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Abstract:



We study triangulated surface models with nontrivial surface metrices for membranes. The surface model is defined by a mapping [image: there is no content] from a two-dimensional parameter space M to the three-dimensional Euclidean space [image: there is no content]. The metric variable [image: there is no content], which is always fixed to the Euclidean metric [image: there is no content], can be extended to a more general non-Euclidean metric on M in the continuous model. The problem we focus on in this paper is whether such an extension is well defined or not in the discrete model. We find that a discrete surface model with a nontrivial metric becomes well defined if it is treated in the context of Finsler geometry (FG) modeling, where triangle edge length in M depends on the direction. It is also shown that the discrete FG model is orientation asymmetric on invertible surfaces in general, and for this reason, the FG model has a potential advantage for describing real physical membranes, which are expected to have some asymmetries for orientation-changing transformations.
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1. Introduction


Biological membranes including artificial ones, such as giant vesicles, are simply understood as two-dimensional surfaces [1]. The well-known surface model for membranes is statistical mechanically defined by using a mapping [image: there is no content] from a two-dimensional parameter space M to [image: there is no content] [2]. This mapping [image: there is no content] and the metric [image: there is no content], a set of functions on M, are the dynamical variables of the model. To discretize these dynamical variables, we use triangulated surfaces in both M and [image: there is no content]. On the discrete surfaces, the metric [image: there is no content] is always fixed to the Euclidean metric [image: there is no content] [3,4,5], while the induced metric [image: there is no content] is also used in theoretical studies on continuous surfaces [2]. These two-dimensional surface models are considered as a natural extension of the one-dimensional polymer model [6], and many studies for membranes have been conducted [7,8,9,10,11]. Landau–Ginzburg theory for membranes has also been developed [12]. In [13], the anisotropic morphologies of membranes are studied, and the notion of the multi-component is essential also for scalar functions, which are used to define the metric function on the triangles [14].



However, it is still unclear whether the non-Euclidean metric can be assumed or not for discrete models. In this paper, we study the metric [image: there is no content] in [13] in more detail. We will show that models with the metric in [13] and their extension to a more general one are ill-defined in the ordinary surface modeling prescription; however, these ill-defined models turn out to be well-defined in the context of Finsler geometry (FG) modeling [15,16,17,18,19,20]. Moreover, it is also shown that the FG model becomes orientation asymmetric, where “orientation asymmetric” means that the Hamiltonian is not invariant under the surface inversion [13]. In real physical membranes, the orientation asymmetry is observed because of their bilayer structure [21]. Indeed, asymmetry such as area difference between the outer and inner layers is expected to play an important role for the anisotropic shape of membranes. Therefore, it is worthwhile to study the discrete surface model with non-trivial metric [image: there is no content] more extensively.



We should note that there are two types of discrete surface models; the first is the fixed connectivity (FC), model and the second is the dynamically triangulated (DT) surface model. The FC surface model corresponds to polymerized membranes, while the DT surface model corresponds to fluid membranes, such as bilayer vesicles. The polymerized and fluid membranes are characterized by nonzero and zero shear moduli, respectively. Numerically, the dynamical triangulation for the DT models is simulated by the bond-flip technique as one of the Monte Carlo processes on triangulated lattices [22,23,24], while the FC surface models are defined on triangulated lattices without the bond flips. According to this classification, the discrete models in this paper belong to the DT surface models and correspond to fluid membranes, because the dynamical triangulation is assumed in the partition function, which will be defined in Section 3, just like in the model of [13].



In Section 2, a continuous surface model and its basic properties are reviewed, and a non-Euclidean metric, which we study in this paper, is introduced. In Section 3, we discuss why orientation asymmetry needs to be studied, and then, we introduce a discrete model on a triangulated spherical lattice and show that this discrete model is ill-defined in the ordinary context of surface modeling. In Section 4, we show that this ill-defined model can be understood as a well-defined FG model in a modeling that is slightly extended from the one in [15]. In Section 5, we summarize the results.




2. Continuous Surface Model


In this paper, we study a surface model that is an extension of the Helfrich and Polyakov (HP) model [25,26]. The HP model is physically defined by Hamiltonian S, which is a linear combination of the Gaussian bond potential [image: there is no content] and the bending energy [image: there is no content] such that:


[image: there is no content]



(1)




where [image: there is no content] is the bending rigidity ([image: there is no content] and T are the Boltzmann constant and the temperature, respectively). The surface position is described by [image: there is no content], and [image: there is no content] is a Riemannian metric on the two-dimensional surface M; gab=(gab)-1 is its inverse; and g=detgab. Note that the surface position [image: there is no content] is understood as a mapping r:M∋x=(x1,x2)↦X(x),Y(x),Z(x)∈R3, where the surface orientation is assumed to be preserved. The symbol [image: there is no content] in [image: there is no content] denotes a unit normal vector of the image surface, where one of two orientations is used to define [image: there is no content].



It is well known that the Hamiltonian is invariant under (i) general coordinate transformation x→x′ in M and (ii) conformal transformation for [image: there is no content] such that gab→gab′=f(x)gab with a positive function f on M [2]. The first property under the transformation (i), called re-parametrization invariance, is expressed by S(r(x),gab(x))=S(r(x′),gab(x′)), where [image: there is no content] and [image: there is no content] are composite functions. The second property under (ii) is expressed by S(r(x),gab(x))=S(r(x),gab′(x)). The metrices [image: there is no content] and [image: there is no content] are called conformally equivalent, which is written as gab≃gab′, if there exists a positive function f such that gab′=fgab. Therefore, the second property with respect to the transformation (ii) implies that S depends only on conformally non-equivalent metrices.



The metric [image: there is no content] of the surface M is generally given by gab=EFFG with the functions of E>0,G>0,EG-F2>0. By letting F=0, we have gab=E00G=E100G/E≃100ρ2≃1/ρ00ρ, where ρ2=G/E [13]. This metric is in general not conformally equivalent to the Euclidean metric [image: there is no content]. We call a metric [image: there is no content] trivial (non-trivial) if [image: there is no content] is conformally equivalent (inequivalent) to [image: there is no content], although surface models with gab=δab and gab=∂ar·∂br are physically non-trivial [22,23,24,27,28,29,30,31,32].




