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Abstract: Using the Kaczmarz algorithm, we prove that for any singular Borel probability measure µ

on [0, 1), every f ∈ L2(µ) possesses a Fourier series of the form f (x) = ∑∞
n=0 cne2πinx. We show that

the coefficients cn can be computed in terms of the quantities f̂ (n) =
∫ 1

0 f (x)e−2πinxdµ(x). We also
demonstrate a Shannon-type sampling theorem for functions that are in a sense µ-bandlimited.
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1. Introduction

For a Borel probability measure µ, a spectrum is a sequence {λn}n∈I such that the functions
{e2πiλnx : n ∈ I} ⊂ L2(µ) constitute an orthonormal basis. If µ possesses a spectrum, we say
µ is spectral, and then every f ∈ L2(µ) possesses a (nonharmonic) Fourier series of the form
f (x) = ∑n∈I〈 f (x), e2πiλnx〉e2πiλnx.

In [1], Jorgensen and Pedersen considered the question of whether measures induced by iterated
function systems on Rd are spectral. Remarkably, they demonstrated that the quaternary Cantor
measure µ4 is spectral. Equally remarkably, they also showed that no three exponentials are orthogonal
with respect to the ternary Cantor measure µ3, and hence µ3 is not spectral. The lack of a spectrum
for µ3 motivated subsequent research to relax the orthogonality condition, instead searching for an
exponential frame or Riesz basis, since an exponential frame would provide a Fourier series (see [2])
similar to the spectral case. Though these searches have yielded partial results, it is still an open
question whether L2(µ3) possesses an exponential frame. It is known that there exist singular measures
without exponential frames. In fact, Dutkay and Lai [3,4] showed that self-affine measures induced by
iterated function systems with no overlap cannot possess exponential frames if the probability weights
are not equal.

In this paper, we demonstrate that the Kaczmarz algorithm educes another potentially fruitful
substitute for exponential spectra and exponential frames: the ”effective” sequences defined by
Kwapień and Mycielski [5]. We show that the nonnegative integral exponentials in L2(µ) for any
singular Borel probability measure µ are such an effective sequence and that this effectivity allows us to
define a Fourier series representation of any function in L2(µ). This recovers a result of Poltoratskiı̆ [6]
concerning the normalized Cauchy transform.

Definition 1. A sequence { fn}∞
n=0 in a Hilbert space H is said to be Bessel if there exists a constant B > 0

such that for any x ∈ H,
∞

∑
n=0
|〈x, fn〉|2 ≤ B‖x‖2. (1)

This is equivalent to the existence of a constant D > 0 such that
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∥∥∥∥∥ K

∑
n=0

cn fn

∥∥∥∥∥ ≤ D

√√√√ K

∑
n=0
|cn|2

for any finite sequence {c0, c1, . . . , cK} of complex numbers. The sequence is called a frame if in addition there
exists a constant A > 0 such that for any x ∈ H,

A‖x‖2 ≤
∞

∑
n=0
|〈x, fn〉|2 ≤ B‖x‖2. (2)

If A = B, then the frame is said to be tight. If A = B = 1, then { fn}∞
n=0 is a Parseval frame. The constant

A is called the lower frame bound and the constant B is called the upper frame bound or Bessel bound.

Definition 2. The Fourier–Stieltjes transform of a finite Borel measure µ on [0, 1), denoted µ̂, is defined by

µ̂(x) :=
∫ 1

0
e−2πixy dµ(y).

1.1. Effective Sequences

Let {ϕn}∞
n=0 be a linearly dense sequence of unit vectors in a Hilbert space H. Given any element

x ∈ H, we may define a sequence {xn}∞
n=0 in the following manner:

x0, = 〈x, ϕ0〉ϕ0

xn = xn−1 + 〈x− xn−1, ϕn〉ϕn.

If limn→∞‖x − xn‖ = 0 regardless of the choice of x, then the sequence {ϕn}∞
n=0 is said to

be effective.
The above formula is known as the Kaczmarz algorithm. In 1937, Stefan Kaczmarz [7] proved the

effectivity of linearly dense periodic sequences in the finite-dimensional case. In 2001, these results were
extended to infinite-dimensional Banach spaces under certain conditions by Kwapień and Mycielski
[5] (see also [8]). These two also gave the following formula for the sequence {xn}∞

n=0, which we state
here for the Hilbert space setting: define

g0 = ϕ0,

gn = ϕn −
n−1

∑
i=0
〈ϕn, ϕi〉gi.

