
axioms

Article

Quincunx Fundamental Refinable Functions in
Arbitrary Dimensions

Xiaosheng Zhuang

Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong;
xzhuang7@cityu.edu.hk

Academic Editor: Palle E.T. Jorgensen
Received: 16 June 2017 ; Accepted: 4 July 2017 ; Published: 6 July 2017

Abstract: In this paper, we generalize the family of Deslauriers–Dubuc’s interpolatory masks
from dimension one to arbitrary dimensions with respect to the quincunx dilation matrices,
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We show that a family of unique quincunx interpolatory masks exists and such a family of masks
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1. Introduction and Motivation

We say that a d × d integer matrix M is a dilation matrix if limn→∞ M−n = 0, that is, all the
eigenvalues of M are greater than 1 in modulus. An M-refinable function (or distribution) φ satisfies the
refinement equation:

φ = |detM| ∑
k∈Zd

a(k)φ(M · −k), (1)

where a : Zd → C is called a refinement mask (or low-pass filter) for φ. In the sequel, we assume that the
refinement mask a is finitely supported and normalized; i.e., a ∈ l0(Zd) and ∑k∈Zd a(k) = 1, where by
l(Zd) we denote the linear space of all sequences v : Zd → C of complex numbers on Zd and by
l0(Zd) we denote the linear space of all sequences v = {v(k)}k∈Zd ∈ l(Zd) such that the cardinality
of {k ∈ Zd : v(k) 6= 0} is finite. It is often convenient to use the (formal) Fourier seris v̂ of a sequence
v = {v(k)}k∈Zd ∈ l0(Zd), which is defined to be:

v̂(ξ) := ∑
k∈Zd

v(k)e−ik·ξ , ξ ∈ Rd,

where k · ξ := k1ξ1 + · · ·+ kdξd for k = (k1, . . . , kd) and ξ = (ξ1, . . . , ξd) in Rd. In terms of Fourier series,
the refinement Equation (1) can be also stated in the frequency domain as:

φ̂(MTξ) = â(ξ)φ̂(ξ), a.e. ξ ∈ Rd, (2)

where for a function f ∈ L1(Rd), its Fourier transform f̂ is defined to be f̂ (ξ) :=
∫
Rd f (x)e−ix·ξ dx,

which can be naturally extended to functions in L2(Rd) or tempered distributions.
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Let a ∈ l0(Zd) be a mask. For a nonnegative integer κ ∈ N0 := N∪ {0}, we say that a satisfies the
sum rules of order κ + 1 with respect to a dilation matrix M (or a lattice MZd) if,

∑
k∈Zd

a(γ +Mk)p(γ +Mk) = ∑
k∈Zd

a(Mk)p(Mk) ∀γ ∈ Zd and ∀p ∈ Πd
κ , (3)

where Πd
κ denotes the set of all polynomials in Rd of (total) degree at most κ. Note that (3) depends

only on the lattice MZd := {Mk : k ∈ Zd}; that is, if two lattices MZd and NZd generated by two
dilation matrices M and N are the same MZd = NZd, then a satisfies the sum rules of order κ + 1 with
respect to M if and only if a satisfies the sum rules of order κ + 1 with respect to N.

To find the solution for (1) or (2), one starts with an initial function φ0 and employs iteratively the
subdivision scheme Qn

a,Mφ0, n = 1, 2, · · · , where,

Qa,M f := |detM| ∑
k∈Zd

a(k) f (M · −k).

We say that the subdivision scheme Qn
a,Mφ0 converges in Lp(Rd) if there exists a function

φ ∈ Lp(Rd) such that: limn→∞ ‖Qn
a,Mφ0 − φ‖p = 0. In such a case, φ satisfies (1). It was shown

in [1] that the subdivision scheme Qn
a,Mφ0 converges in Lp(Rd) if and only if,

lim
n→∞

‖∇jSn
a,Mδ‖1/n

p < |detM|1/p, j = 1, . . . , d,

where ∇jv := v− v(· − ej) is the difference operator with ej being the jth coordinate unit vector in Rd,
δ is the Kronecker delta satisfying δ(0) = 1 and δ(k) = 0 for all k ∈ Zd\{0}, and Sa,M : l(Zd)→ l(Zd) is
the subdivision operator defined to be:

[Sa,Mv](n) := |detM| ∑
k∈Zd

v(k)a(n−Mk), n ∈ Zd, v ∈ l(Zd). (4)

In this paper, we are interested in fundamental refinable functions associated with quincunx
interpolatory masks and quincunx dilation matrices in arbitrary dimensions. A function φ is said to be
fundamental if it is continuous and φ(k) = δ(k), k ∈ Zd. A dilation matrix M is said to be a quincunx
dilation matrix if |detM| = 2. For example, in dimension one (d = 1), M = 2 is the dyadic dilation
factor; in dimension d = 2, such dilation matrices include:

M
√

2 =

[
1 −1
1 1

]
, M√2 =

[
1 1
1 −1

]
;

and in dimension d = 3, an example of quincunx dilation matrices is:

M =

 1 0 1
−1 −1 1
0 −1 0

 .

It is easy to show that the quincunx latticeQd := MZd generated by a quincunx dilation matrix M is:

Qd := MZd = {β = (β1, . . . , βd) ∈ Zd : |β1|+ · · ·+ |βd| is even}, (5)

which is independent of the quincunx dilation matrix M. In dimension one, the quincunx lattice is
simply the lattice of even integers; while in a higher dimension, it is also called the checkerboard lattice.
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One can show that if φ is a fundamental refinable function associated with a refinement mask a
and a quincunx dilation matrix M as in (1), then it is necessary that a is a quincunx interpolatory mask:

a(β) =
1
2

δ(β), β ∈ MZd. (6)

The subdivision scheme associated with a quincunx interpolatory mask and a quincunx dilation
matrix is called a quincunx interpolatory subdivision scheme. If the quincunx interpolatory subdivision
scheme Qn

a,Mφ0 converges to φ ∈ Lp(Rd), then φ is called a quincunx fundamental refinable function.
Interpolatory subdivision schemes play a crucial role in computer-aided geometric design

(CAGD) [2], sampling theory, and wavelet/framelet analysis [3–10].
In dimension d = 1, Deslauriers and Dubuc [11] proposed a family of interpolatory subdivision

schemes associated with a family {a2n−1 : n ∈ N} of quincunx interpolatory masks (with respect to
the dyadic dilation factor M = 2). Such a family is unique in the following sense:

(1) a2n−1 is a quincunx interpolatory mask: a2n−1(2k) = 1
2 δ(k), k ∈ Z.

