

  Tsallis Entropy and Generalized Shannon Additivity




Tsallis Entropy and Generalized Shannon Additivity







Axioms 2017, 6(2), 14; doi:10.3390/axioms6020014




Article



Tsallis Entropy and Generalized Shannon Additivity



Sonja Jäckle and Karsten Keller *





Institute of Mathematics, University of Lübeck, D-23562 Lübeck, Germany









*



Correspondence: Tel.: +49-451-3101-6030







Academic Editor: Abbe Mowshowitz



Received: 19 May 2017 / Accepted: 10 June 2017 / Published: 14 June 2017



Abstract:



The Tsallis entropy given for a positive parameter [image: there is no content] can be considered as a generalization of the classical Shannon entropy. For the latter, corresponding to [image: there is no content], there exist many axiomatic characterizations. One of them based on the well-known Khinchin-Shannon axioms has been simplified several times and adapted to Tsallis entropy, where the axiom of (generalized) Shannon additivity is playing a central role. The main aim of this paper is to discuss this axiom in the context of Tsallis entropy. We show that it is sufficient for characterizing Tsallis entropy, with the exceptions of cases [image: there is no content] discussed separately.
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1. Introduction


Some history. In 1988 Tsallis [1] generalized the Boltzmann-Gibbs entropy


[image: there is no content]











Describing classical thermodynamical ensembles with microstates of probabilities [image: there is no content], by the entropy


[image: there is no content]











For [image: there is no content] in the sense that [image: there is no content]. Here [image: there is no content] is the Boltzmann constant (being a multiplicative constant neglected in the following). Many physicists argue that generalizing the classical entropy was a breakthrough in thermodynamics since the extension allows better describing systems out of equilibrium and systems with strong correlations between microstates. There is, however, also criticism on the application of Tsallis’ concept (compare [2,3]). In information theory pioneered by Shannon, the Boltzmann-Gibbs entropy is one of the central concepts. We follow the usual practice to call it Shannon entropy. Also note that Tsallis’ entropy concept coincides up to a constant with the Havrda-Charvát entropy [4] given in 1967 in an information theoretical context. Besides information theory, entropies are used in many fields, among them dynamical systems, data analysis (see e.g. [5]), and fractal geometry [6].



There have been given many axiomatic characterizations of Tsallis’ entropy originating in such of the classical Shannon entropy (see below). One important axiom called (generalized) Shannon additivity is extensively discussed and shown to be sufficient in some sense in this paper.



Tsallis entropy. In the following, let [image: there is no content] for [image: there is no content] be the set of all n-dimensional stochastic vectors and [image: there is no content] be the set of all stochastic vectors, where [image: there is no content] and [image: there is no content] are the sets of natural numbers and of nonnegative real numbers, respectively. Given [image: there is no content] with [image: there is no content], the Tsallis entropy of a stochastic vector [image: there is no content] of some dimension n is defined by


[image: there is no content]











In the case [image: there is no content], the value [image: there is no content] is not defined, but the limit of it as [image: there is no content] approaches to 1 is


[image: there is no content]











Which provides the classical Shannon entropy. In so far Tsallis entropy can be considered as a generalization of the Shannon entropy and so it is not surprising that there have been many attempts to generalize various axiomatic characterizations of the latter to the Tsallis entropy.



Axiomatic characterizations. One line of characterizations mainly followed by Suyari [7] and discussed in this paper has its origin in the Shannon-Khinchin axioms of Shannon entropy (see [8,9]). Note that other characterizations of Tsallis entropy are due to dos Santos [10], Abe [11] and Furuichi [12]. For some general discussion of axiomatization of entropies see [13].



A map [image: there is no content] is the Shannon entropy up to a multiplicative positive constant if it satisfies the following axioms:


(S1)His continuous on▵nfor all n∈N,(S2)H1n,1n,…,1n≥H(p1,p2,…,pn)for all (p1,p2,…,pn)∈▵n,(S3)H(p1,p2,…,pn,0)=H(p1,p2,…,pn)for all (p1,p2,…,pn)∈▵,H(p1,1,...,p1,m1,p2,1,...,p2,m2,...,pn,1,...,pn,mn)=H(p1,...,pn)+∑i=1npiHpi,1pi,...,pi,mipifor all (p1,1,...,p1,m1,p2,1,...,p2,m2,...,pn,1,...,pn,mn)∈▵;n,m1,…,mn∈N(S4)and pi=∑j=1mipi,j;j=1,...,mi.











