theorem 2. Let J ∈ N, and let Vj and Ṽj, j ≥ J, be subspaces of L2 (0, 1), such that:

Vj ⊂ Vj+1, Ṽj ⊂ Ṽj+1, dim Vj = dim Ṽj < ∞, j ≥ J. (25)

Let Φj be bases of Vj, Φ̃j be bases of Ṽj and Ψj be bases of Ṽ⊥j ∩Vj+1, such that Riesz bounds with respect
to the L2-norm of Φj; Φ̃j, and Ψj are uniformly bounded; and let Ψ be given by (24). Furthermore, let the matrix:

Gj :=
〈
Φj, Φ̃j

〉
(26)

be invertible, and the spectral norm of G−1
j is bounded independently of j. In addition, for some positive constants

C, γ and d, such that γ < d, let:

inf
vj∈Vj

∥∥v− vj
∥∥ ≤ C2−jd ‖v‖Hd(0,1) , v ∈ Hd

0 (0, 1) , (27)

and for 0 ≤ s < γ, let: ∥∥vj
∥∥

Hd(0,1) ≤ C2js ∥∥vj
∥∥ , vj ∈ Vj; (28)

and let similar estimates (27) and (28) hold for γ̃ and d̃ on the dual side. Then, there exist constants k and K,
0 < k ≤ K < ∞, such that:

k ‖b‖2 ≤
∥∥∥∥∥ ∑

λ∈J
bλ2−|λ|sψλ

∥∥∥∥∥
Hs(0,1)

≤ K ‖b‖2 , b := {bλ}λ∈J ∈ l2 (J ) (29)

holds for s ∈ (−γ̃, γ).

We focus on the spaces Vj and Ṽj defined by (19) and (20), respectively, and we show that they
satisfy the assumptions of Theorem 2.

Theorem 3. There exist uniform Riesz bases Φ̂j of Vj and Φ̃j of Ṽj, such that the matrix:

Gj =
〈
Φ̂j, Φ̃j

〉
(30)

is invertible and the spectral norm of G−1
j is bounded independently of j.

Proof of Theorem 4. Let Φj, Vj and Ṽj be defined as above. For i = 0, . . . , 7, we define:

pi (x)

 (x− 1/2)i , x ∈ [0, 1] ,

0, otherwise,
(31)

and:
θj,8k+i+1 = 2(j−2)/2 pi

(
2j−2x− k

)
, k ∈ Z, i = 0, . . . , 7. (32)
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Then, the set Θj =
{

θj,k, k = 1, . . . , 2j+1
}

is a basis of Ṽj, and the matrix Aj =
〈
Φj, Θj

〉
, j ≥ 3,

has the structure:

Aj =



AL

A

A

. . .

A

AR


, (33)

where A is the matrix of the size 10× 8. Our aim is to apply several transforms on Φj and Θj, such
that new bases Φ̂j of Vj and Φ̃j of Ṽj are local, and the matrix Gj defined by (30) and its transpose GT

j
are both strictly diagonally dominant. First, we replace functions θj,k by functions gj,k in such a way
that the matrix of L2-inner products of φj,k and gj,l is tridiagonal. Therefore, we define:

gj,8k+i+1 =
8

∑
l=1

ci
j,lθj,8k+l , i = 0, . . . , 7, k = 0, . . . , 2j−2 − 1, (34)

where the coefficients ci
j,l are chosen, such that:

〈
φj,p, gj,q

〉
= 0, |p− q| > 1,

〈
φj,p, gj,p

〉
= 1, p = 1, . . . , 2j+1 − 1. (35)

For m = 8k + i + 1, i = 0, . . . , 7, k = 1, . . . , 2j−2 − 2, we substitute (34) into (35), and using
supp φj,8k+l+1 ∩ supp gj,m = 0 for l 6= 0, . . . , 9, we obtain systems of eight linear algebraic equations
with eight unknown coefficients:

Aici = ei, for k = 2, . . . , 2j−2 − 2, ci =
(

ci
j,l

)8

l=1
, (36)

the system matrices Ai that are submatrices of A containing all rows of A except the i-th and (i + 2)-th
rows, and ei are unit vectors, such that

(
ei)

l = δi,l . The symbol δi,l denotes the Kronecker delta.
We computed all of the system matrices precisely using symbolic computations and verified that they
are regular. Thus, the coefficients ci

j,l exist and are unique.