(2) a2n−1 is supported on [1− 2n, 2n− 1] ∩Z.
(3) a2n−1 satisfies the sum rules of order 2n with respect to the dyadic dilation M = 2.

In fact, the interpolatory mask a2n−1 can be explicitly written as:

â2n−1(ξ) = cos2n(ξ/2)
n−1

∑
j=0

(
n− 1 + j

j

)
sin2j(ξ/2), ξ ∈ R.

It is easily seen that such a family enjoys many agreeable properties: symmetry, real-value,
non-negativity (â2n−1(ξ) > 0), minimal support, and so on. Moreover, the family of Deslauriers and
Dubuc’s interpolatory masks a2n−1, n ∈ N, is closely related to the family of Daubechies’ orthonormal
masks adb

n in the sense that |âdb
n (ξ)|2 = â2n−1(ξ) and can be obtained by utilizing the Riesz factorization

technique [12].
On the one hand, in dimension d = 2, a very simple extension of the dyadic dilation is to consider

the dilation matrix M = 2I2 = diag(2, 2). For such a dilation matrix, Dynet al. [13] constructed the
so-called butterfly interpolatory subdivision scheme; Deslauriers et al. [14] obtained several continuous
fundamental refinable functions; Mongeau and Deslauriers [15] obtained several C1 fundamental
refinable functions; using convolutions of box splines, Riemenschneider and Shen [16] constructed
a family of interpolatory subdivision schemes with symmetry; and Han and Jia [17] constructed
a family of optimal interpolatory subdivision schemes with many desirable properties.

On the other hand, in higher dimensions (d > 2), a more natural way of extending the dyadic
dilation factor with respect to the lattice of even integers is the quincunx dilation matrix. Han and Jia
in ([18], Theorem 3.3) constructed a family of quincunx interpolatory subdivision schemes associated
with a family,

{a(m,n) : m, n ∈ N0, m + n odd},

of 2-dimensional unique quincunx interpolatory masks, which can be viewed as the generalization of
the family of Deslauriers and Dubuc’s interpolatory masks in dimension one to dimension two in the
following sense:

(1) a(m,n) is a quincunx interpolatory mask; i.e., (6) holds with d = 2.

(2) a(m,n) is supported on G(m,n) := ([−m, m]× [−n, n]) ∩Z2.

(3) a(m,n) satisfies the sum rules of order m + n + 1 with respect to the quincunx lattice Q2 defined as
in (5) for d = 2.

The uniqueness of such a family a(m,n) implies that a(m,n) is minimally supported among all
the quincunx interpolatory masks which satisfies the sum rules of order m + n + 1. Moreover,
the mask a(m,n) is real-valued and full-axis symmetric (see (15)).
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A natural question is whether the above result is still true in higher dimensions d > 3. It should
be pointed out that the results in [18] are already highly nontrivial. Many of the results are tailored
for dimension two. It was not clear whether techniques in that paper can be carried over directly
to higher dimensions. In this paper, we develop new techniques that extend many results in [18] to
arbitrary dimensions and give a complete picture of the unique family of quincunx interpolatory
masks in arbitrary dimension d ∈ N. That is, we prove the following main theorem.

Theorem 1. There exists a family,

{am : m = (m1, . . . , md) ∈ Nd
0, m1 + · · ·+ md odd},

of d-dimensional masks that are unique in the following sense:

(1) am is a quincunx interpolatory mask; i.e., (6) holds.
(2) am is supported on Gm := ([−m1, m1]× · · · × [−md, md]) ∩Zd.
(3) am satisfies the sum rules of order m1 + · · ·+ md + 1 with respect to the quincunx lattice Qd defined

as in (5).

In addition, am is real-valued and full-axis symmetric.

Note that a (d− 1)-dimensional mask a : Zd−1 → C can be regarded as a d-dimensional mask
by identifying Zd−1 as a subset Zd−1 × {0} in Zd. The above result not only provides a natural
generalization of the Deslauriers and Dubuc’s family of interpolatory masks to arbitrary dimensions,
but also shows the close connection between low-dimensional and high-dimensional quincunx
interpolatory masks: any such quincunx interpolatory mask am in Rd can be regarded as a quincunx
interpolatory mask a(m,0,...,0) in Rd+k for any k ∈ N0 and (m, 0, . . . , 0) ∈ Zd+k.

The remainder of this paper is devoted to proving the above theorem and is organized as follows.
In Section 2, we introduce some necessary lemmas and definitions in order to simply give the proof of
our main result. Some properties of the unique quincunx interpolatory masks in arbitrary dimensions
are discussed. In Section 3, we present the explicit form of the unique quincunx interpolatory masks
in dimension d = 2, thereby showing the nonnegativity property of such a family in dimension two.
Some remarks are given in the last section.

2. Quincunx Interpolatory Masks in Arbitrary Dimensions

In this section, we prove the main theorem, which relies essentially on multivariate polynomial
interpolation. Before proceeding further, we introduce some notation and definitions.

For µ = (µ1, . . . , µd) ∈ Nd
0 and x = (x1, . . . , xd) ∈ Rd, we define,

|µ| := |µ1|+ · · ·+ |µd|, µ! := µ1! · · · µd!, and xµ := xµ1
1 · · · x

µd
d .

Elements in Nd
0 are ordered lexicographically so that ν = (ν1, . . . , νd) ∈ Nd

0 is not greater than
µ = (µ1, . . . , µd) ∈ Nd

0, denoted as ν � µ, if either |ν| < |µ| or |ν| = |µ|, νj = µj for j = 1, . . . , `− 1 and
ν` < µ` for some 1 6 ` 6 d. We say that ν 6 µ if νj 6 µj for j = 1, . . . , d. We denote,

Od
j := {µ ∈ Nd

0 : |µ| = j} and Λd
n := {µ ∈ Nd

0 : |µ| 6 n} = ∪n
j=0Oj

as the ordered index subset in Nd
0 for j, n ∈ N0. The cardinalities of Od

j and Λd
n satisfy #Od

j = (j+d−1
d−1 )

and #Λd
n = (n+d

d ). The polynomial space Πd
n can be written as Πd

n = span{xµ : µ ∈ Λd
n}.

Let,
X 2

n := ∪n
j=0{xµ ∈ R2 : |µ| = j, µ ∈ N2

0}
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be a set of distinct points in R2. X 2
n is said to satisfy the node nonfiguration in R2 if there exist n + 1

distinct lines L0, . . . ,Ln in R2 such that {xµ : |µ| = n} lies on Ln, . . ., {xµ : |µ| = j, µ ∈ N2
0} lies on

Lj\[Lj+1 ∪ · · · ∪ Ln], . . ., and x(0,0) lies on L0\[L1 ∪ · · · ∪ Ln]. Note that the cardinality #X 2
n of X 2

n is
#X 2

n = (n+2
2 ). A simple example of an X 2

n satisfying the node nonfiguration in R2 is:

X 2
n = Λ2

n = ∪n
j=0{µ ∈ N2

0 : |µ| = j}.