Axiom (S4) called Shannon additivity is playing a key role in the characterization of the Shannon entropy and an interesting result given by Suyari [7] says that its generalization


H(p1,1,...,p1,m1,p2,1,...,p2,m2,...,pn,1,...,pn,mn)=H(p1,...,pn)+∑i=1npiαHpi,1pi,...,pi,mipifor all (p1,1,...,p1,m1,p2,1,...,p2,m2,...,pn,1,...,pn,mn)∈▵;n,m1,…,mn∈N(GS4)and pi=∑j=1mipi,j;j=1,...,mi











For [image: there is no content] provides the Tsallis entropy for this [image: there is no content].



More precisely, if [image: there is no content] satisfies (S1), (S2), (S3) and (GS4), then [image: there is no content] is the Tsallis entropy for some positive constant [image: there is no content]. The full result of Suyari slightly corrected by Ilić et al. [14] includes a characterization of the map [image: there is no content] under the assumption that H also depends continuously on [image: there is no content]. We do not discuss this characterization, but we note here that the results below also provide an immediate simplification of the whole result of Suyari and Ilić et al.



Given [image: there is no content], the constant [image: there is no content] is determined by any positive value [image: there is no content] of some stochastic vector [image: there is no content]. If this reference vector is for example given by [image: there is no content], one easily sees that [image: there is no content] and [image: there is no content].



The main result. In this paper, we study the role of generalized Shannon additivity in characterizing Tsallis entropy, where for [image: there is no content] and [image: there is no content] we also consider the slightly relaxed property that


H(p1,...,pj−1,pj,pj+1,pj+2,…,pn)=H(p1,...,pj−1,pj+pj+1,pj+2,…,pn)+(pj+pj+1)αHpjpj+pj+1,pj+1pj+pj+1(GS4’)for all (p1,p2,…,pn∈▵);n∈N;j=1,2,…,n−1.











It turns out that this property basically is enough for characterizing the Tsallis entropy for [image: there is no content] and with a further weak assumption in the cases [image: there is no content]. As already mentioned, the statement (iii) for [image: there is no content] is an immediate consequence of a characterization of Shannon entropy by Diderrich [15] simplifying an axiomatization given by Faddeev [16] (see below).



Theorem 1.

Let [image: there is no content] be given with (GS4) or, a bit weaker, with (GS4’), for [image: there is no content]. Then the following holds:

	(i) 

	
If [image: there is no content], then


[image: there is no content]



(1)








	(ii) 

	
If [image: there is no content], then the following statements are equivalent:

	(a) 

	
It holds


[image: there is no content]












	(b) 

	
H is bounded on [image: there is no content],




	(c) 

	
H is continuous on [image: there is no content],




	(d) 

	
H is symmetric on [image: there is no content],




	(e) 

	
H does not change the signum on [image: there is no content].










	(iii) 

	
If [image: there is no content], then the following statements are equivalent:

	(a) 

	
It holds


[image: there is no content]












	(b) 

	
H is bounded on [image: there is no content].

















Note that statement (iii) is given here only for reasons of completeness. It follows from a result of Diderrich [15].



The paper is organized as follows. Section 2 is devoted to the proof of the main result. It will turn out that most of the substantial work is related to stochastic vectors contained in [image: there is no content] and that the generalized Shannon additivity acts as a bridge to stochastic vectors longer than 2 or 3. Section 3 completes the discussion. In particular, the Tsallis entropy for [image: there is no content] on rational vectors is discussed and an open problem is formulated.




2. Proof of the Main Result


We start with investigating the relationship of [image: there is no content] and [image: there is no content] for [image: there is no content].



Lemma 1.

Let [image: there is no content] and [image: there is no content] satisfy (GS4’). Then for all [image: there is no content] it follows


[image: there is no content]



(2)




in particular for [image: there is no content]


[image: there is no content]



(3)




and for [image: there is no content]


[image: there is no content]



(4)




Moreover it holds


[image: there is no content]



(5)









Proof. 