(3)

Then,

xn =
n

∑
i=0
〈x, gi〉ϕi. (4)

As shown by [5], and also more clearly for the Hilbert space setting by [9], we have

‖x‖2 − lim
n→∞
‖x− xn‖2 =

∞

∑
n=0
|〈x, gn〉|2,

from which it follows that {ϕn}∞
n=0 is effective if and only if

∞

∑
n=0
|〈x, gn〉|2 = ‖x‖2. (5)

That is to say, {ϕn}∞
n=0 is effective if and only if the associated sequence {gn}∞

n=0 is a
Parseval frame.
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If {ϕn}∞
n=0 is effective, then Label (4) implies that for any x ∈ H, ∑∞

i=0〈x, gi〉ϕi converges to x in
norm, and, as noted, {gn}∞

n=0 is a Parseval frame. This does not mean that {gn}∞
n=0 and {ϕn}∞

n=0 are
dual frames, since {ϕn}∞

n=0 need not even be a frame. However, {ϕn}∞
n=0 and {gn}∞

n=0 are pseudo-dual
in the following sense, first given by Li and Ogawa in [10]:

Definition 3. Let H be a separable Hilbert space. Two sequences {ϕn} and {ϕ?
n} in H form a pair of

pseudoframes forH if for all x, y ∈ H, 〈x, y〉 = ∑
n
〈x, ϕ?

n〉〈ϕn, y〉.

All frames are pseudoframes, but not the converse. Observe that if x, y ∈ H and {ϕn}∞
n=0 is

effective, then

〈x, y〉 =
〈

∞

∑
m=0
〈x, gm〉ϕm, y

〉

=
∞

∑
m=0
〈x, gm〉 〈ϕm, y〉 ,

and so {ϕn}∞
n=0 and {gn}∞

n=0 are pseudo-dual.
Of course, since {gn}∞

n=0 is a Parseval frame, it is a true dual frame for itself.

2. Main Results

From this point forward, we shall use the notation eλ(x) := e2πiλx. Our main result is as follows.

Theorem 1. If µ is a singular Borel probability measure on [0, 1), then the sequence {en}∞
n=0 is effective in

L2(µ). As a consequence, any element f ∈ L2(µ) possesses a Fourier series

f (x) =
∞

∑
n=0

cne2πinx,

where

cn =
∫ 1

0
f (x)gn(x) dµ(x)

, and {gn}∞
n=0 is the sequence associated to {en}∞

n=0 via Equation (3). The sum converges in norm, and
Parseval’s identity ‖ f ‖2 = ∑∞

n=0 |cn|2 holds.

Our proof proceeds in a series of lemmas. First, in order to show completeness of {en}∞
n=0,

we appeal to the well-known theorem of Frigyes and Marcel Riesz [11]:

Theorem 2. [F. and M. Riesz] Let µ be a complex Borel measure on [0, 1). If

∫ 1

0
e2πinx dµ(x) = 0

for all n ∈ N, then µ is absolutely continuous with respect to Lebesgue measure.

From this theorem, we prove the desired lemma:

Lemma 1. If µ is a singular Borel measure on [0, 1), then {en}∞
n=0 is linearly dense in L2(µ).
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Proof. Assume, for the sake of contradiction, that span({en}∞
n=0) 6= L2(µ). Then, there exists some

f ∈ L2(µ) such that f ∈ span({en}∞
n=0)

⊥. Then, for any n ∈ N, we have

∫ 1

0
e2πinx f (x) dµ(x) = 0.

By the F. and M. Riesz Theorem, this implies that f dµ is absolutely continuous with respect to Lebesgue
measure dλ. Since f dµ << dλ and f dµ ⊥ dλ, it follows by uniqueness in Lebesgue’s Decomposition
Theorem that f dµ ≡ 0. Thus, f = 0 almost everywhere with respect to µ, which is a contradiction.
Therefore, span({en}∞

n=0) = L2(µ).

