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Abstract:



We make a detailed study of norm retrieval. We give several classification theorems for norm retrieval and give a large number of examples to go with the theory. One consequence is a new result about Parseval frames: If a Parseval frame is divided into two subsets with spans [image: there is no content] and [image: there is no content], then [image: there is no content].






Keywords:


frame; norm retrieval; phase retrieval








1. Introduction


Signal reconstruction is an important problem in engineering and has a wide variety of applications. Recovering signals when there is partial loss of information is a significant challenge. Partial loss of phase information occurs in application areas such as speech recognition [1,2,3], and optics applications such as X-ray crystallography [4,5,6], and there is a need to do phase retrieval efficiently. The concept of phase retrieval for Hilbert space frames was introduced in 2006 by Balan, Casazza, and Edidin [7], and since then it has become an active area of research in signal processing and harmonic analysis.



Phase retrieval has been defined for vectors as well as for projections and in general deals with recovering the phase of a signal given its intensity measurements from a redundant linear system. Phase retrieval by projections, where the signal is projected onto some lower dimensional subspaces and has to be recovered from the norms of the projections of the vectors onto the subspaces, appears in real life problems such as crystal twinning [8]. We refer the reader to [9] for a detailed study of phase retrieval by projections.



Another related problem is that of phaseless reconstruction, where the unknown signal is reconstructed from the intensity measurements. Recently, the two terms phase retrieval and phaseless reconstruction were used interchangeably. However, it is not clear from their respective Definitions how these two are equivalent. Recently, in [10] the authors proved the equivalence of phase retrieval and phaseless reconstruction in real as well as in complex case. Due to this equivalence, in this paper, we restrict ourselves to proving results regarding phase retrieval. Further, a weaker notion of phase retrieval and phaseless reconstruction was introduced in [11].



In this work, we consider the notion of norm retrieval which was recently introduced by Bahmanpour et al. in [12], and is the problem of retrieving the norm of a vector given the absolute value of its intensity measurements. Norm retrieval arises naturally from phase retrieval when one utilizes both a collection of subspaces and their orthogonal complements. Here we study norm retrieval and certain classifications of it. We use projections to do norm retrieval and to extend certain results from [13] for frames. We provide a complete classification of subspaces of [image: there is no content] which do norm retrieval. Various examples for phase and norm retrieval by projections are given. Further, a classification of norm retrieval using Naimark’s theorem is also obtained.



We organize the rest of the paper as follows. In Section 2, we include basic Definitions and results of phase retrieval. Section 3 introduces the norm retrieval and properties. Section 4 provides the relationship between phase and norm retrieval and related results. Detailed classifications of vectors and subspaces which do norm retrieval are provided in Section 5.




2. Preliminaries


We denote by [image: there is no content] a N dimensional real or complex Hilbert space, and we write [image: there is no content] or [image: there is no content] when it is necessary to differentiate between the two explicitly. Below, we give the Definition of a frame in [image: there is no content].



Definition 1.

A family of vectors [image: there is no content] in [image: there is no content] is a frame if there are constants [image: there is no content] so that for all [image: there is no content],


[image: there is no content]



(1)









The following Definitions and terms are useful in the sequel.

	
The constants A and B are called the lower and upper frame bounds of the frame, respectively.



	
If [image: there is no content], the frame is called an A-tight frame (or a tight frame). In particular, if [image: there is no content], the frame is called a Parseval frame.



	
Φ is an equal norm frame if [image: there is no content] for all [image: there is no content] and is called a unit norm frame if [image: there is no content] for all [image: there is no content].



	
If, only the right hand side inequality holds in (1), the frame is called a B-Bessel family with Bessel bound B.








Note that in a finite dimensional setting, a frame is a spanning set of vectors in the Hilbert space. We refer to [14] for an introduction to Hilbert space frame theory and applications.