For node configuration in Rd, we define it recursively as follows. Let,

X d
n := ∪n

j=0{xµ ∈ Rd : |µ| = j, µ ∈ Nd
0}

be a set of distinct points in Rd. X d
n is said to satisfy the node configuration in Rd if there exist n + 1

distinct hyperplanesH0, . . . ,Hn in Rd such that,

{xµ : |µ| = j, µ ∈ Nd
0} ⊆ Hj\[Hj+1 ∪ · · · ∪ Hn], j = 0, . . . , n,

and each set of points,

{xµ : |µ| = j, µ ∈ Nd
0} = ∪

j
k=0{xj,ν : |ν| = k, ν ∈ Nd−1

0 }, j = 0, . . . , n,

considered as a set of points in Rd−1 satisfies the node configuration in Rd−1. Again, a simple example
of X d

n satisfying the node configuration in Rd is:

X d
n = Λd

n = ∪n
j=0{µ ∈ Nd

0 : |µ| = j}.

The cardinality of such a X d
n in Rd is #X d

n = (n+d
d ). One can easily show that the property of node

configuration in Rd is invariant under linear transforms. That is, if A : Rd → Rd is an invertible linear
transform, then AX d

n := {Ax : x ∈ X d
n } satisfies the node configuration in Rd if and only if X d

n satisfies
the node configuration in Rd.

Let X 1
n := {x0, . . . , xn} be a set of n + 1 distinct points in R. Since hyperplanes in dimension one

are just points, the above definition of node configuration in Rd for X d
n can be also defined recursively

based on X 1
n . For convention, we assign X 0

n := ∅ the empty set.
For two index subsets X and Λ in Rd , we denote by:

(βµ)β∈X ;µ∈Λ

a matrix A of size (#X )× (#Λ). The vector (βµ)β∈X ;µ is then the column vector of A indexed by µ ∈ Λ
while the vector (βµ)β;µ∈Λ is the row vector of A indexed by β ∈ X .

We have the following result (c.f. [19], Theorem 4) regarding the uniqueness of multivariate
polynomial interpolation associated with such a set X d

n .

Lemma 1. Suppose that X d
n ⊆ Rd satisfies the node configuration in Rd and p ∈ Πd

n is a polynomial.
If p vanishes on X d

n , then p vanishes everywhere. Consequently, the square matrix,

(βµ)β∈X d
n ;µ∈Λd

n
(7)

is non-singular.

Proof. We prove the result by induction on the pair (d, n) ∈ N×N0.

(1) For d = 1, the set X 1
n contains n + 1 distinct points in R and the matrix in (7) is simply the

Vandermonde matrix. The result obviously holds.
(2) Now suppose the statement holds for the pair (d′, n) for any dimension d′ 6 d− 1 and n ∈ N0.
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(3) To prove the statement holds for the pair (d, n) for any n ∈ N0, we proceed by induction on n.

(3.1) The statement is obviously true for n = 0 (X d
0 is a singleton).

(3.2) Suppose the statement holds for n− 1 with n > 1.
(3.3) Let p ∈ Πn be any polynomial that vanishes on X d

n . Then by the node configuration property
of X d

n , there exists an orthogonal transform A : Rd → Rd so that for all |µ| = n, Axµ = (t0, tν);
for some t0 ∈ R, tν ∈ Rd−1. That is, the orthogonal transform turns the hyperplane Hn

containing {xµ ∈ X d
n : |µ| = n} perpendicular to the first coordinate axis. Hence,

{Axµ : µ ∈ X d
n : |µ| = n} = {(t0, tν) ∈ Rd : ν ∈ Λd−1

n }

is a set of points lies in a hyperplane perpendicular to the first coordinate. Note that the set

{tν : ν ∈ Λd−1
n } =: Vd−1

n ⊆ Rd−1

has the same cardinality as {xµ ∈ X d
n : |µ| = n}. Since the node configuration property is

invariant under orthogonal transforms, we see that Vd−1
n satisfies the node configuration

in Rd−1. Define qn(y) = p(A−1y) = p(x). Then, the polynomial

qn(y1, y2, . . . , yd)
∣∣
y1=t0

is a polynomial of d − 1 variables, has a degree at most n, and vanishes on the set
Vd−1

n . By the induction hypothesis in item (3.2), qn(t0, y2, . . . , yd) vanishes everywhere.
Consequently, we must have:

qn(y1, y2, . . . , yd) = (y1 − t0)qn−1(y1, y2, . . . , yd)

for some d-variate polynomial qn−1(y1, y2, . . . , yd) of the total degree at most n− 1. Again,
by our induction hypothesis in item (3.2), qn−1 vanishes everywhere. Consequently, qn and
thus p vanishes everywhere.

The statement for (d, n) for any n ∈ N0 has been proven.

Therefore, by induction, the statement holds for any integer pair (d, n) ∈ N×N0.
Next, we show that the matrix (βµ)β∈X d

n ;µ∈Λd
n

is non-singular. Suppose this is not the case. Then

there exist non-trivial coefficients cµ, µ ∈ Λd
n such that,

∑
µ∈Λd

n

cµβµ = 0.

However, it implies that the non-trivial polynomial p(x) = ∑µ∈Λd
n

cµxµ vanishes on X d
n and

hence p vanishes everywhere. This a contradiction. Therefore, (βµ)β∈X d
n ;µ∈Λd

n
must be non-singular.

Note that X 0
n = ∅, the statement in Lemma 1 also holds for any (d, n) ∈ N0 ×N0. Next, we show

that for points on a rectangular grid in Rd, they can be extended to be a set that satisfies the node
configuration in Rd.

Lemma 2. Let,

Gm := [−m1, m1]× · · · × [−md, md] ∩Zd, m = (m1, . . . , md) ∈ Nd
0 (8)

with |m| being odd. Define:

G0
m := {β ∈ Gm : |β| is even} and G1

m := {β ∈ Gm : |β| is odd}. (9)
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Then, G0
m and G1

m can be both extended to two sets Y0
m and Y1

m, respectively, such that they both satisfy
the node configuration in Rd with #Y0

m = #Y1
m = (|m|+d

d ). Consequently, the matrices,

(βµ)β∈G0
m;µ∈Λd

|m|
and (βµ)β∈G1

m;µ∈Λd
|m|

are both of full row rank.