Definition 4 (Stationary Sequences). A sequence {ϕk}∞
k=0 in a Hilbert space is said to be stationary if

〈ϕk+m, ϕl+m〉 = 〈ϕk, ϕl〉 for any nonnegative integers k, l, and m.

As noted in [5], given a stationary sequence {ϕn}∞
n=0 and am defined by am := 〈ϕk, ϕk+m〉, where k

is any nonnegative integer k ≥ −m, Bochner’s Theorem implies the existence of a unique positive
measure σ on T such that

am =
∫
T

zmσ(dz) =
∫ 1

0
e−2πimx dσ(x) for each m ∈ Z.

This measure σ is called the spectral measure of the stationary sequence {ϕn}.
We shall make use of the following theorem from [5]:

Theorem 3 (Kwapień and Mycielski). A stationary sequence of unit vectors that is linearly dense in a Hilbert
space is effective if and only if its spectral measure either coincides with the normalized Lebesgue measure or is
singular with respect to Lebesgue measure.

It can be shown that if µ is a Borel probability measure on [0, 1), then the function

G(z) = 1−
(∫ 1

0
1

1−ze−2πix dµ(x)
)−1

is holomorphic on D with |G(z)| ≤ 1 and also satisfies

Re
(

1 + G(z)
1− G(z)

)
=
∫ 1

0

1− |z|2
|e2πix − z|2

dµ(x),

where the function on the left the unique nonnegative harmonic function on D associated to µ by the
Herglotz representation theorem [12]. Suppose {ϕk} is a stationary sequence of linearly-dense unit
vectors, µ = σ is the spectral measure of {ϕk}, and G(z) = ∑ cnzn is constructed as above. The proof
of the Kwapień–Mycielski Theorem works by using some intricate algebra to show that either σ is
Lebesgue measure, or that by applying the Kaczmarz algorithm based on {ϕk} to any one of the ϕk
themselves Label (4), one obtains:

‖ϕk −
n

∑
i=0
〈ϕk, gi〉ϕi‖2 . 1−

n

∑
j=1
|cj|2.

This makes effectivity of {ϕk} equivalent to ∑∞
j=1 |cj|2 = 1. Since G(z) is already bounded by

1, the sum is 1 if and only if G(z) is inner, which, in turn by the Herglotz representation combined with
Fatou’s Theorem, is equivalent to σ being singular [12]. See [13] for a complete proof.

We are now ready to prove Theorem 1.
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Proof of Theorem 1. By Lemma 1, the sequence {en}∞
n=0 is linearly dense in L2(µ). It consists of unit

vectors because µ is a probability measure. We see that, for all k, l, m ∈ N0,

〈ek+m, el+m〉 =
∫
[0,1)

e2πi(k−l)x dµ(x) = 〈ek, el〉.

Thus, {en}∞
n=0 is stationary in L2(µ), and, moreover, µ is its spectral measure. It then follows from

the theorem of Kwapień and Mycielski that {en}∞
n=0 is effective in L2(µ).

Since {en}∞
n=0 is effective, given any f ∈ L2(µ), we have that the Kaczmarz algorithm sequence

defined recursively by

f0, = 〈 f , e0〉e0,

fn = fn−1 + 〈 f − fn−1, en〉en

satisfies
lim

n→∞
‖ f − fn‖ = 0.

We recall that

fn =
n

∑
i=0
〈 f , gi〉ei,

where the sequence {gn}∞
n=0 is the sequence associated to the sequence {en}∞

n=0 by Label (3). Hence,

f =
∞

∑
i=0
〈 f , gi〉ei.

Setting cn = 〈 f , gn〉 =
∫ 1

0 f (x)gn(x) dµ(x) yields

f (x) =
∞

∑
n=0

cne2πinx, (6)

where the convergence is in the norm. Furthermore, since {en}∞
n=0 is effective, by Label (5), {gn}∞

n=0 is
a Parseval frame. Thus,

∞

∑
n=0
|cn|2 =

∞

∑
n=0
|〈 f , gn〉|2 = ‖ f ‖2.

This completes the proof.