The matrix Bj defined by
(
Bj
)

k,l =
〈

φj,k, gj,m

〉
, k, l = 1, . . . , 2j+1, is tridiagonal and has

the structure:

Bj =



BL

B

B

. . .

B

BR


, (37)



Axioms 2017, 6, 4 8 of 21

where:

B =



13.199 0 0 0 0 0 0 0
1.000 0.098 0 0 0 0 0 0
−2.185 1.000 −24.781 0 0 0 0 0

0 −0.138 1.000 0.104 0 0 0 0
0 0 13.887 1.000 −6.026 0 0 0
0 0 0 −0.074 1.000 0.041 0 0
0 0 0 0 34.953 1.000 8.824 0
0 0 0 0 0 −0.018 1.000 0.023
0 0 0 0 0 0 −9.423 1.000
0 0 0 0 0 0 0 −0.092


, (38)

and:
BL = B{2,...,10}, BR = B{1,...,8,10}. (39)

The symbol BM denotes the submatrix of the matrix B containing rows from B with indices from M.
In (38), the numbers are rounded to three decimal digits.

We apply several transforms on φj,k and denote the new functions by φi
j,k. In the following, let:

Bj,k,l =
(
Bj
)

k,l , Bi
j,k,l =

〈
φi

j,l , gj,k

〉
, i = 1, . . . , 4. (40)

We define:

φ1
j,k = φj,k −

Bj,k,k+1
Bj,k+1,k+1

φj,k+1 for k even, φ1
j,k = φj,k for k odd,

φ2
j,k = φ1

j,k −
B1

j,k,k−1

B1
j,k−1,k−1

φ1
j,k−1 for k even, φ2

j,k = φ1
j,k for k odd,

φ3
j,4+8k = φ2

j,4+8k −
B2

j,4+8k,2+8k

B2
j,2+8k,2+8k

φ1
j,2+8k for k = 1, . . . , 2j−2, φ3

j,l = φ2
j,l otherwise,

φ4
j,6+8k = φ3

j,6+8k −
B3

j,6+8k,4+8k

B3
j,4+8k,4+8k

φ1
j,4+8k for k = 1, . . . , 2j−2, φ4

j,l = φ3
j,l otherwise,

(41)

and:

φ̂j,l =


2.1 φ4

j,l l = 4 + 8k,

10 φ4
j,l l = 2j+1,

φ4
j,l otherwise.

(42)

Furthermore, we set φ̃j,2+8k = 1.3gj,2+8k for k = 0, . . . , 2j−2 and φ̃j,l = gj,l for l 6= 2 + 8k.

Let Φ̂j =
{

φ̂j,l , l = 1, . . . 2j+1
}

and Φ̃j =
{

φ̃j,l , l = 1, . . . 2j+1
}

. The matrix Gj defined by (30) has
the same structure as Aj and Bj, i.e.,(

Gj (8i + k, 8i + l)
)

k=0,...,14,l=1,...,8 = G, i = 2, . . . , 2j−2 − 2(
Gj (k, l)

)
k=1,...,14,l=1,...,8 = GL, (43)(

Gj

(
2j+1 − 8 + k, 2j+1 − 8 + l

))
k=0,...,8,l=1,...,8

= GR,
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where:

G =



0 −1.6863 0 0 0 0 0 0
1.0000 0.1278 0 0 0 0 0 0

0 −2.8555 0 2.5773 0 0 0 0
0 −0.1790 1.0000 0.1040 0 0 0 0
0 0 0 2.8443 0 0.5229 0 0
0 0 0 −0.0737 1.0000 0.0413 0 0
0 0 0 0 0 −0.7599 0 −0.2011
0 0 0 0 0 −0.0179 1.0000 0.0228
0 0 0 0 0 −0.1689 0 2.4295
0 0 0 0 0 0 0 −0.0920
0 0 0 0 0 0 0 −0.2011
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −0.3675
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.3330



(44)

and:

GL = G{2,...,15}, GR =

(
G{1,...,8}

0 . . . 0 −0.920

)
(45)

Thus, the matrices Gj and GT
j are diagonally dominant and invertible, and due to Johnson’s lower

bound for the smallest singular value [39], we have:

σmin
(
Gj
)
≥ 0.117,

∥∥∥G−1
j

∥∥∥
2
=

1
σmin

(
Gj
) ≤ 8.527. (46)

It remains to prove that Φ̂j are uniform Riesz bases of Vj and Φ̃j are uniform Riesz bases of Ṽj.