Proof. We prove the result for G1
m. The proof of the result for G0

m is similar.
First, we extend Gm to a larger set G1

m̃. Let m̃ := (m1, . . . , md−1, md + 1) ∈ Nd
0 and define,

Gm̃ := [−m1, m1]× · · · × [−md − 1, md + 1] ∩Zd. (10)

Obviously, we have Gm ⊆ Gm̃. Define |m|+ 1 hyperplanes:

Hd
2j := {(x1, . . . , xd) ∈ Rd : x1 + · · ·+ xd = |m| − 2j},

Hd
2j+1 := {(x1, . . . , xd) ∈ Rd : x1 + · · ·+ xd = −(|m| − 2j)},

for j = 0, . . . , |m|−1
2 , as well as sets of nodes

X2j := Gm̃ ∩Hd
2j = {β ∈ Gm̃ : |β| = |m| − 2j}

and,
X2j+1 := Gm̃ ∩Hd

2j+1 = {β ∈ Gm̃ : |β| = −(|m| − 2j)}.

It is easy to show that:

G1
m = ∪|m|j=0[G

1
m ∩Hj], X2j = G1

m ∩Hd
2j, and X2j+1 ⊇ G1

m ∩Hd
2j+1.

Moreover, #X2j = #Od
2j and #X2j+1 = #Od

2j+1. Now define,

Y1
m := X0 ∪ X1 ∪ · · · ∪ X|m|,

which extends G1
m.

We next show that Y1
m satisfies the node configuration in Rd. In fact, from the above definitions,

Xj lies on the hyperplaneHj and does not intersect with any other hyperplaneHk for k = 0, . . . , |m|
and k 6= j. Moreover, for each Xj, one can simply use some linear transforms Aj : Xj → Od

j so that

AjXj = Od
j . In fact, define for j = 0, . . . , |m|−1

2 , the linear transforms A2j,A2j+1 : Rd → Rd as,

A2jx = −(x−m) and A2j+1x = m̃ + x, x ∈ Rd.

Then, we have AjHj = {x ∈ Rd : |x| = j} and AjXj = Od
j for j = 0, . . . , |m|. Note that when

regarded as a set in Rd−1, the index setOd
j satisfies the node configuration in Rd−1. Since each transform

Aj is an affine transform, it preserves the node configuration of the set Xj in Rd−1. Consequently, by the
definition of node configuration in Rd, we conclude that Y1

m satisfies the node configuration in Rd.
A similar approach can be applied to G0

m in order to obtain Y0
m ⊇ G0

m. The corresponding
hyperplanes in this cases are:

Hd
2j+1 := {(x1, . . . , xd) ∈ Rd : x1 + · · ·+ xd = |m| − 1− 2j},

Hd
2j := {(x1, . . . , xd) ∈ Rd : x1 + · · ·+ xd = −(|m|+ 1− 2j)},

for j = 0, . . . , |m|−1
2 , and Y0

m := ∪|m|j=0Xj with Xj := Gm̃ ∩Hj for Gm̃ defined as in (10).



Axioms 2017, 6, 20 8 of 19

The fact that the two matrices (βµ)β∈G0
m;µ∈Λd

|m|
and (βµ)β∈G1

m;µ∈Λd
|m|

are of full row rank follows

from Lemma 1. We are done.

The matrices (βµ)β∈G0
m;µ∈Λd

|m|
and (βµ)β∈G1

m;µ∈Λd
|m|

in Lemma 2 have more columns than rows.

Hence, the columns of these two matrices are linearly dependent. The following lemma provides
a more precise description of the linear dependence of the columns of these two matrices.

Lemma 3. Let Gm, G0
m, and G1

m be defined as in (8) and (9) for odd |m|. Define,

Λm := {µ ∈ Nd
0 : µ 6 2m = (2m1, . . . , 2md) and |µ| 6 |m|}. (11)

Then the matrices,
(βµ)β∈G0

m;µ∈Λm
and (βµ)β∈G1

m;µ∈Λm
(12)

are both of full row rank.

Proof. Note that the index set Λm = Λd
|m| ∩ {µ ∈ Nd

0 : µ 6 2m}. By Lemma 2, the matrices
(βµ)β∈Gτ

m;µ∈Λd
|m|

, τ = 0, 1, are both of full row rank. Consider the index set:

Λd
|m|\Λm = {µ = (µ1, . . . , µd) ∈ Nd

0 : |µ| 6 |m|, µj > 2mj for some j ∈ {1, . . . , d}}.

We next conclude the result by claiming that each of the columns (βµ)β∈Gτ
m;µ for µ ∈ Λd

|m|\Λm is
a linear combination of columns (βµ)β∈Gτ

m;µ for µ ∈ Λm, τ = 0, 1, respectively.
In fact, for each µ ∈ Λd

|m|\Λm, using long division of polynomials, xµ with x = (x1, . . . , xd) ∈ Rd

can be represented as:

xµ = q
µ
1 (x)

m1

∏
j=−m1

(x1 − j) + · · ·+ q
µ
d (x)

md

∏
j=−md

(xd − j) + pµ(x), (13)

where q
µ
1 (x), . . . , qµ

d (x) are polynomials of d variables and pµ(x) is a linear combination of xν with
ν ∈ Λm. Obviously, we have pµ(0) = 0. Now, the claim follows from βµ = pµ(β) for any
β ∈ G τ

m, τ = 0, 1.

We denote the full-axis symmetry group E by:

E := {Eε := diag(ε1, . . . , εd) : ε = (ε1, . . . , εd) ∈ {+1,−1}d}. (14)

We say that a sequence {a(β) : β ∈ Zd} is full-axis symmetric if it satisfies,

a(Eεβ) = a(β) ∀Eε ∈ E and ∀β ∈ Zd. (15)

One can easily show that Gτ
m defined in (9) is full-axis symmetric for τ = 0, 1; i.e., for each τ = 0, 1,

EεGτ
m = Gτ

m ∀Eε ∈ E .

By considering the symmetry property of the set Gτ
m, we can further reduce the dependence of

columns and rows of matrices in (12).

Lemma 4. Let Gm, G0
m, and G1

m be defined as in (8) and (9) for odd |m|. Define,

G0,+
m := {β ∈ G0

m : β > 0}, G1,+
m := {β ∈ G1

m : β > 0}, (16)
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and,
Λ0
m := {2µ ∈ Nd

0 : µ 6 m, |2µ| 6 |m|}. (17)

Then the matrices,
(βµ)

β∈G0,+
m ;µ∈Λ0

m
and (βµ)

β∈G1,+
m ;µ∈Λ0

m
(18)

are square matrices and are both non-singular.