Since the ternary Cantor measure µ3 is a singular probability measure, Theorem 1 demonstrates
that any f ∈ L2(µ3) possesses a Fourier series of the form prescribed by the theorem. This comes
despite the fact that µ3 does not possess an orthogonal basis of exponentials. It is still unknown
whether L2(µ3) even possesses an exponential frame.

The sequence {en}∞
n=0 of exponentials is effective in L2(µ) for all singular Borel probability

measures µ, but it is Bessel in none of them. Indeed, if it were Bessel, µ would be absolutely continuous
rather than singular by Theorem 3.10 of [14]. In fact, Proposition 3.10 in [15] demonstrates an example
of a (singular) measure µ and a function f ∈ L2(µ) where ∑∞

n=0 | f̂ (n)|2 = +∞. Therefore, it is not
possible for {en}∞

n=0 to be a frame in L2(µ). However, by a remark in [10], since {en}∞
n=0 is pseudo-dual

to the (in this case Parseval) frame {gn}∞
n=0, the upper frame bound for {gn}∞

n=0 implies a lower frame
bound for {en}∞

n=0.
Moreover, some of the examples in [3,4] of measures that do not possess an exponential frame are

singular, and hence if we normalize them to be probability measures, Theorem 1 applies.
We shall give a somewhat more explicit formula for the coefficients cn. We will require a lemma

to do this, but first we discuss some notation:
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Remark 1. Recall that a composition of a positive integer n is an ordered arrangement of positive integers that
sum to n. Whereas for a partition the order in which the terms appear does not matter, two sequences having the
same terms but in a different order constitute different compositions. We will think of compositions of n as tuples
of positive integers whose entries sum to n. The set of compositions of n will be denoted Pn. In other words,

Pn :=
{
(p1, p2, . . . , pk) | k ∈ N, (p1, p2, . . . , pk) ∈ Nk, p1 + p2 + · · ·+ pk = n

}
.

Thus, we have P1 = {(1)}, P2 = {(2), (1, 1)}, P3 = {(3), (1, 2), (2, 1), (1, 1, 1)}, etc. The length of a
tuple p ∈ Pn will be denoted l(p), i.e. p = (p1, p2, . . . , pl(p)) ∈ Nl(p).

Lemma 2. Let µ be a Borel probability measure on [0, 1) with Fourier–Stieltjes transform µ̂. Define α0 = 1,
and for n ≥ 1, let

αn = ∑
p∈Pn

(−1)l(p)
l(p)

∏
j=1

µ̂(pj).

Let {gn}∞
n=0 be as defined in Label (3). Then, for all n ∈ N0,

gn =
n

∑
j=0

αn−jej.

Proof. Clearly, g0 = e0 and g1 = e1 − 〈e1, e0〉e0 = e1 − µ̂(1)e0. We have that P1 = {(1)}, so

α1 = (−1)1µ̂(1) = −µ̂(1).

Therefore, the conclusion holds for n = 0, 1. Suppose that the conclusion holds up to some n ∈ N.
We have that

gn+1 = en+1 −
n

∑
j=0
〈en+1, ej〉gj

= en+1 −
n

∑
j=0

µ̂(n + 1− j)gj

= en+1 −
n

∑
j=0

µ̂(n + 1− j)

(
j

∑
k=0

αj−kek

)

= en+1 −
n

∑
j=0

j

∑
k=0

µ̂(n + 1− j)αj−kek

= en+1 −
n

∑
k=0

n

∑
j=k

µ̂(n + 1− j)αj−kek.

Thus, it remains only to show that

αn+1−k = −
n

∑
j=k

µ̂(n + 1− j)αj−k.
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We have:

−
n

∑
j=k

µ̂(n + 1− j)αj−k = −
n

∑
j=k

µ̂(n + 1− j) ∑
p∈Pj−k

(−1)l(p)
l(p)

∏
w=1

µ̂(pw)

=
n

∑
j=k

∑
p∈Pj−k

(−1)l(p)+1µ̂(n + 1− j)
l(p)

∏
w=1

µ̂(pw)

=
n+1−k

∑
j=1

∑
p∈Pn−k+1−j

(−1)l(p)+1µ̂(j)
l(p)

∏
w=1

µ̂(pw).