Let [image: there is no content] be a frame in [image: there is no content]. The analysis operator associated with Φ is defined as the operator [image: there is no content] to be


[image: there is no content]











Here, [image: there is no content] is understood to be the natural orthonormal basis for [image: there is no content]. The adjoint [image: there is no content] of the analysis operator T is called the synthesis operator of the frame Φ. It can be shown that [image: there is no content]



The frame operator for the frame Φ is defined as [image: there is no content] That is,


[image: there is no content]











Note that the frame operator S is a positive, self-adjoint and invertible operator satisfying the operator inequality [image: there is no content], where A and B are the frame bounds and I denotes the identity on [image: there is no content]. Frame operators play an important role since they are used to reconstruct the vectors in the space. To be precise, any [image: there is no content] can be written as


[image: there is no content]



(2)







The analysis operator of a Parseval frame is an isometry and the frame operator is the identity operator. Thus, if [image: there is no content] is a Parseval frame, it follows from Equation (2) that


x=∑i=1Mx,ϕiϕi,x∈HN.











We concentrate on norm retrieval and its classifications in this paper. We now see the basic Definitions of phase retrieval formally, starting with phase retrieval by projections. Throughout the paper, the term projection is used to describe orthogonal projection (orthogonal idempotent operator) onto subspaces.



Definition 2.

Let [image: there is no content] be a collection of subspaces in [image: there is no content] and let [image: there is no content] be the projections onto each of these subspaces. We say that [image: there is no content] (or [image: there is no content]) yields phase retrieval if for all [image: there is no content] satisfying [image: there is no content] for all [image: there is no content] then [image: there is no content] for some scalar c such that [image: there is no content]





Phase retrieval by vectors is a particular case of the above.



Definition 3.

Let [image: there is no content] be such that for [image: there is no content]


[image: there is no content]








Φ yields phase retrieval with respect to an orthonormal basis [image: there is no content] if there is a [image: there is no content] such that [image: there is no content], for all [image: there is no content], where [image: there is no content].





Orthonormal bases fail to do phase retrieval, since in any given orthonormal basis, the corresponding coefficients of a vector are unique. One of the fundamental properties to identify the minimum number of vectors required to do phase retrieval is the complement property.



Definition 4.

A frame [image: there is no content] in [image: there is no content] satisfies the complement property if for all subsets [image: there is no content], either [image: there is no content] or [image: there is no content] spans the whole space [image: there is no content].





It is proved in [7] that phase retrieval is equivalent to the complement property in [image: there is no content]. Further, it is proven that a generic family of [image: there is no content]-vectors in [image: there is no content] does phase retrieval, however no set of [image: there is no content]-vectors can. Here, generic refers to an open dense set in the set of [image: there is no content]-element frames in [image: there is no content]. Full spark is another important notion of vectors in frame theory. A formal Definition is given below:

Definition 5.

Given a family of vectors [image: there is no content] in [image: there is no content], the spark of Φ is defined as the cardinality of the smallest linearly dependent subset of Φ. When spark[image: there is no content], every subset of size N is linearly independent, and in that case, Φ is said to be full spark.







Note from the Definitions that full spark frames with [image: there is no content] have the complement property and hence do phase retrieval. Moreover, if [image: there is no content] then the complement property clearly implies full spark.



Next result, known as Naimark’s theorem, characterizes Parseval frames in a finite dimensional Hilbert space. This theorem facilitates a way to construct Parseval frames, and crucially it is the only way to obtain Parseval frames. Later, we use this to obtain a classification of frames which do norm retrieval. The notation [image: there is no content] is used throughout the paper.



Theorem 1 (Naimark’s Theorem).

[15] A frame [image: there is no content] is a Parseval frame for [image: there is no content] if and only if [image: there is no content] with orthonormal basis [image: there is no content] so that the orthogonal projection P onto [image: there is no content] satisfies: [image: there is no content] for every [image: there is no content].






3. Beginnings of Norm Retrieval


In this section, we provide the Definition of norm retrieval along with certain related results, and pertinent examples.



Definition 6.

Let [image: there is no content] be a collection of subspaces in [image: there is no content] and let [image: there is no content] be the orthogonal projections onto each of these subspaces. We say that [image: there is no content] (or [image: there is no content]) yields norm retrieval if for all [image: there is no content] satisfying [image: there is no content] for all [image: there is no content] then [image: there is no content].





In particular, a set of vectors [image: there is no content] in [image: there is no content] does norm retrieval, if for [image: there is no content] satisfying [image: there is no content] for all [image: there is no content] then [image: there is no content].



Remark 1.