Proof. First, we show that #(G0,+
m ) = #(G1,+

m ) = #Λ0
m. Recalling the definition of Λm in (11), we have,

Λ0
m = Λm ∩ {µ ∈ Nd

0 : µj even for j = 0, . . . , d} = ∪
|m|−1

2
j=0 {2µ ∈ Nd

0 : |µ| = j, µ 6 m}

and,

Gτ,+
m = ∪

|m|−1
2

j=0 {β ∈ Nd
0 : |β| = 2j + τ, 0 6 β 6 m}, τ = 0, 1.

For j = 2k + 1 with 0 6 2k + 1 6 |m|−1
2 , we have,

#{2µ ∈ Nd
0 : |µ| = 2k + 1, µ 6 m} = #{β ∈ Nd

0 : |β| = 2k + 1, β 6 m}
= #{β ∈ Nd

0 : |β| = |m| − (2k + 1), β 6 m}.

Note that:
{β ∈ Nd

0 : |β| = 2k + 1, β 6 m} = G1,+
m ∩H2k+1

and,
{β ∈ Nd

0 : |β| = |m| − (2k + 1), β 6 m} = G0,+
m ∩H|m|−(2k+1),

where the hyperplaneHj := {x ∈ Rd : |x| = j}. Similarly, for j = 2k with 0 6 2k 6 |m|−1
2 , we have,

#{2µ ∈ Nd
0 : |µ| = 2k, µ 6 m} = #{β ∈ Nd

0 : |β| = 2k, β 6 m}
= #{β ∈ Nd

0 : |β| = |m| − 2k, β 6 m}.

Note that,
{β ∈ Nd

0 : |β| = 2k, β 6 m} = G0,+
m ∩H2k

and,
{β ∈ Nd

0 : |β| = |m| − 2k, β 6 m} = G1,+
m ∩H|m|−2k.

In view of,

G0,+
m = ∪

|m|−1
2

k=0 [G0,+
m ∩H2k] and G1,+

m = ∪
|m|−1

2
k=0 [G1,+

m ∩H2k+1],

we conclude that #Gτ,+
m = #Λ0

m for τ = 0, 1.
Next, we show that the matrices (βµ)β∈Gτ,+

m ;µ∈Λ0
m

, τ = 0, 1, are non-singular. We use contradiction
and shall prove the result for τ = 1 only. The proof for τ = 0 is similar. Suppose that there exists
a sequence (cβ)β∈G1,+

m
of complex numbers in C with cβ 6= 0 for some β ∈ G1,+

m such that,

∑
β∈G1,+

m

cββµ = 0 ∀µ ∈ Λ0
m.

By the symmetry of G1
m and that G1,+

m = G1
m ∩Nd

0, we have:

G1
m = {Eεβ : β ∈ G1,+

m , Eε ∈ E} = ∪Eε∈E{Eεβ : β ∈ G1,+
m }.
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We extend the coefficient set {cβ : β ∈ G1,+
m } to {c̃β : β ∈ G1

m} by defining,

c̃β :=
#E

#{Eεβ : Eε ∈ E}
cβ+ , β = (β1, . . . , βd) ∈ G1

m,

where β+ := (|β1|, . . . , |βd|) ∈ G1,+
m . Now consider the linear combination ∑β∈G1

m
c̃ββµ for all µ ∈

Λm = {µ = (µ1, . . . , µd) ∈ Nd
0 : |µ| 6 |m|, µ 6 2m}. On the one hand, if µ ∈ Λ0

m, then,

∑
β∈G1

m

c̃ββµ = ∑
β∈G1

m

#E
#{Eεβ : Eε ∈ E}

cβ+ βµ = ∑
Eε∈E

∑
β∈G1,+

m

cβ(Eεβ)µ = (#E) · ∑
β∈G1,+

m

cββµ = 0.

On the other hand, if µ = (µ1, . . . , µd) ∈ Λm\Λ0
m, then there exists j0 ∈ {1, . . . , d} such that µj0

is odd. By the symmetry of the lattice G1
m, we have,

∑
β∈G1

m

c̃ββµ = ∑
β∈G1

m

#E
#{Eεβ : Eε ∈ E}

cβ+ βµ

= ∑
Eε∈E

∑
β∈G1,+

m

cβ(Eεβ)µ

= ∑
Eε∈E ,ε j0=1

∑
β∈G1,+

m

cβ(Eεβ)µ + ∑
Eε∈E ,ε j0=−1

∑
β∈G1,+

m

cβ(Eεβ)µ

= ∑
Eε∈E ,ε j0=1

 ∑
β∈G1,+

m

cβ(Eεβ)µ − ∑
β∈G1,+

m

cβ(Eεβ)µ


= 0.

(19)

Consequently, the rows of (βµ)β∈G1
m;µ∈Λm

are linearly dependent, in contradiction of the result in
Lemma 3. Therefore, (βµ)

β∈G1,+
m ,µ∈Λ0

m
must be non-singular. We are done.

Recall in Theorem 1 that am : Zd → C with m = (m1, . . . , md) ∈ Nd
0 is supposed to be a mask

defined on a lattice Gm := [−m1, m1]×, [−md, md] ∩ Zd and satisfies the sum rules of order |m|+ 1
with respect to the quincunx lattice Qd := {β ∈ Zd : |β| even}. Now we are ready to prove our main
result in Theorem 1.

Proof of Theorem 1. Let G0
m and G1

m be the even lattice and odd lattice as defined in (9). We first
construct a quincunx interpolatory mask am supported on Gm.

By Lemmas 3 and 4, we can choose an index subset Λ ⊆ Nd
0 so that,

Λ0
m ⊆ Λ ⊆ Λm, #Λ = #G1

m,

and the square matrix,
(βµ)β∈G1

m;µ∈Λ

is non-singular, where Λ0
m, Λm are defined as in (17), (11), respectively. Then we can uniquely solve

the following system of linear equations for {cβ : β ∈ G1
m}:

∑
β∈G1

m

cββµ =
1
2

δ(µ), µ ∈ Λ. (20)
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Note that {cβ : β ∈ G1
m}must be full-axis symmetric: cEε β = cβ for all β ∈ G1

m and for all Eε ∈ E .
In fact, by EεG1

m = G1
m and (20), we have for each Eε ∈ E ,

1
2

δ(µ) = ∑
Eε β∈G1

m

cEε β(Eεβ)µ = ∑
β∈G1

m

cEε β(Eεβ)µ = ∑
β∈G1

m

cEε ββµεµ.