The last equality is obtained by reindexing the sum j 7→ n + 1− j. Now, if p = (p1, . . . , pl(p)) ∈ Pn,
then it is obvious that p1 ∈ {1, 2, . . . , n} and (p2, p3, . . . , pl(p)) ∈ Pn−p1 (where we define P0 = ∅).
Conversely, if p1 ∈ {1, 2, . . . , n} and (p2, p3, . . . , pl(p)) ∈ Pn−p1 , then clearly (p1, p2, . . . , pl(p)) ∈ Pn.
Thus, it follows that

−
n

∑
j=k

µ̂(n + 1− j)αj−k = ∑
p∈Pn+1−k

(−1)l(p)
l(p)

∏
w=1

µ̂(p2) = αn+1−k.

This completes the proof.

Remark 2. Lemma 2 can easily be generalized to any Hilbert space setting in which the {gn}∞
n=0 are induced by

a stationary sequence {ϕn}∞
n=0 simply by replacing µ̂(m) with am in all instances, where the am are as defined

after Definition 4.

It should be pointed out that sequence of scalars {αn}∞
n=0 depends only on the measure µ. In a

general Hilbert space setting where we may not have stationarity, an expansion of the {gn} in terms of
the sequence {ϕn} to which they are associated by Label (2) can be described by using inversion of an
infinite lower-triangular Gram matrix. For a treatment, see [9].

Definition 5. Define a Fourier transform of f by

F f (y) = f̂ (y) :=
∫ 1

0
f (x)e−2πiyx dµ(x). (7)

Observe that
|F f (y)| =

∣∣〈 f , ey〉
∣∣ ≤ ‖ f ‖L2(µ) · ‖ey‖L2(µ) = ‖ f ‖L2(µ).

Thus, F is a linear operator from L2(µ) to L∞(R) with operator norm ‖F‖ = 1.

Corollary 1. Assume the conditions and definitions of Theorem 1. Then, the coefficients cn may be expressed

cn =
n

∑
j=0

αn−j f̂ (j),

and as a result

f (x) =
∞

∑
n=0

(
n

∑
j=0

αn−j f̂ (j)

)
e2πinx,

where the convergence is in norm.
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Proof. We compute:

cn = 〈 f , gn〉 =
〈

f ,
n

∑
j=0

αn−jej

〉
=

n

∑
j=0

αn−j f̂ (j).

The second formula then follows by substitution into Label (6).

2.1. Non-Uniqueness of Fourier Coefficients

We begin with an example. In [1], it was shown that the quaternary Cantor measure µ4 possesses
an orthonormal basis of exponentials. This basis is {eλ}λ∈Λ, where the spectrum Λ is given by

Λ =

{
k

∑
n=0

αn4n : αn ∈ {0, 1}, k ∈ N0

}
= {0, 1, 4, 5, 16, 17, 20, 21, . . .}.

As a result, any vector f ∈ L2(µ4) may be written as

f = ∑
λ∈Λ
〈 f , eλ〉eλ,

where the convergence is in the L2(µ4) norm. Notice that if we define a sequence of vectors {hn}∞
n=0 by

hn =

{
en, if n ∈ Λ,

0, otherwise,

we have that
∞

∑
n=0
〈 f , hn〉en = ∑

λ∈Λ
〈 f , eλ〉eλ = f .

On the other hand, since µ4 is a singular probability measure, by Theorem 1, we also have

f =
∞

∑
n=0

cnen =
∞

∑
n=0
〈 f , gn〉en.

It can easily be checked that h0 = g0 = e0 and h1 = g1 = e1, but that g2 6= h2 = 0. Thus,
the sequences {gn} and {hn} yield different expansions for general f ∈ L2(µ4).

We can again use the Kaczmarz algorithm to generate a large class of sequences {hn} such that
∑〈 f , hn〉en = f in the L2(µ) norm as follows. We use 〈·, ·〉µ to denote the scalar product in L2(µ).