It is immediate that a family of vectors doing phase retrieval does norm retrieval.





An obvious choice of vectors which do norm retrieval are orthonormal bases. For, let [image: there is no content] be an orthonormal basis in [image: there is no content]. Now, for [image: there is no content], [image: there is no content] Thus


[image: there is no content]











The following theorem provides a sufficient condition under which the subspaces spanned by the canonical basis vectors do norm retrieval.



Theorem 2.

Let [image: there is no content] be an orthonormal basis in [image: there is no content]. Let [image: there is no content] be subspaces of [image: there is no content] where each [image: there is no content], [image: there is no content]. If there exists m such that for all j, [image: there is no content], then [image: there is no content] does norm retrieval.





Proof. 

Let [image: there is no content] be orthogonal projections onto [image: there is no content], for all j. Now, by assumption, we have


[image: there is no content]








☐





It is easy to see that tight frames do norm retrieval.



Theorem 3.

Tight frames do norm retrieval.





Proof. 

et [image: there is no content] in [image: there is no content] be an A-tight frame. Now, if


[image: there is no content]








then


[image: there is no content]








☐





Observe that if [image: there is no content] does norm retrieval so does [image: there is no content] for any [image: there is no content]. This is generalized in the following proposition.



Proposition 1.

If [image: there is no content] does norm retrieval, then so does [image: there is no content] for any projections [image: there is no content]. In particular, if a frame [image: there is no content] contains an orthonormal basis, then it does norm retrieval. Moreover, in this case, [image: there is no content] does norm retrieval.





Proof. 

Let [image: there is no content] be an orthonormal basis for [image: there is no content] and let [image: there is no content] be the projections onto [image: there is no content], for each i. Given [image: there is no content], we have


[image: there is no content]








☐





The above proposition does not hold if the number of hyperplanes is strictly less than N. This is proved in the next theorem.



Theorem 4.

If [image: there is no content] is an orthonormal basis for [image: there is no content] then [image: there is no content] where [image: there is no content] cannot do norm retrieval for [image: there is no content].





Proof. 

Without loss of generality consider the collection [image: there is no content] (for [image: there is no content]). Now, let [image: there is no content] and [image: there is no content] so that [image: there is no content] and [image: there is no content]. Thus, [image: there is no content]. However [image: there is no content] and [image: there is no content] which proves the theorem. ☐





Now, we strengthen the above result by not requiring the vectors to be orthogonal. To prove this, we need the following lemma.



Lemma 1.

If [image: there is no content] are independent vectors in [image: there is no content], then [image: there is no content] there is a vector [image: there is no content] satisfying:


[image: there is no content]













Proof. 

We do this by induction on N with the case [image: there is no content] obvious. So assume this holds for [image: there is no content]. Given [image: there is no content], we can find a ϕ∈span{ϕi}i=1N-1 and satisfying


[image: there is no content]











Choose ψ⊥span{ϕi}i=1N-1 and note that linear independence of the [image: there is no content] implies


[image: there is no content]











Consider [image: there is no content]. For [image: there is no content],


|⟨ϕ+λψ,ϕi⟩|=|⟨ϕ,ϕi⟩+λ⟨ψ,ϕi⟩|=|⟨ψ,ϕi⟩|=c











Also,


[image: there is no content]











As λ varies from [image: there is no content] to [image: there is no content], the right hand side varies from [image: there is no content] to [image: there is no content] and for some λ, we have


[image: there is no content]








☐





Proposition 2.

If [image: there is no content] are independent and unit norm and [image: there is no content], for all [image: there is no content], then [image: there is no content] cannot do norm retrieval.





Proof. 

Let [image: there is no content] be the projection onto [image: there is no content] and choose


[image: there is no content]











By the assumption, pick any [image: there is no content], there is a vector ϕ∈span{ϕi}i=1N-1 and [image: there is no content][image: there is no content] In particular, we may scale ϕ and c simultaneously such that [image: there is no content] and it follows that [image: there is no content]. Let [image: there is no content], where [image: there is no content] Note that [image: there is no content] for all i implies that [image: there is no content], and so [image: there is no content]



Now, for all [image: there is no content],


∥Piy∥2=∥y∥2-|⟨y,ϕi⟩|2=λ2+μ2-μ2c2=λ2+(1-c2)μ2=1=∥x∥2=∥Pix∥2.