3. Discrete Surface Model


3.1. Membrane Orientation


First, we should comment on the surface orientation. The unit normal vector [image: there is no content] is directed from inside to outside of the material separated from bulk material by the membrane (see Figure 1a). However, if the membrane self-intersects, then the direction of [image: there is no content] changes from outside to inside (Figure 1b). Otherwise (⇔[image: there is no content] is directed from inside to outside), [image: there is no content] discontinuously changes at the intersection point. For this reason, we change the surface orientation by changing the local coordinate system from left-handed to right-handed while [image: there is no content] remains unchanged (Figure 1b). We should emphasize that our basic assumption is that the surface orientation is locally changeable. This means that the surface in [image: there is no content] is self-intersecting, or in other words, the surface is not self-avoiding.


Figure 1. A membrane in aqueous solution separates the solution into two regions; inside and outside. (a) Self-avoiding surface with unit normal vectors [image: there is no content]; (b) self-intersecting surface with [image: there is no content]; (c) lipid bilayer structure of membranes, where the symbols of lipids for inner and outer layers are drawn differently; and (d) a partly inverted bilayer.



[image: Axioms 06 00010 g001]






However, such an intersection process is not so easy to implement in the numerical simulations (no numerical simulation is performed in this paper). Apart from this, it is unclear whether or not the implementation of such an intersection process is effective for simulating the membrane inversion. Therefore, we assume that the surface is locally invertible without intersections; an inversion is expected to occur independent of whether the surface is self-intersecting or not. Indeed, real physical membranes are composed of lipid molecules, which have hydrophobic and hydrophilic parts. These lipids form a bilayer structure (Figure 1c). In those real membranes, the bilayer structure is partly inverted just as in Figure 1d via the so-called flip-flop process. Such an inversion process without intersection is not always unphysical because it can be seen in the process of pore formation. The pore formation process is reversible and forms cup-like membranes, where the membranes are not always self-intersecting [33]. The cup-like membranes are stable [34] and expected to play an important role as an intermediate configuration for cell inversion. It should be remarked that the surface orientation is also changeable in the process of cell fission and fusion, where the surface self-intersects, in real physical membranes.



To define a discrete model, we use a piecewise-linearly triangulated surface in [image: there is no content] [3,4,5]. In this paper, a spherical surface is assumed. Therefore, it is natural to assume that M is also triangulated and of sphere topology. Triangles in M can be smooth in general, and these smooth triangles are mapped to piecewise-linear triangles in [image: there is no content] by [image: there is no content] (see Figure 2a,b). We should note that triangle [image: there is no content] in M has two different orientations. Let [image: there is no content]L,R denote the triangle that has the left-hand (right-hand) orientation, where [image: there is no content] corresponds to the left-handed (right-handed) local coordinate system. The symbol [image: there is no content]L is used for non-inverted parts of the surface, while [image: there is no content]R is used for inverted parts shown in Figure 1d. The direction of [image: there is no content] is defined to be dependent on the orientation of [image: there is no content]L,R, as mentioned in the previous subsection (see Figure 2c).


Figure 2. (a) A mapping [image: there is no content] from a smooth triangle in M to a piecewise linear triangle in [image: there is no content]; (b) a triangle and the three neighboring triangles in [image: there is no content]; (c) the definition of [image: there is no content] on the triangles [image: there is no content]L,R; and (d) two neighboring triangles [image: there is no content]L± with unit normal vectors [image: there is no content] and their common bond 12. The suffices of [image: there is no content]L,R denote the orientation of the triangle. The open circles with an arrow at one terminal point indicate the surface orientation.
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The surface inversion is given by:


ri→-ri(foralli),



(2)




for example. The problem is whether the inverted surface is stable or not. As we will see below, the energy of the inverted surface is different from that of the original surface in a non-Euclidean metric model. This non-Euclidean metric model becomes well-defined if it is treated as an FG model. In the FG modeling (not in the standard HP modeling), we assume that the surface is locally invertible as in Figure 1d, which can be defined by the change of local coordinate orientation. Thus, studies on the stability of inverted surfaces become feasible within the scope of FG modeling, although the transformation of variables [image: there is no content] for this local inversion is not always given by Equation (2); the vertex position remains unchanged under the change of triangle orientation.




3.2. Discretization of the Model


In this subsection, the discretization of the Hamiltonian in Equation (1) is performed on the triangles [image: there is no content]L and their image triangles [image: there is no content]. The function [image: there is no content] in [image: there is no content] is defined on each triangle [image: there is no content] in M in the discrete model, and we denote the function [image: there is no content] on [image: there is no content] by [image: there is no content]. Thus, the discrete metric defined on triangle [image: there is no content] is given by:


gab=1/ρΔ00ρΔ,ρΔ>0,(onΔL).



(3)







By replacing the integral and partial derivatives in [image: there is no content] and [image: there is no content] with the sum over triangles [image: there is no content] and differences, respectively, such that:


∫gd2x→∑Δ,∂r∂x1→r2-r1,∂r∂x2→r3-r1,∂n∂x1→n0-n2,∂n∂x2→n0-n3,



(4)




we have the discrete expressions g11(r2-r1)2+g22(r3-r1)2 and g11(n0-n2)2+g22(n0-n3)2 corresponding to the discrete energies [image: there is no content] and [image: there is no content] of [image: there is no content] and [image: there is no content] on triangle [image: there is no content], where the local coordinate origin is assumed at Vertex 1 (see Figure 2b). Thus, the corresponding discrete expressions of [image: there is no content] and [image: there is no content] are given by:


[image: there is no content]



(5)




where [image: there is no content]. The index i of [image: there is no content] in this [image: there is no content] represents a triangle (see Figure 2b). Since the coordinate origin can also be assumed at Vertices 2 and 3 on triangle [image: there is no content], we have three possible discrete expressions, including those in Equation (5) for [image: there is no content] and [image: there is no content]. Thus, we have:


S1=13∑Δρ1+1ρ2ℓ122+ρ2+1ρ3ℓ232+ρ3+1ρ1ℓ312,S2=13∑Δρ2+1ρ11-n0·n3+ρ3+1ρ21-n0·n1+ρ1+1ρ31-n0·n2,



(6)




where the factor [image: there is no content] is assumed. In the expressions, the suffix i of [image: there is no content] denotes the coordinate origin. The reason why the function [image: there is no content] depends on the coordinate origin is that [image: there is no content] is an element of [image: there is no content] matrix [image: there is no content], which depends on local coordinates in general.