Since φ̂j,k are locally supported and there exists M independent of j and k, such that
∥∥∥φ̂j,k

∥∥∥
L2(0,1)

≤ M,

we have: ∥∥∥∥∥∑k
cj,kφ̂j,k

∥∥∥∥∥
2

L2(0,1)

= ∑
k

∑
l

cj,kcj,l

∫ 1

0
φ̂j,k (x) φ̂j,l (x) dx ≤ C ‖c‖2

2 . (47)

and similarly for φ̃j,k, we have: ∥∥∥∥∥∑k
cj,kφ̃j,k

∥∥∥∥∥
2

L2(0,1)

≤ C ‖c‖2
2 . (48)

By the same argument as in the Proof of Theorem 3.3. in [25], from (47), (48), the invertibility of
Gj and (46), we can conclude that Φ̂j and Φ̃j are uniform Riesz bases of their spans.

4. Construction of Wavelets

Now, we construct a basis Ψj of the space Wj = Ṽ⊥j ∩ Vj+1, such that cond Ψj ≤ C, where C is
a constant independent on j, and functions from Ψj are translations and dilations of some generators.
We propose one boundary generator ψb and functions ψi, i = 1, . . . , 8, generating inner wavelets, such
that the sets:

Ψj =
{

ψj,k, k = 1, . . . , 2j+1
}

, j ≥ 3, (49)

contain functions ψj,k defined for x ∈ [0, 1] by:

ψj,1 (x) = 2j/2ψb (2jx
)

, ψj,2j+1 (x) = 2j/2ψb (2j (1− x)
)

,

ψj,8k+l+1 (x) = 2j/2ψl (2jx− 4k
)

, l = 1, . . . 8, 1 < 8k + l + 1 < 2j+1.
(50)
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We denote the scaling functions on the level j = 1 by:

φ1,2k+l−2 (x) = 21/2φl (2x− k) for k ∈ Z, l = 1, 2, x ∈ R. (51)

For l = 1, . . . , 6, let the functions ψl have the form:

ψl =
14

∑
k=1

hl,kφ1,k (52)

and be such that ψ1, ψ2 and ψ3 are antisymmetric and ψ4, ψ5 and ψ6 are symmetric.
Thus, supp ψl = [0, 4] for l = 1, . . . , 6. Let pi be polynomials defined by (31). It is clear that if:〈

ψl (x) , pi

( x
4

)〉
= 0, i = 0, . . . , 7, l = 1, . . . 6, (53)

then
〈

ψl (2jx− k
)

, pi
(
2j−2x−m

)〉
= 0, for k, m ∈ 4Z, and thus,

〈
ψj,8i+l , g

〉
= 0 for any g ∈ Ṽj,

i = 0, . . . , 2j−2 − 1, and l = 1, . . . , 6. Substituting (52) into (53), we obtain the system of linear algebraic
equations with the solution hl =

{
hl,k
}14

k=1 of the form:

hl = al,1u1 + al,2u2 + al,3u3, l = 1, 2, 3, (54)

and:
hl = bl−3,1v1 + bl−3,2v2 + bl−3,3v3, l = 4, 5, 6, (55)

where al,k and bl,k are chosen real parameters and:

[u1, u2, u3] =



− 29
95361

120
31787

5716
31787

0 0 1
592

95361
13477
95361 − 56300

95361

0 1 0
13456
95361 − 39892

95361
49671
31787

1 0 0

0 0 0
11708
4541 − 26022

4541
116428
4541

− 13456
95361

39892
95361 − 49671

31787

1 0 0

− 592
95361 − 13477

95361
56300
95361

0 1 0
29

95361 − 120
31787 − 5716

31787

0 0 1



, [v1, v2, v3] =



11
10500 − 17

2625 − 1727
10500

0 0 −1

− 13
875 − 293

2625
1123
2625

0 −1 0

− 1
12

5
21 − 53

84

−1 0 0
34
175 − 6

25
386
525

0 0 0

− 1
12

5
21 − 53

84

1 0 0

− 13
875 − 293

2625
1123
2625

0 1 0
11

10500 − 17
2625 − 1727

10500

0 0 1



. (56)