First of all, note that (5) is an immediate consequence of (GS4’) implying


H(1,0)=H(1)+1αH(1,0).











Further, two different applications of (GS4’) to [image: there is no content] provide


H12,12+12αH(1,0)=H12,12,0=H(1,0)+1αH12,12.











Therefore [image: there is no content], and since one similarly gets [image: there is no content], we can assume in the following that [image: there is no content].



Applying (GS4’) three times, one obtains


[image: there is no content]



(6)




and in the same way


[image: there is no content]



(7)







Transforming (7) to the term [image: there is no content] and then substituting this term in (6), provides


[image: there is no content]








which is equal to (2). Statements (3) and (4) follow immediately from Equation (2). ☐





In the case [image: there is no content] condition (GS4’) implies that the order of components of a stochastic vector does not make a difference for H:



Lemma 2.

Let [image: there is no content] satisfy (GS4’) for [image: there is no content]. Then H is permutation-invariant, meaning that [image: there is no content] for each (p1,p2,…,pn)∈▵;n∈N and each permutation π of [image: there is no content].





Proof. 

It suffices to show that


H(p1,...,pj−1,pj,pj+1,pj+2,…,pn)=H(p1,...,pj−1,pj+1,pj,pj+2,…,pn)for all (p1,p2,…,pn)∈▵;n∈N;j=1,2,…,n−1.











For [image: there is no content] this has been shown in Lemma 1 (see (3)), for [image: there is no content] it follows directly from (GS4’) and from Lemma 1. ☐





The following lemma provides the substantial part of the proof of Theorem 1.



Lemma 3.

For [image: there is no content] satisfying (GS4’) with [image: there is no content], the following holds:

	(i) 

	
If [image: there is no content], then


[image: there is no content]












	(ii) 

	
If [image: there is no content], then the following statements are equivalent:

	(a) 

	
It holds


[image: there is no content]












	(b) 

	
H is symmetric on [image: there is no content], meaning that [image: there is no content] for all [image: there is no content],




	(c) 

	
H is continuous on [image: there is no content],




	(d) 

	
H is bounded on [image: there is no content],




	(e) 

	
H is nonnegative or nonpositive on [image: there is no content].

















Proof. 

We first show (i). Let [image: there is no content] and [image: there is no content]. Changing the role of [image: there is no content] and [image: there is no content] in (2), by Lemma 1 one obtains


[image: there is no content]



(8)




Moreover, one easily sees that (2) transforms to


(1−3·2−α)H(p2,p1)=2α(1−3·2−α)H12,12(1−p1α−p2α)−(1−6·2−α+9·2−2α)H(p1,p2).



(9)




(8) and (9) provide


(1−22−α)H12,12(1−p1α−p2α)=(1−3·21−α+23−2α)H(p1,p2).











Since [image: there is no content], it follows


H(p1,p2)=1−p1α−p2α1−21−αH12,12.











In order to show (ii), let [image: there is no content] and define maps [image: there is no content] and [image: there is no content] by


[image: there is no content]








and


[image: there is no content]








for [image: there is no content].



By (4) in Lemma 1, (a) is equivalent both to (b) and to [image: there is no content] for all [image: there is no content]. (c) implies (d) by compactness of [image: there is no content] and validity of the implications (a) ⇒ (c) and (a) ⇒ (e) is obvious.



From


H(p,1−p)+p2H1−pp,1−1−pp=H(1−p,2p−1,1−p)=H(1−p,p)+p2H1−1−pp,1−pp








for p∈12,1 one obtains


[image: there is no content]



(10)




and by induction


D(p)=∏k=1nf∘k(p)2D(f∘n(p))



(11)




with f∘n(p)=f(f(…(f(︷ntimesp))…)).



For p∈23,1 it holds [image: there is no content], hence f maps the interval [image: there is no content] onto the interval [image: there is no content]. Since [image: there is no content] for all p∈23,1, the following holds:


For eachq∈23,1there exists some k∈Nwithf∘k(q)∈12,23.