The expressions for [image: there is no content] and [image: there is no content] in Equations (5) and (6) correspond to those for [image: there is no content]L. In Equation (6), the sum over triangles [image: there is no content] in [image: there is no content] and [image: there is no content] can be replaced by sum over bonds [image: there is no content]. In this replacement, we should remind ourselves of the fact that the first terms of [image: there is no content] and [image: there is no content] in (6) are respectively replaced by ρ1++1/ρ2++ρ2-+1/ρ1-ℓ122 and ρ2++1/ρ1++ρ1-+1/ρ2-1-n+·n-. In these expressions, [image: there is no content] denotes the function [image: there is no content] on the triangles [image: there is no content]L±, where the coordinate origin is at vertex i (see Figure 2d), and [image: there is no content] denote [image: there is no content] for triangles [image: there is no content]L±. The coefficient of [image: there is no content] is different from that of 1-n+·n-, and these coefficients come from the following expressions:


[image: there is no content]



(7)







Thus, we have:


S1=∑ijγijℓij2,S2=∑ijκij1-n+·n-,γij=γij++γij-/4,κij=κij++κij-/4,γij+=ρi++1/ρj+,κij+=ρj++1/ρi+,(onΔL+),γij-=ρj-+1/ρi-,κij-=ρi-+1/ρj-,(onΔL-),



(8)




where the factor [image: there is no content] is replaced by [image: there is no content] in the final expressions of [image: there is no content] and [image: there is no content]. The indices [image: there is no content] of [image: there is no content] and [image: there is no content] simply denote vertices i and j. We should note that γij=κji and γij≠κij in general in Equation (8), as mentioned above.



The partition function Z and Hamiltonian S of the model we start with in this paper are defined by:


Z(λ,κ)=∑σ∑T∫′∏i=1Ndriexp-S(r,σ),S=λS0+S1+κS2,S0=∑±1-σ+·σ-,σ±∈{1,-1},



(9)




where Ising model energy [image: there is no content] with the coefficient [image: there is no content] is included in S. This is a surface model for multi-component membranes [13]. The sum [image: there is no content] in [image: there is no content] denotes the sum over all nearest neighbor triangles + and −, and [image: there is no content] denotes that [image: there is no content] is defined on the triangles [image: there is no content]L±. The variable [image: there is no content] is an element of Z2={1,-1}; however, [image: there is no content] (and [image: there is no content]) is not always limited to the Ising-type Hamiltonian. The variable [image: there is no content] is introduced to represent the components A and B, such as liquid-ordered and liquid-disordered phases [13]. If σ+=1(-1) on triangle [image: there is no content]+, this triangle [image: there is no content]+ is understood such that it belongs to or is occupied by the component A (B) for example. The value of [image: there is no content] on each triangle [image: there is no content] remains unchanged; however, the energy [image: there is no content] does not remain constant because the combination of nearest neighbor pairs of triangles [image: there is no content]± changes due to the triangle diffusion, which is actually expected on dynamically-triangulated surfaces [13]. In the model of [13], the function [image: there is no content] is independent of vertex i and depends only on triangle [image: there is no content]+, and therefore, the value of [image: there is no content] is uniquely determined only by [image: there is no content] if the dependence of [image: there is no content] on [image: there is no content] is fixed. As a consequence, the metric [image: there is no content] is determined by the internal variable [image: there is no content]. In the model of Equation (9), the dependence of [image: there is no content] on [image: there is no content] is not explicitly specified, because this dependence of [image: there is no content] on [image: there is no content] is in general independent of the well definedness of discrete surface models with non-Euclidean metric, and this well definedness is the main target in this paper.



In Z, [image: there is no content] and [image: there is no content] denote the sum over all possible configurations of [image: there is no content] and triangulations [image: there is no content], respectively. The sum over triangulation [image: there is no content] can be simulated by the bond flips in MC simulations, and therefore, the model is grouped into the fluid surface models as mentioned in the Introduction. The symbol [image: there is no content] in [image: there is no content] denotes the triangulation, which is assumed as one of the dynamical variables of the discrete fluid model. This means that a variable [image: there is no content] corresponds to a triangulated lattice configuration. Therefore, the lattice configurations in the parameter space M are determined by [image: there is no content]. On the other hand, a lattice configuration corresponding to a given [image: there is no content] is originally considered as an ingredient of a set of local coordinate systems; two different [image: there is no content]’s correspond to two inequivalent coordinates, which are not transformed to each other by any coordinate transformation. Recalling that the continuous Hamiltonian is invariant under general coordinated transformations, we can chose an arbitrary coordinate, such as the orthogonal coordinate for each triangle of a given [image: there is no content]. However, from Polyakov’s string theoretical point of view, the partition function is defined by the sum over all possible metrices [image: there is no content] in addition to the sum over all possible mappings [image: there is no content]. Since the metric g depends on coordinates, [image: there is no content] is considered to be corresponding to the sum over local coordinates, which is simulated by [image: there is no content] in the discrete models. Therefore, from these intuitive discussions, the Euclidean metric, for example, is forbidden in a fluid model on triangulated lattices without DT; this Euclidean metric model without DT is simply an FC model for polymerized membranes, where the surface inversion is not expected.



The symbol [image: there is no content] denotes [image: there is no content]-dimensional integrations in [image: there is no content] under the condition that the center of mass of the surface is fixed to the origin of [image: there is no content]. The Hamiltonian S has the unit of energy [image: there is no content]. The coefficient [image: there is no content] of [image: there is no content] is the bending rigidity.