But [image: there is no content] while [image: there is no content], and so norm retrieval fails. ☐





However, in the following theorem, we show that three proper subspaces of codimension one can do norm retrieval in [image: there is no content].



Theorem 5.

In [image: there is no content] three proper subspaces of codimension one can do norm retrieval.





Proof. 

Let [image: there is no content] be an orthonormal basis for [image: there is no content]. Let


ϕ1=e1ϕ2=e2ϕ3=(e1-e2)/2











We claim [image: there is no content] does norm retrieval. Let [image: there is no content] be the orthogonal projection onto [image: there is no content]. Let [image: there is no content]. We then have that


||P1x||2=a22+∑k=3Nak2,||P2x||2=a12+∑k=3Nak2










[image: there is no content]











Case 1: If [image: there is no content] or [image: there is no content], we know that [image: there is no content] or [image: there is no content] respectively.



Case 2: Assume both [image: there is no content] and [image: there is no content]. We then know both of the equalities below:


[image: there is no content]










[image: there is no content]








where


c=-(a1+a2)22a22+1andd=-(a1+a2)22a12+1











If either c or d is nonzero, then the proof is complete as in that case, we can express [image: there is no content] as a linear combination of [image: there is no content], [image: there is no content], and [image: there is no content].



Now, suppose that [image: there is no content]. If [image: there is no content], then [image: there is no content] and if [image: there is no content], then [image: there is no content]. This implies that


[image: there is no content]








which holds only if either [image: there is no content] or [image: there is no content] or both is zero which contradicts our assumption. ☐





It follows that in [image: there is no content], two 2-dimensional subspaces cannot do norm retrieval but three 2-dimensional subspaces can do norm retrieval.



Proposition 3.

For every [image: there is no content], there exist subspaces [image: there is no content] of [image: there is no content] which do norm retrieval and [image: there is no content] span a K dimensional space.





Proof. 

Choose an orthonormal basis of [image: there is no content], say [image: there is no content]. Let [image: there is no content] and [image: there is no content] for all [image: there is no content]. If [image: there is no content], then [image: there is no content] and [image: there is no content] for [image: there is no content]. Therefore [image: there is no content]. Since [image: there is no content] for all i, it’s clear that [image: there is no content] is spanned by [image: there is no content], which has dimension K. ☐





The following proposition shows a relationship between subspaces doing norm retrieval and the sum of the dimensions of the subspaces. The importance of this proposition is that we are looking for conditions on subspaces to do norm retrieval. To do so, the dimension of the subspaces is one of the tools we have.



Proposition 4.

If [image: there is no content] in [image: there is no content] does norm retrieval then [image: there is no content]. Moreover, if [image: there is no content] and [image: there is no content] then there exist [image: there is no content] doing norm retrieval where [image: there is no content] for each [image: there is no content].





Proof. 

If [image: there is no content] then we may pick non-zero [image: there is no content] for each i so that [image: there is no content] for all i and therefore [image: there is no content] fails norm retrieval.



For the moreover part, let [image: there is no content] be an orthonormal basis. We represent this basis L-times as a multiset:


[image: there is no content]








and index it as: [image: there is no content]. We may pick a partition of [image: there is no content] in the following manner:


I1={1,2,···,k1},I2={k1+1,···,k1+k2},I3={k1+k2+1,···,k1+k2+k3},···.











Now define [image: there is no content] span [image: there is no content] with projection [image: there is no content]. Then if [image: there is no content] then


[image: there is no content]











Hence the result.





As we have seen, the above proposition may fail if [image: there is no content].




4. Phase Retrieval and Norm Retrieval


In this section, we provide results relating phase retrieval and norm retrieval. The following theorem of Edidin [16] is significant in phase retrieval as it gives a necessary and sufficient condition for subspaces to do phase retrieval.



Theorem 6

([16]). A family of projections [image: there is no content] in [image: there is no content] does phase retrieval if and only if for every [image: there is no content], the vectors [image: there is no content] span the space.





Corollary 1.

If [image: there is no content] in [image: there is no content] does phase retrieval, then [image: there is no content] spans the space.





Proof. 