Hence, we obtain for each Eε ∈ E ,

∑
β∈G1

m

cEε ββµ =
1
2

δ(µ)εµ =
1
2

δ(µ), µ ∈ Λ. (21)

Comparing (20) and (21), we see that {cβ : β ∈ G1
m}must be full-axis symmetric.

Define,

am(β) =


cβ β ∈ G1

m;
1
2 δ(β) β ∈ G0

m;

0 β /∈ Gm.

Then obviously am is a quincunx interpolatory mask supported on Gm. Note that am(Eεβ) =

am(β) = 1
2 δ(β) for all β ∈ G0

m. Together with the symmetry property of {am(β) : β ∈ G1
m}, we conclude

that am is full-axis symmetric:

am(Eεβ) = am(β) ∀β ∈ Zd and ∀Eε ∈ E .

The real-value property of am is obvious.
Next, we show that am satisfies the sum rules of order |m| + 1 with respect to the quincunx

lattice Qd, which is equivalent to:

∑
β∈G1

m

am(β)βµ = ∑
β∈G0

m

am(β)βµ ∀µ ∈ Λd
|m|.

Note that by our definition of {aβ : β ∈ G0
m}, we have,

∑
β∈G0

m

am(β)βµ =
1
2

δ(µ) ∀µ ∈ Λd
|m|.

Moreover, by our construction, we already have, ∑β∈G1
m

am(β)βµ = 1
2 δ(µ) for all µ ∈ Λ ⊇ Λ0

m.
Hence, we only need to show that,

∑
β∈G1

m

am(β)βµ = 0 ∀µ ∈ Λd
|m|\Λ. (22)

We prove it by considering,

Λd
|m|\Λ = (Λd

|m|\Λm) ∪ (Λm\Λ)

as the union of two index sets. For µ = (µ1, . . . , µd) ∈ Λm\Λ, there must exist µj odd in view of
Λ0
m ⊆ Λ. By the full-axis symmetry property of am and similar to (19), we must have,

∑β∈G1
m

am(β)βµ = 0. For µ ∈ Λd
|m|\Λm, by (13), we have,

∑
β∈G1

m

am(β)βµ = ∑
β∈G1

m

am(β)pµ(β),

which must be 0 since pµ(x) is a linear combination of xν with ν ∈ Λm. Hence (22) holds.
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Consequently, am is a quincunx interpolatory mask supported on Gm and satisfying the sum rules
of order |m|+ 1 with respect to the quincunx lattice Qd.

We finally show the uniqueness of am. Suppose there is another quincunx interpolatory
mask b : Zd → C supported on Gm and satisfying the sum rules of order |m| + 1 with respect
to the quincunx lattice Qd. Then, we have,

∑
β∈G1

m

(am(β)− b(β))βµ = 0, ∀µ ∈ Λd
|m| ⊇ Λ.

By the non-singularity of (βµ)β∈G1
m ;µ∈Λ, we must have am(β) = b(β) for all β ∈ G1

m. Consequently,
am = b. We are done.

In view of the proof of Theorem 1, we can have a more generalized result as follows.

Theorem 2. Let Gm, G0
m, and G1

m be defined as in (8) and (9) for odd |m|, and Λ0
m, Λm be defined

as in (17), (11), respectively. Suppose the sequences (yτ
µ)µ∈Λm

, τ = 0, 1 of complex numbers in C satisfy,

yτ
µ = 0 ∀µ ∈ Λm\Λ0

m.

Then the system of linear equations,

∑
β∈Gτ

m

cββµ = yτ
µ, µ ∈ Λm,

has a unique solution (cτ
β)β∈Gτ

m
for τ = 0, 1. Moreover, {cτ

β : β ∈ Gτ
m} is full-axis symmetric for τ = 0, 1.

In particular, if yτ
µ, µ ∈ Λm, are of real value, then cτ

β β ∈ Gτ
m, are of real value for τ = 0, 1.

Proof. By Lemmas 3 and 4, the matrices (βµ)β∈Gτ
m;µ∈Λm

, τ = 0, 1, are both of full row rank.
Choose any index set Λ0

m ⊆ Λτ ⊆ Λm so that #Λτ = #Gτ
m and the square matrix (βµ)β∈Gτ

m;µ∈Λτ

is non-singular, respectively, for τ = 0, 1. Then the following system of linear equations:

∑
β∈Gτ

m

cββµ = yτ
µ, µ ∈ Λτ ,

has a unique solution (cτ
β)β∈Gτ

m
for τ = 0, 1. Similar to the proof of Theorem 1, such a sequence

(cτ
β)β∈Gτ

m
is full-axis symmetric, which implies,

∑
β∈Gτ

m

cββµ = 0 = yτ
µ, µ ∈ Λm\Λτ , (23)

In particular, if yτ
µ, µ ∈ Λm are of real value, then obviously the solutions (cτ

β)β∈Gτ
m

are of real value.
The proof of uniqueness is similar to the proof of uniqueness in Theorem 1.

3. Explicit Form of the Bivariate Quincunx Interpolatory Masks

In dimension d = 1, the unique quincunx interpolatory mask am with m = 2n + 1 is the
Deslaruier–Dubuc interpolatory mask, which has the explicit form ([20,21]):

âm(ξ) =
(2(n + 1))!

22(n+1)n!(n + 1)!

∫ cos ξ

−1
(1− t2)ndt = cos2n(ξ/2)

n−1

∑
j=0

(
n− 1 + j

j

)
sin2j(ξ/2).
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In dimension d = 2, Han and Jia [1] show that the quincunx interpolatory masks am in Theorem 1
for m = (2n, 1) and m = (2n− 1, 2) are given by:

â(2n,1)(ξ1, ξ2) =
(2n)!

22nn!(n− 1)!

∫ cos ξ1

−1
(1− t2)n−1(1− t cos ξ2)dt,

â(2n−1,2)(ξ1, ξ2) =
(2n)!

22nn!n!

∫ cos ξ1

−1
(1− t2)n−2[(n− 1)(1− t cos ξ2)

2 +
1
2
(1− t2) sin2j ξ2]dt.

In this paper, we give the explicit form of the full family am of Theorem 1 in dimension d = 2.

Theorem 3. Let n, k0 ∈ N0 satisfy n > 2k0. Then the unique quincunx interpolatory mask am in
Theorem 1 with d = 2 is explicitly given as follows:

(1) If m = (2n + 1− 2k0, 2k0), then,

âm(ξ1, ξ2) =
(2(n + 1− k0))!k0!

22(n+1−k0)n!(n + 1− k0)!

∫ cos ξ1

−1
(1− t2)n−2k0×

×
k0

∑
j=0

(
n− k0

k0 − j

)
(1− t cos ξ2)

2(k0−j)
(

k0 − 1/2
j

)
(1− t2)j sin2j ξ2dt.