For l ∈ {7, 8}, let the functions ψl have the form:

ψl =
28

∑
k=1

hl,kφ1,k. (57)
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These functions are uniquely determined by imposing that ψ7 is symmetric, ψ8 is antisymmetric,
both ψ7 and ψ8 are L2-orthogonal to the functions ψl , l = 1, . . . , 6, they are normalized with respect to
the L2-norm and: 〈

ψl (x) , pi

( x
4

)〉
= 0, for i = 0, . . . , 7. (58)

It remains to construct boundary function ψb. Let:

ψb =
14

∑
k=0

hb,kφ1,k|[0,∞). (59)

Substituting (59) into: 〈
ψb (x) , pi

( x
4

)〉
= 0, for i = 0, . . . , 7, (60)

we obtain the system of eight equations for 15 unknown coefficients. The solution hb =
{

hb,k
}14

k=0 is
the linear combination of vectors wi given by:

w1 =
(

150
83 , 1429

1992 , 4509
664 , 74

249 , 2839
166 ,− 1897

1992 , 6741
664 ,− 53

249 , 1, 0, 0, 0, 0, 0, 0
)T

,

wl =

 0

ul−1

 , l = 2, 3, 4, wl =

 0

vl−4

 , l = 5, 6, 7,
(61)

i.e.,

hb =
7

∑
i=1

diWi, (62)

where di are chosen real parameters.
Hence, the set Ψj depends on the choice of ak,l , bk,l and di. However, it is not true that cond Ψj ≤ C

for all possible choices of these parameters. Moreover, for some choices, the condition numbers of Ψj
are uniformly bounded, but the condition number of the resulting basis Ψ is large, e.g., 106.

Therefore, we optimize the construction to improve the condition number of Ψ. We choose ak,1,
and then, we set ak,2 and ak,3, such that

〈
ψi, ψj〉 = δi,j for i, j = 1, 2, 3, and similarly, we choose bk,1

and then set bk,2 and bk,3, such that
〈
ψi, ψj〉 = δi,j for i, j = 4, 5, 6. Moreover, the functions ψ7 and ψ8

are constructed, such that they are orthogonal to ψi for i = 1, . . . , 6, and due to the symmetry and
antisymmetry, we have

〈
ψi, ψj〉 = δi,j for i = 1, 2, 3 and j = 4, 5, 6 and

〈
ψ7, ψ8〉 = 0. In summary, ψi is

orthogonal to ψj with respect to the L2-norm for i, j = 1, . . . 6, i 6= j. To further improve the condition
number, we orthogonalize scaling functions on the coarsest level j = 3, i.e., we determine the set:

Φort
3 := K−1Φ3, K = 〈Φ3, Φ3〉 , (63)

and we redefine Φ3 as Φ3 := Φort
3 .

Furthermore, we wrote a program that computes the condition number of the wavelet basis
containing all wavelets up to the level of seven with respect to both the L2-norm and the H1-norm for
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given parameters ak,l , bk,l and di and performed extensive numerical experiments. In the following, we
consider the parameters that lead to good results:

a1 = (a1,1, a1,2, a1,3) = (4.62, 4.43, 0.67) ,

a2 = (a2,1, a2,2, a2,3) = (7.196227729728021,−4.658487033189625,−2.279869518963229) ,

a3 = (a3,1, a3,2, a3,3) = (−0.775021413514386, 0.613425421561151, 0.151825757948663) ,

b1 = (b1,1, b1,2, b1,3) = (0.24,−3.92, 4.17) ,

b2 = (b2,1, b2,2, b2,3) = (4.214132381596882,−2.612399654970785,−1.411579368326525) ,

b3 = (b3,1, b3,2, b3,3) = (−0.601286696663076,−0.778487053796787,−0.180033928710130) ,

d = (d1, . . . , d7) = (−0.075,−0.363,−0.616,−0.134, 0.344, 0.580, 0.099) ,

(64)

and after computing ψb and ψi, i = 1, . . . , 8, using these parameters, we normalize them with respect
to the L2-norm, i.e., we redefine ψb := ψb/

∥∥∥ψb
∥∥∥ and ψi := ψi/

∥∥ψi
∥∥. The wavelets ψ3,1, . . . , ψ3,9 that

are dilations of ψb, ψ1, . . . , ψ8 are displayed in Figure 2.
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Figure 2. Wavelets ψ3,1, . . . , ψ3,9.