If [image: there is no content] does not span, then there exists [image: there is no content]. So [image: there is no content] for all [image: there is no content], and so [image: there is no content] does not span. Thus, by Theorem 6, [image: there is no content] does not do phase retrieval. ☐





Corollary 2.

Let [image: there is no content] be a collection of subspaces of [image: there is no content] with [image: there is no content] denoting the projection onto [image: there is no content] for each [image: there is no content]. If [image: there is no content] does phase retrieval in [image: there is no content] then for every [image: there is no content] with [image: there is no content], the collection [image: there is no content] spans [image: there is no content].





Proof. 

If not, pick non-zero [image: there is no content] for all [image: there is no content]. This implies [image: there is no content] and therefore [image: there is no content] contains at most [image: there is no content] distinct vectors and can not span [image: there is no content]. This contradicts the Theorem 6. ☐





The following example shows that it is possible for subspaces to do norm retrieval even if [image: there is no content] do not span the space which we see as one of main differences between phase retrieval and norm retrieval.



Example 1.

Let [image: there is no content] be a orthonormal basis for [image: there is no content], then let


W1=span{e1,e2}W1⊥=span{e3}W2=span{e2,e3}W2⊥=span{e1}W3=span{e2}W3⊥=span{e1,e3}













Then, [image: there is no content] does norm retrieval since [image: there is no content]. But {Wi}⊥,i=1,2,3 do not span [image: there is no content].



Note that if [image: there is no content], then [image: there is no content] itself does norm retrieval while [image: there is no content].



Any collection of subspaces which does phase retrieval yields norm retrieval, which follows from the Definitions. However, the converse need not hold true always. For instance, any orthonormal basis does norm retrieval in [image: there is no content]. But it has too few vectors to do phase retrieval as it requires at least [image: there is no content] vectors to do phase retrieval in [image: there is no content].



Given subspaces [image: there is no content] of [image: there is no content] which yield phase retrieval, it is not necessarily true that [image: there is no content] do phase retrieval. The following result proves that norm retrieval is the condition needed to pass phase retrieval to orthogonal complements. Though the result is already proved in [12], we include it here for completeness.



Lemma 2.

Suppose subspaces [image: there is no content], with respective projections [image: there is no content], does phase retrieval. Then [image: there is no content] does phase retrieval if and only if [image: there is no content] does norm retrieval.





Proof. 

Assume that [image: there is no content] for all [image: there is no content] and [image: there is no content] does norm retrieval i.e., [image: there is no content]. Then


[image: there is no content]











Since [image: there is no content], we have


[image: there is no content]











Since [image: there is no content] does phase retrieval, it follows that [image: there is no content] for some [image: there is no content].



The other direction of the theorem is clear. ☐





Next is an example of a family of subspaces [image: there is no content] which does phase retrieval but complements fail phase retrieval and hence fail norm retrieval [9].



Example 2.

Let [image: there is no content] and [image: there is no content] be orthonormal bases for [image: there is no content] such that [image: there is no content] is full spark. Consider the subspaces


W1=span({ϕ1,ϕ3})W1⊥=span({ϕ2})W2=span({ϕ2,ϕ3})W2⊥=span({ϕ1})W3=span({ϕ3})W3⊥=span({ϕ1,ϕ2})W4=span({ψ1})W4⊥=span({ψ2,ψ3})W5=span({ψ2})W5⊥=span({ψ1,ψ3})











Then [image: there is no content] allow phase retrieval for [image: there is no content] while the orthogonal complements [image: there is no content] do not.





Corollary 3.

If [image: there is no content] does phase retrieval and contains an orthonormal basis, then [image: there is no content] does phase retrieval.





Proof. 

If [image: there is no content] is an orthonormal basis, then [image: there is no content] does norm retrieval. Hence so does the larger set [image: there is no content]. Since [image: there is no content] does phase retrieval, and [image: there is no content] does norm retrieval, we can conclude the latter does phase retrieval as well which follows from Lemma 2. ☐





The next result gives us a sufficient condition for the subspaces to do norm retrieval. It is enough to check if the identity is in the linear span of the projections in order for the subspaces to do norm retrieval. A similar result in the case of phase retrieval is proved in [17].