Theorem 4. Let µ be a singular Borel probability measure on [0, 1). Let ν be another singular Borel probability
measure on [0, 1) such that ν ⊥ µ. Let 0 < η ≤ 1, and define λ := ηµ + (1− η)ν. Let {hn} be the sequence
associated to {en} in L2(λ) via the Kaczmarz algorithm in Equation (3). Then, for all f ∈ L2(µ),

f =
∞

∑
n=0
〈 f , ηhn〉µen (8)

in the L2(µ) norm. Moreover, if λ′ = η′µ + (1− η′)ν′ also satisfies the hypotheses, then λ′ 6= λ implies
{η′h′n} 6= {ηhn} in L2(µ).

Proof. Since λ is a singular Borel probability measure, the exponentials {en}∞
n=0 are effective in L2(λ).

Let {hn} denote the sequence associated to {en} in L2(λ) via Equation (3). Let f ∈ L2(µ), and define
f̃ = f · χsupp(µ). Clearly, f̃ ∈ L2(λ).
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We have that

f̃ =
∞

∑
n=0

〈
f̃ , hn

〉
λ

en

in the L2(λ) norm. Now, note that

〈 f , ηhn〉µ =
∫ 1

0
f (x)ηhn(x) dµ(x)

=
∫

supp(µ)
f (x)hn(x) dλ

= 〈 f̃ , hn〉λ.

Therefore,

lim
N→∞

∥∥∥∥∥ f̃ −
N

∑
n=0
〈 f , ηhn〉µen

∥∥∥∥∥
2

L2(λ)

= 0.

Since ∥∥∥∥∥ f −
N

∑
n=0
〈 f , ηhn〉µen

∥∥∥∥∥
2

L2(µ)

≤ 1
η

∥∥∥∥∥ f̃ −
N

∑
n=0
〈 f , ηhn〉µen

∥∥∥∥∥
2

L2(λ)

,

Equation (8) follows with convergence in L2(µ).
It remains only to show that different measures λ generate different sequences {ηhn}. Therefore,

suppose ν′ is another singular Borel probability measure on [0, 1) such that ν′ ⊥ µ, and let 0 < η′ ≤ 1.
Set λ′ = η′µ + (1− η′)ν′, and let {h′n} be the sequence associated to {en} in L2(λ′) via Equation (3).
Suppose that λ 6= λ′. We wish to show that {ηhn} 6= {η′h′n} in L2(µ).

If η 6= η′, then ηh0 = ηe0 6= η′e0 = η′h′0 in L2(µ). Therefore, assume that η = η′. By virtue
of the F. and M. Riesz Theorem, since λ 6= λ′, there must exist an integer n such that λ̂(n) 6= λ̂′(n).
Following [9], we define a lower-triangular Gram matrix G of the nonnegative integral exponentials by

(G)ij =

{
〈ei, ej〉 = λ̂(j− i), if i ≥ j,

0, otherwise,

and then the inverse of this matrix determines the sequence {hn} associated to {en} in L2(λ) via
hn = ∑n

i=0 αn−iei, where αn−i = (G−1)ni. See [9] for details. (G and G−1 are stratified since {en} is
stationary.) Therefore, the sequences of scalars {αn}∞

n=0 and {α′n}∞
n=0 induced by λ and λ′, respectively,

in Lemma 2 differ. Let n be the smallest positive integer such that αn 6= α′n. Then, since η = η′, we have

η′h′n − ηhn = η
n

∑
j=0

(
α′n−j − αn−j

)
ej = η(αn − α′n)e0 6= 0.

Thus, {ηhn} and {η′h′n} are distinct sequences in L2(µ).

Remark 3. We note that any convex combination of sequences {hn} that satisfy Equation (8) will again satisfy
that equation.

In general, for a fixed f ∈ L2(µ), the set of coefficient sequences {dn} that satisfy f = ∑∞
n=0 dnen

can be parametrized by sequences {γn} of scalars satisfying ∑∞
n=0 γnen = 0 via dn = 〈 f , gn〉µ + γn.

Clearly, Theorem 4 is not a complete description of all Fourier series expansions for f .

2.2. Connection to the Normalized Cauchy Transform

The series ∑∞
n=0〈 f , gn〉en given by Theorem 1 is the boundary function of the analytic function

∑∞
n=0〈 f , gn〉zn on D. This function is in the classical H2 Hardy space since the coefficients are square
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summable. An intriguing connection between the Kaczmarz algorithm and de Branges–Rovnyak
spaces is given by the observations that follow.