(12)







Moreover, applying (10) to [image: there is no content] yields [image: there is no content], hence


[image: there is no content]



(13)







Assuming (d), by use of (11), (12) and (13) one obtains [image: there is no content] for all p∈12,1, hence (a). If (e) is valid, then by (4) in Lemma 1


[image: there is no content]








for all [image: there is no content], providing (d). By the already shown, (a), (b), (c), (d), (e) are equivalent. ☐





Now we are able to complete the proof of Theorem 1. Assuming (GS4’), we first show (1) for [image: there is no content], and for H bounded and [image: there is no content]. This provides statement (i) and, together with Lemma 3 (ii), statement (ii) of Theorem 1.



Statement (1) is valid for all [image: there is no content] by Lemma 3. In order to prove it for [image: there is no content], we use induction. Assuming validity of (1) for all [image: there is no content] with [image: there is no content], where [image: there is no content], let [image: there is no content]. Choose some [image: there is no content] with [image: there is no content]. Then by (GS4’) and Lemma 3 we have


H(p1,…,pj−1,pj,pj+1,pj+2,…,pk+1)  =H(p1,…,pj−1,pj+pj+1,pj+2,…,pk+1)+(pj+pj+1)αHpjpj+pj+1,pj+1pj+pj+1  =H12,121−∑i=1j−1piα−(pj+pj+1)α−∑i=j+2k+1piα1−21−α  +H12,12(pj+pj+1)α1−21−α1−pjpj+pj+1α−pj+1pj+pj+1α  =H12,121−∑i=1k+1piα1−21−α.








So (1) holds for all [image: there is no content] with [image: there is no content].



In order to see (iii), recall a result of Diderrich [15] stating that [image: there is no content] is a multiple of the Shannon entropy if H is bounded and permutation-invariant on [image: there is no content] and satisfies


H(p1,p2,p3,…,pn)=H(p1+p2,p3…,pn)+(p1+p2)Hp1p1+p2,p2p1+p2 for all (p1,p2,…,pn)∈▵;n∈N\{1}withp1+p2>0,








which is weaker than (GS4’) with [image: there is no content]. Since under (GS4’) H is permutation-invariant by Lemma 2, Diderrichs axiom are satisfied, and we are done.




3. Further Discussion


Our discussion suggests that the case [image: there is no content] is more complicated than the general one. In order to get some further insights, particularly in the case [image: there is no content], let us consider only rational stochastic vectors. So in the following let [image: there is no content] with [image: there is no content] for [image: there is no content] and [image: there is no content] being the rationals. The following proposition states that for [image: there is no content] the `rational’ generalized Shannon additivity principally provides the Tsallis entropy on the rationals, which particularly provides a proof of the implication (c) ⇒ (a) in Theorem 1 (ii).



Proposition 1.

Let [image: there is no content] be given with (S4) for [image: there is no content] instead of ▵ and [image: there is no content]. Then it holds


[image: there is no content]



(14)









Proof. 

For the vectors [image: there is no content] with [image: there is no content], we get from axiom (S4)


H1m,...,1m+m1mαH1n,...,1n=H1mn,...,1mn=H1n,...,1n+n1nαH1m,...,1m,








implying


[image: there is no content]



(15)







Now consider any rational vector [image: there is no content] with [image: there is no content] for [image: there is no content] satisfying [image: there is no content]. With (S4) we get


H(p1,...,pn)+∑i=1npiα·H1ai·n,...,1ai·n=H1b·n,...,1b·n=H1n,...,1n+n·1nα·H1b,...,1b.











Using (15), we obtain


H(p1,…,pn)=H1n,…,1n·1+n·1nα·1−1bα−11−1nα−1−∑i=1npiα1−1ai·nα−11−1nα−1=H1n,…,1n·1−∑i=1npiα1−1nα−1=H12,12·1−∑i=1npiα1−21−α. ☐













Let us finally compare (ii) and (iii) in Theorem 1 and ask for the role of (c), (d) and (e) of (ii) in (iii). Symmetry is already given by Lemma 2 when only (S4) is satisfied, (S4) and nonnegativity are not sufficient for characterizing Shannon entropy, as shown in [17]. By our knowledge, there is no proof that (S4) and continuity are enough, but (S4) and analyticity is working. Showing the latter, in [18] an argumentation reducing everything to the rationals as above has been used.



We want to resume with the open problem whether the further assumptions for [image: there is no content] in Theorem 1 are necessary.



Problem 1.

Is (1) in Theorem 1 also valid for [image: there is no content]?
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