Proposition 5

([12]). Let [image: there is no content] be subspaces of [image: there is no content] with corresponding projections [image: there is no content]. If there exist [image: there is no content] such that [image: there is no content], then [image: there is no content] does norm retrieval.





Proof. 

Given [image: there is no content], then


∥x∥2=⟨x,x⟩=⟨∑i=1MaiPix,x⟩=∑i=1Mai⟨Pix,x⟩=∑i=1Mai⟨Pix,Pix⟩=∑i=1Mai∥Pix∥2.











Since for each i the coefficients [image: there is no content] and [image: there is no content] are known, the collection [image: there is no content] does norm retrieval. ☐





A counter example for the converse of the above proposition is given in [12] where the authors construct a collection of projections, [image: there is no content], which do phase retrieval but I∉spanPi. Here, we provide another example for the same. We give a set of five vectors in [image: there is no content] which does phase retrieval; however the identity operator is not in the span of these vectors. We need the following theorem that provides a necessary and sufficient condition for a frame to be not scalable in [image: there is no content]. Recall that a frame [image: there is no content] is said to be scalable if there exists scalars [image: there is no content] such that [image: there is no content] is a Parseval frame [18]. Later in the next section, we prove that scalable frames always do norm retrieval.



Theorem 7.

 [18] A frame ϕ in [image: there is no content] for [image: there is no content] is not scalabale iff all frame vectors of ϕ are contained in an interior of an elliptical conical surface with vertex 0 and intersecting the corners of a rotated unit cube.





Example 3.

A frame [image: there is no content] in [image: there is no content] which does phase retrieval but


[image: there is no content]











Choose five full spark vectors in the cone referred in the previous Theorem 7. These vectors do phase retrieval and hence norm retrieval in [image: there is no content]. Now, given [image: there is no content], [image: there is no content] for [image: there is no content]. But, [image: there is no content] is still inside the cone for each i. Therefore [image: there is no content]





The next proposition gives a sufficient condition for the complements to do norm retrieval when the subspaces do.



Proposition 6.

If [image: there is no content] are subspaces of [image: there is no content] with corresponding projections [image: there is no content] such that [image: there is no content] and [image: there is no content]. Then [image: there is no content] does norm retrieval.





Proof. 

Observe the following


[image: there is no content]











Let [image: there is no content] then a short calculation shows [image: there is no content]. By the previous proposition this shows [image: there is no content] does norm retrieval. ☐





It is possible that [image: there is no content] with [image: there is no content] but [image: there is no content], as we will see in the following example.



Example 4.

Let [image: there is no content] be an orthonormal basis for [image: there is no content]. Now let


W1=span{e1}W1⊥=span{e2,e3}W2=span{e2}W2⊥=span{e1,e3}W3=span{e3}W3⊥=span{e1,e2}W4=span{e1,e2}W4⊥=span{e3}W5=span{e1,e3}W5⊥=span{e2}











Both [image: there is no content] and [image: there is no content] do norm retrieval. Let [image: there is no content] denote the projections on to [image: there is no content], then [image: there is no content] and [image: there is no content]. However, [image: there is no content].






5. Classification of Norm Retrieval


In this section, we give classifications of norm retrieval by projections. The following theorem in [13] uses the span of the frame elements to classify norm retrievable frames in [image: there is no content].



Theorem 8.

([13]) A frame [image: there is no content] does norm retrieval if and only if for any partition [image: there is no content] of [image: there is no content], span{ϕk}k∈I1⊥⊥span{ϕk}k∈I2⊥.





Next, we prove one of the main results of this paper. This is an extension of the previous Theorem 8 and it fully classifies the subspaces of [image: there is no content] which do norm retrieval.



Theorem 9.

Let [image: there is no content] be projections onto subspaces [image: there is no content] of [image: there is no content]. Then the following are equivalent:

	
[image: there is no content] does norm retrieval,



	
Given any orthonormal bases [image: there is no content] of [image: there is no content] and any subcollection [image: there is no content] then


span{ϕij}(i,j)∈S⊥⊥span{ϕij}(i,j)∈Sc⊥,











	
For any orthonormal basis [image: there is no content] of [image: there is no content], then the collection of vectors [image: there is no content] do norm retrieval.