Given a positive Borel measure µ on [0, 1), define a map Vµ, called the normalized Cauchy
transform, from L1(µ) to the functions defined on C \T by

Vµ f (z) :=

∫ 1
0

f (e2πix)
1−ze−2πix dµ(x)∫ 1

0
1

1−ze−2πix dµ(x)
.

Poltoratskiı̆ proved in [6] that Vµ maps L2(µ) to the de Branges–Rovnyak spaceH(b), where b(z)
is the inner function associated to µ via the Herglotz representation theorem. Poltoratskiı̆ also proved
that Vµ is the inverse of a unitary operator that is a rank one perturbation of the unilateral shift as
given by Clark [16], and hence Vµ is unitary.

Proposition 1. Assume the hypotheses of Theorem 1. Then, for z ∈ D,

Vµ f (z) =
∞

∑
n=0
〈 f , gn〉zn.

Proof. Define

F(z) :=
∫ 1

0

1
1− ze−2πix dµ(x). (9)

That is, F(z) is the Cauchy integral of µ, which is analytic on D. It is easily seen that

F(z) =
∞

∑
n=0

µ̂(n)zn.

By Label (9), Re(F(z)) > 1/2 for z ∈ D, and, hence, 1/F(z) is also analytic on D. Writing
1/F(z) = ∑∞

n=0 cnzn, we have 1 = ∑∞
n=0 (∑

n
k=0 ckµ̂(n− k)) zn, and so ∑n

k=0 ckµ̂(n− k) = 0 for all n ≥ 1.
Then, using Label (3), an inductive argument shows that gn = ∑n

i=0 cn−iei for all n. The cn are unique
by Gaussian elimination, so, in fact, cn = αn for all n, the αn as in Lemma 2. Hence,

1
F(z)

=
∞

∑
n=0

αnzn.

It is also clear that ∫ 1

0

f (e2πix)

1− ze−2πix dµ(x) =
∞

∑
n=0
〈 f , en〉zn.

Therefore, we have ∫ 1
0

f (e2πix)
1−ze−2πix dµ(x)∫ 1

0
1

1−ze−2πix dµ(x)
=

(
∞

∑
n=0
〈 f , en〉zn

)(
∞

∑
m=0

αmzm

)

=
∞

∑
n=0

(
n

∑
i=0
〈 f , αn−iei〉

)
zn

=
∞

∑
n=0
〈 f , gn〉zn.

Two of the main results in [6] are Theorems 2.5 and 2.7, which together show that the Fourier
series of Vµ f (z) converges to f in the L2(µ) norm provided that µ is singular. Combining this together
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with Proposition 1 recovers our Theorem 1. Adding Clark’s result that implies that Vµ is unitary, we
recover the Plancherel identity.

Poltoratskiı̆’s results are more general than our Theorem 1 in the following way: if µ has an
absolutely continuous component and a singular component, then for any f ∈ L2(µ), the Fourier series
of Vµ f converges to f in norm with respect to the singular component. The Fourier series cannot in
general converge to f with respect to the absolutely continuous component of µ since the nonnegative
exponentials are incomplete. It is unclear whether for such a µ every f can be expressed in terms of a
bi-infinite Fourier series. For singular µ, our Theorem 1 guarantees norm convergence of the Fourier
series of Vµ f to f as do Poltoratskiı̆’s results. However, Poltoratskiı̆ also comments in [6] that the
Fourier series converges pointwise µ-a.e. to f .

3. A Shannon Sampling Formula

In [17], Strichartz introduces a sampling formula for functions that are bandlimited in a
generalized sense. He considers functions whose spectra are contained in a certain compact set
K that is the support of a spectral measure µ. If F is a strongly K-bandlimited function, then he shows
that it has an expression

F(x) = ∑
λ∈Λ

F(λ)µ̂(x− λ),

where Λ is a spectrum for L2(µ).
We will now prove a similar sampling formula for analogously bandlimited functions.