Here, we comment on the property called scale invariance of the model [35]. This comes from the fact that the integration of [image: there is no content] in Z is independent of the scale transformation, such that r→αr for arbitrary positive α∈R. This property is expressed by Z({r})=Z({αr}), and therefore, for Hamiltonian S′=λS0+cS1+κS2, we have:


∑σ∑T∫′∏i=1Ndriexp-S′(r)=α3N-1∑σ∑T∫′∏i=1Ndriexp-λS0+cα2S1+κS2=c-(3N-1)/2∑σ∑T∫′∏i=1Ndriexp-λS0+S1+κS2=c-(3N-1)/2∑σ∑T∫′∏i=1Ndriexp-S(r).



(10)







In the second line of Equation (10), we assume α=1/c, and then in the third line, we have S′(αr)=λS0+S1+κS2 because [image: there is no content] and [image: there is no content] are scale independent and S1(αr)=α2S1(r). Thus, from the fact that the partition function is independent of the multiplicative constant, we find that the model with S′=λS0+cS1+κS2 is equivalent to the model with S=λS0+S1+κS2. “Equivalent” means that the shape of the surface is independent of the value of c(>0), although the surface size depends on c in general. The dependence of surface size on c is also understood from the scale-invariant property of Z. Indeed, it follows from Z({r})=Z({αr}) that ∂Z({αr})/∂α|α=1=0, and therefore, we have [35]:


∂logZS′(αr)∂αα=1=1Z(3N-1)α3N-2Z-2cα3N∑σ∑T∫′∏i=1NdriS1exp-λS0+cα2S1+κS2α=1=(3N-1)-2c⟨S1⟩=0⇔⟨S1⟩/N=3/(2c).



(11)







This final equation implies that the mean bond length squares [image: there is no content] depends on c, because [image: there is no content] is given by S1=∑ijγijℓij2 where [image: there is no content] is independent of c. For a specialized case that [image: there is no content] = constant, [image: there is no content] becomes proportional to [image: there is no content]. On the other hand, the mean bond length squares in general represent the surface size for smooth surfaces, which are expected for sufficiently large [image: there is no content].



We should note that the model studied in [13] for a two-component membrane is obtained from the model of Equations (8) and (9) by the assumption that [image: there is no content] is independent of the local coordinate origin i and depends only on triangles [image: there is no content]±. In this case, the model is orientation symmetric, and therefore, the lower suffices [image: there is no content] for the orientation of triangles [image: there is no content]L,R are not necessary. Then, we have γij=κij=(1/4)ρ++1/ρ++ρ-+1/ρ-, where + and − are the two neighboring triangles of bond [image: there is no content], which links vertices i and j. Thus, [image: there is no content] (and [image: there is no content]) defined on bond [image: there is no content] depends only on [image: there is no content] of the two neighboring triangles in the model of [13]. For this reason, the configuration (or distribution) of [image: there is no content] on the surface remains unchanged if the triangulation is fixed. However, the model is defined on dynamically-triangulated lattices, which allow not only vertices, but also triangles to diffuse freely over the surface [22,23,24]. This free diffusion of triangles changes the distribution of [image: there is no content] and, hence, [image: there is no content] and [image: there is no content]. Moreover, [image: there is no content] is assigned on triangles (not on vertices) such that the value of [image: there is no content] on each triangle is determined by [image: there is no content]. As a consequence, the corresponding energy S0=∑±1-σ+·σ- becomes dependent on the distribution of [image: there is no content] or, in other words, the distribution of [image: there is no content] and [image: there is no content] is determined by the energy [image: there is no content]. This is an outline of the model in [13].



In this paper, [image: there is no content] depends on not only triangles [image: there is no content]±, but also the local coordinate origin i in contrast to that of the model in [13]. We should note that the relation between [image: there is no content] and [image: there is no content] is not explicitly specified. Although the model is not determined without the explicit relation, the following discussions in this paper are independent of this relation.




3.3. Well-Defined Model


We start with the definition of the trivial (non-trivial) model for a discrete surface model.



Definition 1.

Let us assume that Hamiltonian S of a discrete surface model is given by Equation (8). Then, this discrete model is called trivial (non-trivial) if the following conditions are (not) satisfied:


γij=constant,κij=constant,



(12)




where the constants are independent of bond [image: there is no content], and these constants are not necessarily the same.





We assume λ=0 in S of Equation (8) for simplicity. We should note that a model with S′=c1S1+κc2S2, for arbitrary coefficients [image: there is no content] and [image: there is no content], is identical to the model defined by S=S1+κ′S2 with κ′=κc2. Indeed, because of the scale invariance of Z discussed in the previous subsection using Equation (10), the coefficient [image: there is no content] of [image: there is no content] in [image: there is no content] can be replaced by one. Thus, we have S′=S1+κ′S2.



If the metric is conformally equivalent to the Euclidean metric, then the model is trivial. In this sense, this definition for the trivial (non-trivial) model is an extension of the definition by the terminology conformally equivalent for [image: there is no content] discussed in Section 3.1. However, there exists a metric that is conformally non-equivalent to [image: there is no content] while it makes the model trivial. An example of such a metric is gab=2/(3+5)00(3+5)/2, and more detailed information will be given below (in Remark 2).



Next, we introduce the notion of direction-dependent length [image: there is no content] (and [image: there is no content]) of bond [image: there is no content], which is shared by two triangles, in the discrete model. Let [image: there is no content]L± be the two nearest neighbor triangles of Bond 12 on M (Figure 3a). The length [image: there is no content] of Bond 12 is defined by L12(ΔL+)=∫dx11/ρ1+=1/ρ1+, where [image: there is no content] is the element [image: there is no content] of the metric [image: there is no content] on [image: there is no content]L+ where the local coordinate origin is at Vertex 1; the symbol [image: there is no content]L+ in [image: there is no content] denotes that [image: there is no content] is defined by [image: there is no content] on triangle [image: there is no content]L+. It is also possible to define [image: there is no content] by L12(ΔL+)=∫dx2(ρ2+)=ρ2+, where [image: there is no content] is the element [image: there is no content] on [image: there is no content]L+ where the local coordinate origin is at Vertex 2. Thus, [image: there is no content] is defined by the mean value of these two lengths, and the length [image: there is no content] of Bond 12 is also defined in exactly same manner. Then, we have:


L12(ΔL+)=(1/2)1/ρ1++ρ2+,L21(ΔL-)=(1/2)1/ρ2-+ρ1-.