Theorem 4. The sets Ψj with the parameters given by (64) are uniform Riesz bases of Wj for j ≥ 3.

Proof of Theorem 5. Since we constructed wavelets such that many of them are orthogonal, there is
only a small number of nonzero entries in Nj. Since wavelets are normalized with respect to the
L2-norm, we have: (

Nj
)

k,k = 1. (65)
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Direct computation yields that:

(
Nj
)

k=1,l=2,...,9 =
(
Nj
)

k=2j ,l=2j−1,...,2j−8 = z,(
Nj
)

k=2,...,9,l=1 =
(
Nj
)

k=2j−1,...,2j−8,l=2j = zT ,
(66)

where:
z = (0.0022,−0.0927,−0.0166,−0.0339,−0.0075, 0.0045,−0.2652, 0.2439) , (67)

and for i = 1, . . . , 2j−2 − 2, we have: (
Nj
)

k=8i,8i+1,l=8i+8,8i+9 = N(
Nj
)

k=8i+8,8i+9,l=8i,8i+1 = NT ,
(68)

where:

N =

−0.2048 0.1885

−0.1885 0.1734

 . (69)

The numbers in (67) and (69) are rounded to four decimal digits. All other entries of Nj are zero.
The structure of the Gram matrix Nj =

〈
Ψj, Ψj

〉
is displayed in Figure 3.

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 144

Figure 3. The structure of the matrix Nj.

Using Gershgorin theorem, the smallest eigenvalue λmin
(
Nj
)
≥ 0.21, and the largest eigenvalue

λmax
(
Nj
)
≤ 1.79. Therefore, Ψj are uniform Riesz bases of their spans.

Theorem 5. The set Ψ is a Riesz basis of L2 (0, 1), and when normalized with respect to the H1-norm, it is
a Riesz basis of H1

0 (0, 1).

Proof of Theorem 6. Due to the Theorems 2, 3 and 4, the relation (29) holds both for s = 0 and s = 1.
Hence, Ψ is a Riesz basis of L2 (0, 1) and:{

2−3φ3,k, k = 1, . . . , 16
}
∪
{

2−jψj,k, j ≥ 3, k = 1, . . . , 2j+1
}

(70)
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is a Riesz basis of H1
0 (0, 1). To show that also:

{
φ3,k∥∥φ3,k
∥∥

H1(0,1)
, k = 1, . . . , 16

}
∪

 ψj,k∥∥∥ψj,k

∥∥∥
H1(0,1)

, j ≥ 3, k = 1, . . . , 2j+1

 (71)

is a Riesz basis of H1
0 (0, 1), we follow the Proof of Theorem 2 in [40]. From (18) and (50) there exist

nonzero constants C1 and C2, such that:

C12j ≤
∥∥∥ψj,k

∥∥∥
H1

0 (Ω)
≤ C22j, for j ≥ 3, k = 1, . . . , 2j+1, (72)

and:
C123 ≤

∥∥φ3,k
∥∥

H1
0 (Ω)
≤ C223, for k = 1, . . . , 16. (73)

Let b̂ =
{

â3,k, k = 1, . . . , 16
}
∪
{

b̂j,k, j ≥ 3, k = 1, . . . , 2j+1
}

be such that:

∥∥∥b̂
∥∥∥2

2
=

16

∑
k=1

â2
3,k +

∞

∑
j=3

2j+1

∑
k=1

b̂2
j,k < ∞. (74)

We define:

a3,k =
23 â3,k∥∥φ3,k
∥∥

H1
0 (0,1)

, k = 1, . . . , 16, bj,k =
2j b̂j,k∥∥∥ψj,k

∥∥∥
H1

0 (0,1)

, j ≥ 3, k = 1, . . . , 2j+1, (75)

and b =
{

a3,k, k = 1, . . . , 16
}
∪
{

bj,k, j ≥ 3, k = 1, . . . , 2j+1
}

. Then:

‖b‖2 ≤

∥∥∥b̂
∥∥∥

2
C1

< ∞. (76)

Since the set (70) is a Riesz basis of H1
0 (0, 1), there exist constants C3 and C4, such that:

C3 ‖b‖2 ≤
∥∥∥∥∥ 16

∑
k=1

a3,k2−3φ3,k +
∞

∑
j=3

2j+1

∑
k=1

bj,k2−jψj,k

∥∥∥∥∥
H1

0 (0,1)

≤ C4 ‖b‖2 . (77)

Therefore:

C4
C1

∥∥∥b̂
∥∥∥

2
≥ C4 ‖b‖2 ≥

∥∥∥∑16
k=1 a3,k2−3φ3,k + ∑∞

j=3 ∑2j+1

k=1 bj,k2−jψj,k

∥∥∥
H1

0 (0,1)

=

∥∥∥∥∥∑16
k=1

â3,k

‖φ3,k‖H1
0 (0,1)

φ3,k + ∑∞
j=3 ∑2j+1

k=1
b̂j,k

‖ψj,k‖H1
0 (0,1)

ψj,k

∥∥∥∥∥
H1

0 (0,1)

(78)

and similarly:

C3

C2

∥∥∥b̂
∥∥∥

2
≤

∥∥∥∥∥∥∥
16

∑
k=1

â3,k∥∥φ3,k
∥∥

H1
0 (0,1)

φ3,k +
∞

∑
j=3

2j+1

∑
k=1

b̂j,k∥∥∥ψj,k

∥∥∥
H1

0 (0,1)

ψj,k

∥∥∥∥∥∥∥
H1

0 (0,1)

. (79)

The condition number of the resulting wavelet basis with wavelets up to the level of 10 with
respect to the L2-norm is 17.2, and the condition number of this basis normalized with respect to the
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H1-norm is 6.0. The sparsity pattern of the matrix arising from a discretization using a wavelet basis
constructed in this paper and a wavelet basis from [25] for the one-dimensional Black–Scholes equation
with quadratic volatilities from Example 1 is displayed in Figure 4.

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

Figure 4. The sparsity pattern of the matrices arising from a discretization using a wavelet basis
constructed in this paper (left) and a wavelet basis from [25] (right) for the Black–Scholes equation with
quadratic volatilities.

5. Wavelets on the Hypercube

We present a well-known construction of a multivariate wavelet basis on the unit hypercube
Ω = (0, 1)d; for more details, see, e.g., [23]. It is based on tensorizing univariate wavelet bases
and preserves the Riesz basis property, the locality of wavelets, vanishing moments and polynomial
exactness. This approach is known as an anisotropic approach.

For notational simplicity, we denote Jj =
{

1, . . . , 2j+1} for j ≥ 3, and:

ψ2,k := φ3,k, k ∈ J2 := J3, J :=
{
(j, k) , j ≥ 2, ∈ Jj

}
. (80)

Then, we can write:

Ψ =
{

ψj,k, j ≥ 2, k ∈ Jj

}
= {ψλ, λ ∈ J } . (81)

We use u⊗ v to denote the tensor product of functions u and v, i.e., (u⊗ v) (x1, x2) = u (x1) v (x2).
We define multivariate basis functions as:

ψλ = ⊗d
i=1ψλi , λ = (λ1, . . . , λd) ∈ J, J = J d = J ⊗ . . .⊗J . (82)

Since Ψ is a Riesz basis of L2 (0, 1) and Ψ normalized with respect to the H1-norm is a Riesz basis
of H1

0 (0, 1), the set:
Ψani := {ψλ, λ ∈ J} (83)

is a Riesz basis of L2 (Ω), and its normalization with respect to the H1-norm is a Riesz basis of H1
0 (Ω).

Using the same argument as in the Proof of Lemma 1, we conclude that for this basis, the discretization
matrix is sparse for Equation (1) with piecewise polynomial coefficients on uniform meshes, such that
deg pk,l ≤ 6, deg qk ≤ 5 and deg a0 ≤ 4.