Proof. 

[image: there is no content]: Suppose x∈span{ϕij}(i,j)∈S⊥, and y∈span{ϕij}(i,j)∈Sc⊥ and let [image: there is no content] then,


∥Pi(x+y)∥2=∑j=1Ii|⟨x+y,ϕij⟩|2=∑j=1Ii|⟨x,ϕi⟩|21(i,j)∈S+∑j=1Ii|⟨y,ϕi⟩|21(i,j)∈Sc=∑j=1Ii|⟨x-y,ϕij⟩|2=∥Pi(x-y)∥2











Since [image: there is no content] does norm retrieval, we have


[image: there is no content]








and so [image: there is no content].



[image: there is no content]: Assume that [image: there is no content] for all [image: there is no content] Then, by ([9]) we can find an orthonormal basis [image: there is no content] for [image: there is no content] such that


[image: there is no content]











Denote [image: there is no content] and [image: there is no content]. Now we can see that


(x-y)⊥spanϕij:(i,j)∈S








and also


(x+y)⊥spanϕij:(i,j)∈Sc.











By (2), we must have that [image: there is no content] which implies that x and y have the same norm. The third equivalence is immediate from the result in Theorem (8). ☐





Corollary 4.

If [image: there is no content] does norm retrieval then [image: there is no content][image: there is no content] does norm retrieval. Hence all scalable frames do norm retrieval.





Proof. 

This is an immediate result of Theorem 9. Observe the conditions in Theorem 9 do not depend on the norm of each vector [image: there is no content]. ☐





For the complex case we have:

Proposition 7.

If [image: there is no content] does norm retrieval, then whenever we choose orthonormal bases [image: there is no content] of [image: there is no content] and any subcollection [image: there is no content] then


x⊥span{ϕij}(i,j)∈S and y⊥span{ϕij}(i,j)∈Sc implies Re⟨x,y⟩=0.















Proof. 

Given [image: there is no content] as above,


[image: there is no content]











Since our vectors do norm retrieval, we have


[image: there is no content]








and so [image: there is no content]. ☐





We use Theorem 9 to give a simple proof of a result in [17] which has a very complicated proof in that paper.



Corollary 5.

If [image: there is no content] do norm retrieval in [image: there is no content], then the vectors are orthogonal.





Proof. 

Assume [image: there is no content] and that [image: there is no content] is not orthogonal to span [image: there is no content]. Choose a unit vector [image: there is no content] for all [image: there is no content]. Let [image: there is no content]. Now,


[image: there is no content]











Let [image: there is no content]. Then


x⊥span{ϕi}i∈I and y⊥ϕj,








but


[image: there is no content]








contradicting the theorem. ☐





Corollary 6.

Consider a frame [image: there is no content]. The followings are equivalent:

	
Φ does norm retrieval.



	
For [image: there is no content] if [image: there is no content] and [image: there is no content] then, [image: there is no content].










Proof. 

By Theorem 9, it follows that Φ does norm retrieval if and only if [image: there is no content]. This happens if and only if [image: there is no content]. Hence the proof. ☐





Both phase retrieval and norm retrieval are preserved when applying projections to the vectors. Also, phase retrieval is preserved under the application of any invertible operator (refer to [12] for details). This is not the case with norm retrieval, in general. We prove this in the next corollary.



Corollary 7.

Norm retrieval is not preserved under the application of an invertible operator, in general.





Proof. 

Let [image: there is no content] be linearly independent vectors in [image: there is no content] which are not orthogonal. Then by Corollary 5, Φ cannot do norm retrieval. But there exists an invertible operator T on [image: there is no content] so that [image: there is no content] is an orthonormal basis and so does norm retrieval. ☐





However, we note that unitary operators, which are invertible, do preserve norm retrieval.



The following corollary about Parseval frames also holds in the infinite dimensional case with the same proof.



Corollary 8.

If Φ is a Parseval frame, it does norm retrieval. Hence, if we partition Φ into two disjoint sets, and choose a vector orthogonal to each set, then these vectors are orthogonal.





Proof. 