(13)






Figure 3. (a) Two neighboring triangles [image: there is no content]± and elements of [image: there is no content] for the direction dependent length of bond 12 at the vertices 1 and 2; and (b) the inverted triangles [image: there is no content]R± (inside view) of [image: there is no content]L± in (a). The direction dependent lengths of bond 12 are indicated by long arrows in both [image: there is no content]L± and [image: there is no content]R±.



[image: Axioms 06 00010 g003]






These two lengths are different from each other in their expressions, and therefore, it appears that the bond length is dependent on its direction. For the inverted surface (shown in Figure 3b), we also have the two different lengths:


L¯12(ΔR-)=(1/2)1/ρ1-+ρ2-,L¯21(ΔR+)=(1/2)1/ρ2++ρ1+.



(14)







It is also possible to define the lengths of Bond 12 as follows:


L12′(ΔL)=(1/2)1/ρ1++ρ1-,L21′(ΔL)=(1/2)ρ2++1/ρ2-,L¯12′(ΔR)=(1/2)ρ1++1/ρ1-,L¯21′(ΔR)=(1/2)1/ρ2++ρ2-,



(15)




where [image: there is no content] and [image: there is no content] ([image: there is no content] and [image: there is no content]) correspond to those in Equation (13) (Equation (14)). The following discussions remain unchanged if [image: there is no content], [image: there is no content] and [image: there is no content], [image: there is no content] are assumed as the definition of bond lengths. For this reason, we use only the expressions in Equation (13) and Equation (14) for bond lengths in the discussions below.



Now, let us introduce the notion of a well-defined model.



Definition 2.

A discrete surface model is called well defined if the following conditions are satisfied:

	(A1)

	
Any bond length is independent of its direction




	(A2)

	
Any bond length is independent of surface orientation




	(A3)

	
Any triangle area is independent of surface orientation











We should note that these constraints (A1)–(A3) are not imposed on Finsler geometry models, which will be introduced in the following section. Using Equations (13) and (14), we rewrite the first and second conditions (A1) and (A2) such that:


1/ρ1++ρ2+=1/ρ2-+ρ1-,(⇔(A1)),



(16)






1/ρ2-+ρ1-=1/ρ1-+ρ2-,1/ρ1++ρ2+=1/ρ2++ρ1+(⇔(A2)).



(17)







The condition (A3) is always satisfied because of the fact that detgab=1 for the metric function in Equation (3). Note that the constraint (A1) is imposed only on triangles [image: there is no content], and the equation corresponding to (A1) on triangles [image: there is no content] is not independent of the three equations in Equations (16) and (17).



If we use the following definition for the bond length consistency for every vertex:


ρ1-=1/ρ1+,(⇔(A1)),



(18)






1/ρ1+=ρ1+,ρ1-=1/ρ1-(⇔(A2)),



(19)




then we have [image: there is no content] (Vertex 1 for simplicity). In this case, we have a trivial model because gab=δab.



The discrete expression of the induced metric gab=∂ar·∂br is given by gab=ℓ122ℓ→12·ℓ→13ℓ→12·ℓ→13ℓ132, which is defined on Triangle 123 in [image: there is no content] with the local coordinate origin at [image: there is no content] (see Figure 2b). This [image: there is no content] is not of the form [image: there is no content], and for this reason, the induced metric model is out of the scope of Definition 1. However, it is easy to see that the induced metric model satisfies (A1)–(A3) in Definition 2. Indeed, the bond length of this model is just the Euclidean length of Bond 12 in [image: there is no content]. Other conditions are also easy to confirm.




3.4. Orientation Symmetric Model


The discrete model is defined by the Hamiltonian in Equation (8), where [image: there is no content] is a coordinate-dependent metric. Therefore, the Hamiltonian depends on the local coordinates on M, and it also depends on the orientation of M. For this reason, we define the notion of the orientation symmetric/asymmetric model defined on surfaces with [image: there is no content]L. This simply means that the Hamiltonian of Equation (8) can be used for a model in which the partition function allows the surface inversion process. Indeed, a property of the model corresponding to symmetries in Hamiltonian can be discussed without referencing the partition function in general. Thus, the Hamiltonian is called orientation symmetric if it is invariant under the surface inversion in Equation (2), for example for any configuration of [image: there is no content], and we also have:



Definition 3.

A discrete surface model is called orientation symmetric if the Hamiltonian is orientation symmetric.





In the Hamiltonian of Equation (8), the quantities [image: there is no content] and [image: there is no content] in [image: there is no content] and [image: there is no content] depend on the surface orientation. Thus, the condition for that the Hamiltonian is orientation symmetric is as follows:


1/ρ1-+ρ2-+1/ρ2++ρ1+=1/ρ2-+ρ1-+1/ρ1++ρ2+



(20)




for all bonds 12 and [image: there is no content]±. Indeed, the Gaussian bond potential [image: there is no content] of Bond 12 is given by S1(ℓ12)=(1/4)1/ρ1-+ρ2-+1/ρ2++ρ1+ℓ122 (Figure 4a), while on the inverted triangles, the corresponding quantity [image: there is no content] is given by S¯1(ℓ12)=(1/4)1/ρ2-+ρ1-+1/ρ1++ρ2+ℓ122. These [image: there is no content] and [image: there is no content] are obtained by using the following expression for the inverse metric:


[image: there is no content]



(21)






Figure 4. (a) Two neighboring triangles [image: there is no content]L± and elements of the inverse metric [image: there is no content] for [image: there is no content] and [image: there is no content]; and (b) the inverted triangles [image: there is no content]R± (inside view).



[image: Axioms 06 00010 g004]






Thus, from the equation S1(ℓ12)=S¯1(ℓ12) for any Bond 12, which is the condition for [image: there is no content] to be orientation symmetric, we have Equation (20). We should note that from the condition S2(n+·n-)=S¯2(n+·n-) for the bending energy [image: there is no content], the same equation as Equation (20) is obtained.



Remark 1.

We have the following remarks:

	(a)

	
All non-trivial models are orientation asymmetric




	(b)

	
All orientation asymmetric models are ill-defined











Proof of Remark 1.