Our formula does not rely on an exponential basis and hence holds even for non-spectral singular
measures. (Indeed, it even holds for singular measures devoid of exponential frames.) The price paid
for not using an exponential sequence dual to itself is that the samples F(λ) are replaced by the less
tidy ∑n

j=0 αn−jF(j).

Theorem 5. Let µ be a singular Borel probability measure on [0, 1). Let {αi}∞
i=0 be the sequence of scalars

induced by µ by Lemma 2. Suppose F : R→ C is of the form

F(y) =
∫ 1

0
f (x)e−2πiyx dµ(x)

for some f ∈ L2(µ). Then,

F(y) =
∞

∑
n=0

(
n

∑
j=0

αn−jF(j)

)
µ̂(y− n),

where the series converges uniformly in y.

Proof. By Theorem 1, f may be expressed f = ∑∞
n=0 cnen, the convergence occurring in the L2(µ)

norm. We compute:

F(y) =
∫ 1

0
f (x)e−2πiyx dµ(x)

= 〈 f , ey〉

=

〈
∞

∑
n=0

cnen, ey

〉

=
∞

∑
n=0

cn〈en, ey〉

=
∞

∑
n=0

cnµ̂(y− n).
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Recall from Corollary 1 that

cn =
n

∑
j=0

αn−j f̂ (j) =
n

∑
j=0

αn−jF(j),

where the αn are defined by Lemma 2. Combining these computations, we obtain that for any y ∈ R,

F(y) =
∞

∑
n=0

(
n

∑
j=0

αn−jF(j)

)
µ̂(y− n). (10)

Let Sk := ∑k
n=0 cnen. Since Sk → f in the L2(µ) norm and the Fourier transform F : L2(µ) →

L∞(R) is bounded, {FSk} → F f in L∞(R). Then, because FSk(y) = ∑k
n=0 cnµ̂(y− n), we have that

∑∞
n=0 cnµ̂(y− n) and hence Label (10) converges uniformly in y to F f (y).

It should be noted that, in contradistinction to the sampling formula of Strichartz, the convergence
of the series in Equation (10) does not follow from the Cauchy–Schwarz inequality because it is possible
that ∑∞

n=0 |µ̂(y− n)|2 = +∞.
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8. Kwapień, S.A.; Mycielski, J. Erratum to the paper: “On the Kaczmarz algorithm of approximation in

infinite-dimensional spaces” [Studia Math. 148 (2001), no. 1, 75–86; MR1881441]. Studia Math. 2006, 176, 93.
9. Haller, R.; Szwarc, R. Kaczmarz algorithm in Hilbert space. Studia Math. 2005, 169, 123–132.
10. Li, S.; Ogawa, H. Pseudo-duals of frames with applications. Appl. Comput. Harmon. Anal. 2001, 11, 289–304.
11. Riesz, F.; Riesz, M. Über die Randwerte einer analytischen Funktion. Quatrième Congrès des Mathématiciens

Scandinaves 1916, 27–44.
12. Koosis, P. Introduction to Hp Spaces, 2nd ed.; Cambridge Tracts in Mathematics; Cambridge University Press:

Cambridge, UK, 1998; Volume 115.
13. Herr, J.E. Fourier Series for Singular Measures and the Kaczmarz Algorithm. Ph.D. Thesis, Iowa State

University, Ames, IA, USA, 2016.
14. Dutkay, D.E.; Han, D.; Weber, E. Continuous and discrete Fourier frames for fractal measures. Trans. Am.

Math. Soc. 2014, 366, 1213–1235.
15. Dutkay, D.E.; Han, D.; Sun, Q.; Weber, E. On the Beurling dimension of exponential frames. Adv. Math. 2011,

226, 285–297.



Axioms 2017, 6, 7 13 of 13

16. Clark, D.N. One dimensional perturbations of restricted shifts. J. Anal. Math. 1972, 25, 169–191.
17. Strichartz, R.S. Mock Fourier series and transforms associated with certain Cantor measures. J. Anal. Math.

2000, 81, 209–238.

c© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Effective Sequences

	Main Results
	Non-Uniqueness of Fourier Coefficients
	Connection to the Normalized Cauchy Transform

	A Shannon Sampling Formula