Let [image: there is no content] be a Parseval frame and let [image: there is no content]. Let T be its analysis operator. If [image: there is no content] and [image: there is no content]. Then [image: there is no content] and [image: there is no content] do not have any nonzero coordinates in common. So [image: there is no content]. Since, the analysis operator of a Parseval frame is an isometry, we have [image: there is no content]. ☐





A classic result in frame theory is that a Parseval frame [image: there is no content] has the property that for [image: there is no content], if [image: there is no content] then [image: there is no content] It turns out that a much more general result holds.



Corollary 9.

Let [image: there is no content] be a Parseval frame in [image: there is no content]. For [image: there is no content], let [image: there is no content] and [image: there is no content]. If [image: there is no content], then [image: there is no content].





Corollary 10.

If [image: there is no content] is a frame for [image: there is no content] with frame operator S which does norm retrieval, then for every [image: there is no content], if x⊥span{ϕi}i∈I then x∈span{S-1ϕi}i∈Ic. In particular, if Φ is a Parseval frame then x∈span{ϕi}i∈Ic.





Proof. 

Given x as in the corollary,


x=∑i=1M⟨x,ϕi⟩S-1ϕi=∑i∈Ic⟨x,ϕi⟩S-1ϕi.








☐





We next provide a classification of norm retrieval using Naimark’s theorem. It turns out that every frame can be scaled to look similar to Naimark’s theorem.



Proposition 8.

If [image: there is no content] is a frame with Bessel bound 1 on [image: there is no content], then there is an isometry [image: there is no content] with orthonormal basis [image: there is no content] so that the orthogonal projection onto [image: there is no content] satisfies: [image: there is no content] for every [image: there is no content].





Proof. 

Let [image: there is no content] be the eigenbasis for the frame with respective eigenvalues [image: there is no content]. For [image: there is no content] let


ϕM+i=1-λi+1gi+1.











Now, for any [image: there is no content] we have


∑i=12M-1|⟨ϕ,ϕi⟩|2=∑i=1M|⟨ϕ,ϕi⟩|2+∑i=M+12M-1|⟨ϕ,ϕi⟩|2=∑i=1M|λi⟨ϕ,gi⟩|2+∑i=1M-1|⟨ϕ,1-λi+1gi+1⟩|2=∑i=1Mλi|⟨ϕ,gi⟩|2+∑i=2M(1-λi)|⟨ϕ,gi⟩|2=|⟨ϕ,g1⟩|2+∑i=2M|⟨ϕ,gi⟩|2=∥ϕ∥2.











So [image: there is no content] is a Parseval frame. The analysis operator of this Parseval frame [image: there is no content] is then an isometry where [image: there is no content] where [image: there is no content] is the unit vector basis of [image: there is no content]. Let P be the orthogonal projection of [image: there is no content] onto [image: there is no content]. Then given [image: there is no content], we have for all [image: there is no content]:


[image: there is no content]











It follows that [image: there is no content] for all [image: there is no content]. ☐





We can now prove one of the main results in this section.



Theorem 10.

Let [image: there is no content] be a frame for [image: there is no content]. The following are equivalent:

	
Φ does norm retrieval.



	
By Proposition 8 if [image: there is no content] is an isometry and [image: there is no content] is the unit vector basis for [image: there is no content] then for every [image: there is no content] with [image: there is no content] for [image: there is no content], we have


[image: there is no content]


















Proof. 

[image: there is no content]: We have for [image: there is no content],


[image: there is no content]











By (1), we know that [image: there is no content]. Hence,


∥Tϕ∥2=∑i=1M|⟨Tϕi,ei⟩|2+∑i=M+12M-1|⟨Tϕ,ei⟩|2=∥ψ∥2=∑i=1M|⟨Tϕi,ei⟩|2+∑i=M+12M-1|⟨Tϕ,ei⟩|2.











Since [image: there is no content], the result follows.



[image: there is no content]: If [image: there is no content] for all [image: there is no content] then applying (2) as above we have:


∥ϕ∥2=∥Tϕ∥2=∑i=1M|⟨Tϕi,ei⟩|2+∑i=M+12M-1|⟨Tϕ,ei⟩|2=∑i=1M|⟨Tψ,ei⟩|2+∑i=M+12M-1|⟨Tϕ,ei⟩|2=∥Tψ∥2.








so [image: there is no content] and Φ does norm retrieval. ☐
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