(a) The inverse metric [image: there is no content] of a non-trivial model is given by Equation (21), and therefore, it is easy to see that there exists a bond 12, such that S1(ℓ12)≠S¯1(ℓ12). Indeed, we can choose [image: there is no content]’s such that Equation (20) is not satisfied. This inequality S1(ℓ12)≠S¯1(ℓ12) implies that the condition in Equation (20) is not satisfied and that the model is orientation asymmetric. (b) ⇔ All well-defined models are orientation symmetric, which can be proven as follows: if the model is well-defined, then Equations (16) and (17) are satisfied. Then, it is easy to see that Equation (20) is satisfied. This implies that the model is orientation symmetric. ☐





From Remark 1, it is straightforward to prove the following theorem:



Theorem 1.

All non-trivial models are ill-defined.





Here, we should clarify how well-defined models are different from the model with Euclidean metric [image: there is no content]. This problem is rephrased such that what type of [image: there is no content] is allowed for a well-defined model. The answer is as follows:



Remark 2.

We have the following remarks:

	(a)

	
The function [image: there is no content] of any well-defined model satisfies:


[image: there is no content]



(22)




where the constant a depends on neither vertex i, nor triangle Δ.




	(b)

	
There are two possible ρs, which are solutions of Equation(22):


[image: there is no content]



(23)








	(c)

	
If Equation (22) is satisfied, then the model is trivial.











Proof of Remark 2.

(a) A well-defined model satisfies Equations (16) and (17). Multiplying both sides of the first equation in Equation (17) by ρ1-ρ2-(>0), we have ρ1-ρ1-ρ2-+1=ρ2-ρ1-ρ2-+1, and therefore, ρ1-=ρ2-(=ρ-). It is also easy to see that ρ1+=ρ2+(=ρ+) from the second equation in Equation (17). Therefore, using these two equations and Equation (16), we have ρ1-+1/ρ1-=ρ1++1/ρ1+. This implies that the combination ρ-+1/ρ- is independent of the vertex and triangle, and thus, Equation (22) is proven. (b) It is easy to see that ρ±=a±a2-4/2, (a≥2) from Equation (22). (c) Indeed, using Equation (22), we have γij=κji=(1/4)ρ++1/ρ++ρ-+1/ρ-=a/2, and therefore, S1(a)=∑ijγijℓij2=(a/2)∑ijℓij2 and S2(a)=∑ijκij1-ni·nj=(a/2)∑ij1-ni·nj. ☐





It follows from Remark 2(a) that the model in [13] is ill-defined (in the context of HP model). In fact, the metric function assumed in the model of [13] does not satisfy Equation (22). The metric corresponding to Remark 2(b) shows examples of metric for the trivial model, which is defined by Definition 1. More explicitly, [image: there is no content] and [image: there is no content] make the model trivial. The metrices [image: there is no content] and [image: there is no content] are conformally equivalent to [image: there is no content], because ρ+ρ-=1, and therefore, these also make the model trivial. We should remark that Remarks 2(a) and 2(c) also prove Theorem 1.



Note also that if a model is well-defined and orientation symmetric in the sense of Definitions 2 and 3, then inverted triangles [image: there is no content]R need not be included in the lattice configuration. However, from Theorem 1, the model introduced in Equation (8) is orientation asymmetric, and this model turns out to be well-defined if it is treated as an FG model. Therefore the inverted triangles [image: there is no content]R should be included as a representation configuration of the model of Equation (8) if it is understood as a well-defined model. For this reason, we have to extend the FG model introduced in [15] such that the Hamiltonian has values on both [image: there is no content]L and [image: there is no content]R.





4. Finsler Geometry Modeling


4.1. Finsler Geometry Model


As we have demonstrated in the previous subsection, all non-trivial surface models (⇔ either [image: there is no content] or [image: there is no content] depends on [image: there is no content]) are ill-defined. The reason why this unsatisfactory result is obtained is because the bond length should not be direction dependent for any well-defined models (see Definition 2). To make these ill-defined models meaningful, we introduce the notion of Finsler geometry, where length unit is allowed to be dependent on the direction. In the context of Finsler geometry modeling, Theorem 1 does not hold. The problem is whether or not the above mentioned ill-defined model (in Section 3) is fitted in Finsler geometry modeling.



Let [image: there is no content]L,R be triangles in M and x=(x1,x2) be a local coordinate on [image: there is no content]L,R, where the coordinate origin is at Vertex 1. Let y=(y1,y2) be defined by yi=dxi/dt,(i=1,2), where t is a parameter that increases toward the positive direction of the axes. It is also assumed that a positive parameter [image: there is no content] is defined on the axis from vertex i to vertex j, where vij≠vji in general.



Discrete Finsler functions on triangles [image: there is no content]L,R in M are defined by (Figure 5a,b):


LΔL(x,y)=y1/v12(onx1axis)y2/v13(onx2axis),LΔR(x,y)=y1/v13(onx1axis)y2/v12(onx2axis),



(24)




which can also be written as the bilinear forms:


LΔL2(x,y)=v12-2y12+v13-2y22,LΔR2(x,y)=v13-2y12+v12-2y22.



(25)






Figure 5. A triangle 123 with the local coordinate axis [image: there is no content] and the tangent vector component yi(=x˙i) at Vertex 1 on the (a) left-handed triangle [image: there is no content]L and (b) right-handed triangle [image: there is no content]R; and (c) three possible local coordinates on triangle [image: there is no content]L,R and positive number [image: there is no content] assigned along the bond [image: there is no content].
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From these expressions, we have the metric functions [image: there is no content] on [image: there is no content]L and [image: there is no content] on [image: there is no content]R, such that:


gab,L(x)=12∂LΔL2(x,y)∂ya∂yb=v12-200v13-2,gab,R(x)=12∂LΔR2(x,y)∂ya∂yb=v13-200v12-2.



(26)







In general, [image: there is no content] is a function with respect to x and y; however, [image: there is no content] in Equation (26) only depends on the local coordinate x, and it is independent of y.