(24)

(2) If m = (2n + 1− (2k0 + 1), 2k0 + 1), then,

âm(ξ1, ξ2) =
(2(n− k0))!k0!

22(n−k0)n!(n− 1− k0)!

∫ cos ξ1

−1
(1− t2)n−2k0−1×

×
k0

∑
j=0

(
n− 1− k0

k0 − j

)
(1− t cos ξ2)

2(k0−j)+1
(

k0 + 1/2
j

)
(1− t2)j sin2j ξ2dt.

(25)

(3) If m = (m1, m2) with m1 + m2 odd and m1 < m2, then,

â(m1,m2)
(ξ1, ξ2) = â(m2,m1)

(ξ2, ξ1)

with â(m2,m1)
being determined by items (1) or (2).

Moreover, we have âm(ξ1, ξ2) > 0 for all ξ = (ξ1, ξ2) ∈ R2.

Before we proceed to the proof of Theorem 3, let us introduce some notation and lemmas to
simplify our proof. Define,

cn,k0 :=
(2(n + 1− k0))!k0!

22(n+1−k0)n!(n + 1− k0)!
, dn,k0 :=

(2(n− k0))!k0!
22(n−k0)n!(n− 1− k0)!

(26)

and,

gn,k0(t, y) :=
k0

∑
j=0

(
n− k0

k0 − j

)
(1− ty)2(k0−j)

(
k0 − 1/2

j

)
(1− t2)j(1− y2)j,

hn,k0(t, y) :=
k0

∑
j=0

(
n− 1− k0

k0 − j

)
(1− ty)2(k0−j)+1

(
k0 + 1/2

j

)
(1− t2)j(1− y2)j.

(27)

Then, by letting x = cos ξ1 and y = cos ξ2, the masks am in (24) and (25) can be written as:

âm(ξ1, ξ2) =


cn,k0

∫ x
−1(1− t2)n−2k0 gn,k0(t, y)dt if m = (2n + 1− 2k0, 2k0),

dn,k0

∫ x
−1(1− t2)n−2k0−1hn,k0(t, y)dt if m = (2n + 1− (2k0 + 1), 2k0 + 1).

(28)
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First, consider the sum rule definition in (3). In the case of the quincunx dilation matrix in
dimension d = 2, a mask a satisfies the sum rules of order κ + 1 with respect to a quincunx dilation
matrix M (|detM| = 2), equivalent to:

∂|µ| â(ξ1, ξ2)

∂ξ
µ1
1 ∂ξ

µ2
2

∣∣∣∣∣
ξ1=π,ξ2=π

= 0 ∀|µ| 6 κ. (29)

The following lemma shows that our masks am in (28) indeed satisfy the sum rules of order at
least 2n + 1 with respect to the quincunx dilation matrix.

Lemma 5. Let am be defined as in (28). Define:

Qm(x, y) := âm(ξ1, ξ2) with x = cos ξ1,= cos ξ2.

Then, we have,
∂|µ|Qm(x, y)

∂xµ1 ∂yµ2

∣∣∣∣∣
x=−1,y=−1

= 0 ∀|µ| 6 n. (30)

It follows that,

∂|µ| âm(ξ1, ξ2)

∂ξ
µ1
1 ∂ξ

µ2
2

∣∣∣∣∣
ξ1=π,ξ2=π

= 0 ∀|µ| 6 2n, (31)

that is, am satisfies the sum rules of order 2n + 1.

Proof. Note that Qm(x, y) is the linear combination of terms of the form:

P(x, y) = (1− y2)j
∫ x

−1
(1− t2)n−α+j(1− ty)α−2jdt

with α = 2k0 for m2 = 2k0 and α = 2k0 + 1 for m2 = 2k0 + 1. Using the Leibniz rule, one can
easily check that,

∂|µ|P(x, y)
∂xµ1 ∂yµ2

∣∣∣∣∣
x=−1,y=−1

= 0 ∀|µ| 6 n.

Hence (30) holds. That is, at x = y = −1, Qm(x, y) is a polynomial of the form:

Qm(x, y) = ∑
ν1+ν2>n

cν(1 + x)ν1(1 + y)ν2 .

Thus, at ξ1 = π, ξ2 = π, we have,

am(ξ1, ξ2) = o((1 + cos ξ1)
µ1(1 + cos ξ2)

µ2) = o((ξ1 − π)2µ1(ξ2 − π)2µ2), µ1 + µ2 = n.

It follows that,
∂|µ| âm(ξ1, ξ2)

∂ξ
µ1
1 ∂ξ

µ2
2

∣∣∣∣∣
ξ1=π,ξ2=π

= 0 ∀|µ| 6 2n.

We are done.

Second, consider the interpolatory condition in (6). In dimension d = 2, the mask a being a
quincunx interpolatory mask is equivalent to:

â(ξ1, ξ2) + â(ξ1 + π, ξ2 + π) = 1, (ξ1, ξ2) ∈ R2. (32)
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We have the following lemma concerning âm(ξ1, ξ2) + âm(ξ1 + π, ξ2 + π).

Lemma 6. Let am be defined as in (28). Then the function:

âm(ξ1, ξ2) + âm(ξ1 + π, ξ2 + π), (ξ1, ξ2) ∈ R2

is independent of the variable ξ2.

Proof. It is easy to show that for m = (2n + 1− 2k0, 2k0), we have:

âm(ξ1, ξ2) + âm(ξ1 + π, ξ2 + π) = cn,k0

∫ 1

−1
(1− t2)n−2k0 gn,k0(t, y)dt (33)

and for m = (2n + 1− (2k0 + 1), 2k0 + 1), we have:

âm(ξ1, ξ2) + âm(ξ1 + π, ξ2 + π) = dn,k0

∫ 1

−1
(1− t2)n−2k0−1hn,k0(t, y)dt (34)

with x = cos ξ1, y = cos ξ2. Hence, we only need to show that the right-hand sides of (33) and (34) are
independent of the variable y. We next prove (33). The proof for (34) is analogous.

One can show that, ∫ 1

−1
(1− t2)mt2`dt =

Γ(m + 1)Γ(`+ 1/2)
Γ(m + 3/2 + `)

,

where the Γ function is defined by Γ(x) =
∫ ∞

0 tx−1e−tdt and we have,(
n
k

)
=

Γ(n + 1)
Γ(k + 1)Γ(n− k + 1)

, Γ(1/2 + n) =
√

π

(
n− 1/2

n

)
n! =

√
π
(2n− 1)!!

2n .