6. Numerical Examples

In this section, we solve the elliptic Equation (1) and the equation with the Black–Scholes operator
from Example 1 by an adaptive wavelet method with the basis constructed in this paper. We briefly
describe the algorithm. While the classical adaptive methods typically uses refining a mesh according
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to a posteriori local error estimates, the wavelet approach is different, and it comprises the following
steps [13,17,18]:

1. One starts with a variational formulation for a suitable wavelet basis, but instead of
turning to a finite dimensional approximation, the continuous problem is transformed into
an infinite-dimensional l2-problem.

2. Then, one proposes a convergent iteration for the l2-problem.
3. Finally, one derives an implementable version of this idealized iteration, where all

infinite-dimensional quantities are replaced by finitely supported ones.

To the left-hand side of the Equation (1), we associate the following bilinear form:

a (v, w) :=
∫

Ω

d

∑
k,l=1

pk,l
∂v
∂xk

∂w
∂xl

+
d

∑
k=1

qk
∂v
∂xk

w + p0 v w dx. (84)

The weak formulation of (1) reads as follows: Find u ∈ H1
0 (Ω), such that:

a (u, v) = 〈 f , v〉 for all v ∈ H1
0 (Ω) . (85)

Instead of turning to a finite dimensional approximation, Equation (85) is reformulated as an
equivalent bi-infinite matrix equation Au = f, where:

(A)λ,µ = a
(
ψλ, ψµ

)
, (f)λ = 〈 f , ψλ〉 , (86)

for ψλ, ψµ ∈ Ψ and Ψ is a wavelet basis of H1
0 (Ω).

We use the standard Jacobi diagonal preconditioner D for preconditioning this equation, i.e.,
Dλ,µ = Dλ,µδλ,µ. If the coefficients are constant, one can also use an efficient diagonal preconditioner
from [41]. The algorithm for solving the l2-problem is the following:

1. Compute sparse representation fj of the right-hand side f, such that
∥∥f− fj

∥∥
2 is smaller than

a given tolerance ε1
j . The computation of a sparse representation insists on thresholding the

smallest coefficients and working only with the largest ones. We denote the routine as fj :=
RHS[f, ε1

j ].
2. Compute K steps of GMRESfor solving the system Av = fj with the initial vector vj. Each iteration

of GMRES requires multiplication of the infinite-dimensional matrix with a finitely-supported
vector. Since for the wavelet basis constructed in this paper, the matrix is sparse, it can be
computed exactly. Otherwise, it is computed approximately with the given tolerance ε2

j by the
method from [24]. We denote the routine z = GMRES[A, fj, vj, K].

3. Compute sparse representation vj+1 of z with the error smaller than ε2
j . We denote the routine

vj+1 := COARSE[z, ε2
j ]. It insists on thresholding the coefficients.

We repeat Steps 1, 2 and 3 until the norm of the residual rj =
∥∥f−Avj

∥∥
2 is not smaller than the

required tolerance ε̃. Since we work with the sparse representation of the right-hand side and the
sparse representation of the vector representing the solution, the method is adaptive. It is known
that the coefficients in the wavelet basis are small in regions where the function is smooth and large
in regions where the function has some singularity. Therefore, by this method, the singularities are
automatically detected.
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We use the following algorithm that is a modified version of the original algorithm from [17,18]:

Algorithm 1 u :=SOLVE [ A, f, ε̃ ]
1. Choose k0, k1, k2 ∈ (0, 1), K ∈ N.
2. Set j := 0, v0 := 0 and ε := ‖f‖2.
3. While ε > ε̃

j := j + 1,
ε := k0ε,
ε1

j := k1ε,

ε2
j := k2ε,

fj := RHS[f, ε1
j ],

z := GMRES[A, fj, vj−1, K]
vj := COARSE[z, ε2

j ],
Estimate rj = f−Avj and set ε :=

∥∥rj
∥∥

2.
end while,
4. u := vj,
5. Compute approximate solution ũ = ∑uλ∈u uλψλ.

For an appropriate choice of parameters k0, k1, k2 and K and more details about the routines RHS
and COARSE, we refer to [17,18,23].

Example 2. We solve the equation:

− εu′′ + x2u′ + u = f on (0, 1) , u (0) = u (1) = 0, (87)

where ε = 0.001 and the right-hand side f is corresponding to the solution:

u (x) = x
(

1− e50x−50
)

for x ∈ [0, 1] . (88)

We solve this equation using the adaptive wavelet method described above with the wavelet basis
constructed in this paper. The approximate solution and the derivative of the approximate solution
that were computed using only 79 coefficients are displayed in Figure 5. The significant coefficients
were located near Point 1, because the solution has a large derivative near this point.
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Figure 5. The approximate solution (left) and the derivative of the approximate solution (right) for
Example 1.