Using the metric [image: there is no content] in Equation (26) and summing over all possible coordinate origins on triangle [image: there is no content]L,R, just the same as in Equation (6), we have the discrete Hamiltonian such that (see Figure 2b):


S1=∑Δγ12ℓ122+γ23ℓ232+γ31ℓ312,S2=∑Δκ121-n0·n3+κ231-n0·n1+κ311-n0·n2,γ12=v12v13+v21v23,γ23=v23v21+v32v31,γ31=v31v32+v13v12,κ12=v13v12+v23v21,κ23=v21v23+v31v32,κ31=v32v31+v12v13.



(27)







The sum over triangles [image: there is no content] in [image: there is no content] and [image: there is no content] can also be expressed by the sum over bonds with a numerical factor [image: there is no content]. Thus, we have:


S=S1+κS2,S1=14∑ijγij++γij-ℓij2,S2=14∑ijκij++κij-1-n+·n-,γ12+=v12v13+v21v23,γ12-=v12v14+v21v24,κ12+=v13v12+v23v21,κ12-=v14v12+v24v21,



(28)




where [image: there is no content] and [image: there is no content] are concrete examples of [image: there is no content] and [image: there is no content] for Bond 12 (see Figure 5c). The symbol ± denotes that [image: there is no content] and [image: there is no content] are defined on the triangles [image: there is no content]L,R±, which share the bond [image: there is no content] (Figure 6a,b).


Figure 6. Two of four possible combinations of triangles [image: there is no content]L,R+ and [image: there is no content]L,R-, which share Bond 12: (a) [image: there is no content]L+ and [image: there is no content]L- and (b) the inverted triangles [image: there is no content]R+ and [image: there is no content]R- (inside view) of those in (a). Elements of the inverse metric [image: there is no content] are given by [image: there is no content] and [image: there is no content], which are defined on Bond 12.



[image: Axioms 06 00010 g006]






If the coefficients [image: there is no content] and [image: there is no content] are defined by the quantities, which are defined on vertices i and j or on bond [image: there is no content], just like those in Equation (28), then these coefficients become independent of the orientation of the triangles. Therefore, we have γij,L±=γij,R±=γij± and κij,L±=κij,R±=κij±, and therefore, the model is orientation symmetric. In this case, we have γij++γij-=γji++γji-=4γij, and κij++κij-=κji++κji-=4κij. On the contrary, if [image: there is no content] and [image: there is no content] depend on [image: there is no content]L,R, then the model is orientation asymmetric. In this case, we have γij,LR++γij,LR-≠γji,LR++γji,LR-(⇔γij,L++γij,L-≠γji,L++γji,L-,⋯) and κij,LR++κij,LR-≠κji,LR++κji,LR- in general. It is also easy to see that γij,LR++γij,RL-≠γji,LR++γji,RL-(⇔γij,L++γij,R-≠γji,L++γji,R-,⋯) and κij,LR++κij,RL-≠κji,LR++κji,RL-. Such an orientation asymmetric FG model will be studied in the following subsection.



Finally, in this subsection, we emphasize a difference between the models defined by Equations (28) and (8). In fact, the expressions of [image: there is no content] and [image: there is no content] in Equation (28) are different from those in Equation (8). This difference comes from the fact that [image: there is no content] and [image: there is no content] in Equation (8) are simply obtained by discretization of an ordinary HP surface model with a non-Euclidean metric. More explicitly, we have the following facts: (i) not only [image: there is no content], but also [image: there is no content]R± is assumed to define [image: there is no content] and [image: there is no content] in Equation (28), while only [image: there is no content]L± is assumed to define those in Equation (8); (ii) the Finsler function is assumed to define [image: there is no content] and [image: there is no content] in Equation (28), while it is not assumed to define those in Equation (8). Therefore, mainly from the latter fact (ii), it is still unclear whether the model defined by Equation (8) can be called an FG model or not. For this reason, the model defined by Equation (8) still remains ill-defined, although the Hamiltonian in Equation (8) is very close to the one in Equation (28).




4.2. Orientation Asymmetric Finsler Geometry Model


As we have discussed in the previous subsection, the FG model in [15] is extended such that inverted triangles are included in the lattices. The triangulated lattices are composed of both [image: there is no content]L and [image: there is no content]R, where [image: there is no content]R corresponds to an inverted part of surface (Figure 1d). On these triangles [image: there is no content]L and [image: there is no content]R, the coefficients [image: there is no content] and [image: there is no content] of [image: there is no content] and [image: there is no content] are defined. Therefore, the orientation asymmetric states are in general allowed in the configurations of the FG model. In this subsection, we show that the ill-defined model constructed in the previous section by Equation (8) turns out to be a well-defined model in the context of FG modeling.



By comparing [image: there is no content] in Equation (26) and [image: there is no content] in Equation (3), we have the following correspondence between the parameters [image: there is no content] and the functions [image: there is no content] on [image: there is no content]L± (see Figure 4a, Figure 5c and Figure 6a):


v12-2=1/ρ1+,v13-2=ρ1+,v23-2=1/ρ2+,v21-2=ρ2+,v31-2=1/ρ3+,v32-2=ρ3+,(onΔL+),v12-2=1/ρ1-,v14-2=ρ1-,v24-2=1/ρ2-,v21-2=ρ2-,v41-2=1/ρ3-,v42-2=ρ3-,(onΔL-).



(29)







The symbol [image: there is no content] is a function on triangle [image: there is no content]L+ for the metric in Equation (3) when the local coordinate is at vertex i(=1, 2, 3). We also have a contribution from [image: there is no content]R±:


v12-2=ρ1+,v13-2=1/ρ1+,v23-2=ρ2+,v21-2=1/ρ2+,v31-2=ρ3+,v32-2=1/ρ3+,(onΔR+),v12-2=ρ1-,v14-2=1/ρ1-,v24-2=ρ2-,v21-2=1/ρ2-,v41-2=ρ3-,v42-2=1/ρ3-,(onΔR-).