The sparsity patterns of the matrices arising from discretization of Equation (87) using wavelets
constructed in this paper and wavelets from [25] are the same as the sparsity patterns of matrices for
Example 1 that are displayed in Figure 4. Convergence history is displayed in Figure 6. The number of
iterations equals the parameter j from Algorithm 1; the number of basis functions determining the
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approximate solution in j-th iteration is the same as the number of nonzero entries of the vector vj;
and the L∞-norm of the error is given by:

‖u− ũ‖∞ = max
x∈[0,1]

|u (x)− ũ (x)| . (89)
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Figure 6. Convergence history for Example 1. The number of basis functions and the L∞-norm of the
error are in logarithmic scaling.

Example 3. We consider the equation:

∂V
∂t
−

2

∑
k,l=1

ρk,l

2
σkσlSkSl

∂2V
∂Sk∂Sl

− r
2

∑
k=1

Sk
∂V
∂Sk

+ rV = f , (90)

for (S1, S2) ∈ Ω := (0, 1)2 and t ∈ (0, 1). We choose parameters of the Black–Scholes operator as
ρ1,1 = ρ2,2 = 1, ρ1,2 = ρ2,1 = 0.88, σ1 (x) = 0.1x2 − 0.1x + 0.66, σ2 (x) = 0.1x2 − 0.1x + 0.97, r = 0.02,
and we set the right-hand side f , the initial and boundary conditions, such that the solution V is
given by:

V (S1, S2, t) = e−rtS1S2

(
1− e20S1−20

) (
1− e20S2−20

)
(91)

for (S1, S2, t) ∈ Ω × (0, 1). We use the Crank–Nicolson scheme for the semi-discretization of the
Equation (90) in time. Let M ∈ N, τ = M−1, tl = lτ, l = 0, . . . , M, and denote Vl (S1, S2) = V (S1, S2, tl)

and fl (S1, S2) = f (S1, S2, tl). The Crank–Nicolson scheme has the form:

Vl+1 −Vl
τ

−
2

∑
k,l=1

ρk,l

4
σkσlSkSl

∂2 (Vl+1 + Vl)

∂Sk∂Sl
− r

2

2

∑
k=1

Sk
∂ (Vl+1 + Vl)

∂Sk
+

r (Vl+1 + Vl)

2
=

fl+1 + fl
2

. (92)

In this scheme, the function Vl is known from the equation on the previous time level, and the
function Vl+1 is an unknown solution. Thus, for the given time level tl , Equation (92) is of the form (1),
and we can use the adaptive wavelet method for solving it. The approximate solution V1 for τ = 1/365
that was computed using 731 coefficients is displayed in Figure 7.
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Figure 7. Contour plot (left) and 3D plot (right) of the approximate solution V1 for Example 2.
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It can be seen that the gradient of the solution V1 has the largest values near the point [1, 1].
Therefore, the largest wavelet coefficients correspond to wavelets with supports in regions near this
point, and wavelet coefficients are small for wavelets that are not located in these regions. Thus, many
wavelet coefficients are omitted, and the representation of the solution is sparse. The convergence
history is shown in Figure 8.
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Figure 8. Convergence history for Example 2. The number of basis functions and the L∞-norm of the
error are in logarithmic scaling.

7. Conclusions

In this paper, we constructed a new cubic spline multi-wavelet basis on the unit interval and
unit cube. The basis is adapted to homogeneous Dirichlet boundary conditions, and wavelets have
eight vanishing moments. The main advantage of this basis is that the matrices arising from a
discretization of the differential Equation (1) with piecewise polynomial coefficients on uniform
meshes, such that deg pk,l ≤ 6, deg qk ≤ 5 and deg a0 ≤ 4, are sparse and not only quasi-sparse. We
proved that the constructed basis is indeed a wavelet basis, i.e., the Riesz basis property (5) is satisfied.
We performed extensive numerical experiments and present the construction that leads to the wavelet
basis that is well-conditioned with respect to the L2-norm, as well as the H1-norm.
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