(30)







By inserting these expressions into [image: there is no content] and [image: there is no content] in Equation (28), we have:


γ12+=ρ1++1/ρ2+,γ23+=ρ2++1/ρ3+,γ31+=ρ3++1/ρ1+,(onΔL+),γ12-=ρ2-+1/ρ1-,γ23-=ρ3-+1/ρ2-,γ31-=ρ1-+1/ρ3-,(onΔL-),κ12+=ρ2++1/ρ1+,κ23+=ρ3++1/ρ2+,κ31+=ρ1++1/ρ3+,(onΔL+),κ12-=ρ1-+1/ρ2-,κ23+=ρ2-+1/ρ3-,κ31-=ρ3-+1/ρ1-,(onΔL-).



(31)







The expressions of [image: there is no content] and [image: there is no content] on [image: there is no content]R± are obtained by replacing [image: there is no content] with [image: there is no content] in the expressions in Equation (31). We find from Equation (31) that the coefficients [image: there is no content] and [image: there is no content] can also be written more simply by using the suffices [image: there is no content], which will be presented below.



To incorporate two types of triangles [image: there is no content]L,R into the lattice configurations, which are dynamically updated in the partition function, we need a new variable corresponding to these [image: there is no content]L,R. Thus, we introduce a new dynamical variable [image: there is no content], which is defined on triangles [image: there is no content] and has values in [image: there is no content] just like [image: there is no content] in Equation (9) to represent the surface orientation:


[image: there is no content]



(32)




If χi=χ(Δi)=-1 is satisfied for all triangles [image: there is no content]i, then the surface is understood as being completely inverted. In contrast, mixed states, where the value of [image: there is no content] is not uniform, are understood as a partly-inverted membrane (see Figure 1d). This implies that actual intersections like the one in Figure 1b are not necessarily implemented in the model. If such intersections must be taken into consideration in the numerical simulation, it will be very time consuming, because every step for the vertex move should be checked to monitor how the lattice intersects. More than that the simulation is time consuming, as mentioned in the previous section, real physical membranes are expected to undergo inversion by pore formation without self-intersection.



By this new variable [image: there is no content] in Equation (32), the FG model introduced in [15] is extended such that the inverted surface states are included in the surface configurations. Indeed, for any given configuration, its inverted configuration by Equation (2) is included in the configurations, because the inverted configuration is obtained by the transformation [image: there is no content] for all i and with suitable translation and deformation of [image: there is no content]. In this new model, the triangulated surfaces are composed of both [image: there is no content]L and [image: there is no content]R, where the triangles [image: there is no content]R correspond to an inverted part of surface like the one in Figure 1d. The coefficients [image: there is no content] and [image: there is no content] of [image: there is no content] and [image: there is no content] are defined on not only [image: there is no content]L, but also [image: there is no content]R. Therefore, the orientation asymmetric states are naturally expected in the configurations of the new model.



The variable [image: there is no content] has values in [image: there is no content] just like [image: there is no content] in the energy [image: there is no content] of Equation (9); however, the role of [image: there is no content] is different from that of [image: there is no content]. The variable [image: there is no content] plays a role in defining the functions [image: there is no content] of the metric [image: there is no content]. In the context of the modeling in this paper, [image: there is no content] is determined independently of the surface orientation [image: there is no content]. As mentioned at the end of Section 4, [image: there is no content] is not included in the Hamiltonian introduced below, although the role of [image: there is no content] is completely different from that of [image: there is no content].



By including the partition function, we finally have:


Z(ζ,κ)=∑χ∑T∫′∏i=1Ndriexp-S(r,χ),S=S1+κS2+ζS3,S1=14∑ijγij++γij-ℓij2,S2=14∑ijκij++κij-1-n+·n-,S3=∑±1-χ+·χ-,χ±∈{1,-1},γij+=ρi++1/ρj+χ(Δ+)=11/ρi++ρj+χ(Δ+)=-1,γij-=ρj-+1/ρi-χ(Δ-)=11/ρj-+ρi-χ(Δ-)=-1,κij+=ρj++1/ρi+χ(Δ+)=11/ρj++ρi+χ(Δ+)=-1,κij-=ρi-+1/ρj-χ(Δ-)=11/ρi-+ρj-χ(Δ-)=-1,



(33)




where the Ising model Hamiltonian [image: there is no content] is assumed for the variable [image: there is no content] with the coefficient [image: there is no content]. The value of [image: there is no content] corresponds to [image: there is no content]L,R± as in Equation (32). For sufficiently large [image: there is no content], one of the lowest energy states of [image: there is no content] is realized because both [image: there is no content] and [image: there is no content] are asymmetric even though [image: there is no content] is symmetric under the surface inversion. Thus, we have proven that the model introduced in Equation (8) is identified as the FG model defined by Equation (28), in which the Finsler functions in Equation (24) are assumed. We should note that the Ising model Hamiltonian is not always necessary for [image: there is no content]. Note also that this FG model in Equation (33) has no constraint for the well-definedness introduced in Definition 2. In this sense, this model is well defined even though the bond length in M is direction dependent. Moreover, since the surface configuration includes inverted triangles, this model is orientation asymmetric from Remark 1 (a). Thus, we have:



Theorem 2.

All non-trivial models such as the one defined by Equation (8) or Equation (33) are orientation asymmetric and well defined in the context of Finsler geometry modeling.







5. Summary


In this paper, we confine ourselves to discrete surface models of Helfrich and Polyakov with the metric of the type gab=E00G. The discrete model is defined on dynamically-triangulated surfaces in [image: there is no content], and therefore, the model is aimed at describing properties of fluid membranes, such as lipid bilayers. The result in this paper indicates that the surface models with this type of non-Euclidean metric are well defined in the context of Finsler geometry (FG) modeling, and moreover, the models are orientation asymmetric in general. Indeed, in the FG scheme for discrete surface models, the length of the bond of the triangles in the parameter space M can be direction dependent, and no constraint is imposed on the bond length of inverted surfaces in the FG modeling. These allow us to introduce a new dynamical variable corresponding to the triangle orientation to incorporate the surface inversion process in the model. Thus, the Hamiltonian of the models with non-trivial [image: there is no content] has values on the locally-inverted surface, and for this reason, the Hamiltonian becomes dependent on the surface orientation. This property is expected to be useful to study real physical membranes, which undergo surface inversion. FG modeling for membranes and the numerical studies should be performed more extensively.
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