Recalling the definition of gn,k0(t, y) in (27), the right-hand side of (33) is the linear combination

of terms of the form:∫ 1

−1
(1− t2)n−2k0+j(1− ty)2(k0−j)dt

=
k0−j

∑
`=0

y2`
(

2(k0 − j)
2`

) ∫ 1

−1
(1− t2)n−2k0+jt2`dt

=
k0−j

∑
`=0

y2`
(

2(k0 − j)
2`

)
× Γ(n− 2k0 + j + 1)Γ(`+ 1/2)

Γ(n− 2k0 + j + 1 + `+ 1/2)

=
k0−j

∑
`=0

y2(k0−j−`)
(

2(k0 − j)
2(k0 − j− `)

)
× Γ(n− 2k0 + j + 1)Γ(k0 − j− `+ 1/2)

Γ(n− k0 − `+ 3/2)
.

Moreover,(
n− k0

k0 − j

)(
k0 − 1/2

j

)(
2(k0 − j)

2(k0 − j− `)

)
× Γ(n− 2k0 + j + 1)Γ(k0 − j− `+ 1/2)

Γ(n− k0 − `+ 3/2)

=
(n− k0)!

k0!

(
k0 − `

j

)(
k0

`

)
× Γ(k0 + 1/2)Γ(1/2)

Γ(n + 1− k0 − `+ 1/2)Γ(`+ 1/2)
.



Axioms 2017, 6, 20 16 of 19

Thus,

G(y) :=
∫ 1

−1
(1− t2)n−2k0 gn,k0(t, y)dt

=
k0

∑
j=0

k0−j

∑
`=0

(
n− k0

k0 − j

)(
k0 − 1/2

j

)(
2(k0 − j)

2(k0 − j− `)

)

× Γ(n− 2k0 + j + 1)Γ(k0 − j− `+ 1/2)
Γ(n− k0 − `+ 3/2)

y2(k0−j−`)(1− y2)j.

By changing the order of j and ` in the above, we obtain,

G(y) =
k0

∑
`=0

k0−`

∑
j=0

(
n− k0

k0 − j

)(
k0 − 1/2

j

)(
2(k0 − j)

2(k0 − j− `)

)

× Γ(n− 2k0 + j + 1)Γ(k0 − j− `+ 1/2)
Γ(n− k0 − `+ 3/2)

y2(k0−`−j)(1− y2)j

=
k0

∑
`=0

k0−`

∑
j=0

(n− k0)!
k0!

(
k0 − `

j

)(
k0

`

)

× Γ(k0 + 1/2)Γ(1/2)
Γ(n + 1− k0 − `+ 1/2)Γ(`+ 1/2)

y2(k0−`−j)(1− y2)j

=
(n− k0)!

k0!

k0

∑
`=0

(
k0

`

)
Γ(k0 + 1/2)Γ(1/2)

Γ(n + 1− k0 − `+ 1/2)Γ(`+ 1/2)

×
k0−`

∑
j=0

(
k0 − `

j

)
y2(k0−`−j)(1− y2)j

=
(n− k0)!

k0!

k0

∑
`=0

(
k0

`

)
Γ(k0 + 1/2)Γ(1/2)

Γ(n + 1− k0 − `+ 1/2)Γ(`+ 1/2)
,

which is a constant independent of y. We are done.

Now, we are ready to prove Theorem 3.

Proof of Theorem 3. Obviously, by the definition, âm is nonnegative. We will show that am with
m = (m1, m2) satisfies the following properties:

(1) am is a quincunx interpolatory mask.
(2) am is supported on [−m1, m1]× [−m2, m2] ∩Z2.
(3) am satisfies the sum rules of order 2(n + 1) with respect to the quincunx lattice Q2.

Item (2) can be checked directly. We first prove item (1). By Lemma 6, we see that,

Gn,k0 :=
∫ 1

−1
(1− t2)n−2k0 gn,k0(t, y)dt and Hn,k0 :=

∫ 1

−1
(1− t2)n−1−2k0 hn,k0(t, y)dt

are both independent of y. Consequently, by (32), (33), and (34), we see that am is interpolatory is
equivalent to:

cn,k0 Gn,k0 = 1 and dn,k0 Hn,k0 = 1 (35)

for any integer pair (n, k0) with n > 2k0 > 0. We prove (35) by induction on n.
It is straightforward to show that (35) holds when n = 1 (k0 must be 0) for both cn,k0 Gn,k0 and

dn,k0 Hn,k0 , since it reduces to the case m = (2n + 1, 0) for 1-dimensional interpolatory mask a2n+1 and
the case m = (2n− 1, 1) in [18].

Suppose that (35) holds for (n0, k0) with any n0 6 n and k0 satisfying n0 > 2k0. We next show
that (35) holds for n + 1.
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Note that by the independency of Gn,k0 and Hn,k0 with respect to y, we have (by substituting y = 1),

cn,k0 Gn,k0 = cn,k0

(
n− k0

k0

) ∫ 1

−1
(1− t2)n−2k0(1− t)2k0 dt,

dn,k0 Hn,k0 = dn,k0

(
n− 1− k0

k0

) ∫ 1

−1
(1− t2)n−1−2k0(1− t)2k0+1dt.

Using integration by parts, it is easy to show that,

αn,k0 :=
∫ 1

−1
(1− t2)n−2k0(1− t)2k0 dt and βn,k0 :=

∫ 1

−1
(1− t2)n−1−2k0(1− t)2k0+1dt

satisfy,

αn+1,k0+1 =
k0 + 1/2
n− 2k0

αn,k0 + βn,k0 and βn+1,k0 = αn,k0 +
k0

n− 2k0 + 1
βn,k0−1.

Consequently, by our induction hypothesis, we have,

cn+1,k0+1Gn+1,k0+1 =cn+1,k0+1

(
n− k0

k0 + 1

)(
k0 + 1/2
n− 2k0

αn,k0 + βn,k0

)

=
cn+1,k0+1

cn,k0

× k0 + 1/2
n− 2k0

×
(n−k0

k0+1)

(n−k0
k0

)
× cn,k0

(
n− k0

k0

)
αn,k0

+
cn+1,k0+1

dn,k0

×
(n−k0

k0+1)

(n−1−k0
k0

)
× dn,k0

(
n− 1− k0

k0

)
βn,k0

=
cn+1,k0+1

cn,k0

× k0 + 1/2
n− 2k0

×
(n−k0

k0+1)

(n−k0
k0

)
+

cn+1,k0+1

dn,k0

×
(n−k0

k0+1)

(n−1−k0
k0

)

=
k0 + 1
n + 1

× k0 + 1/2
n− 2k0

× n− 2k0

k0 + 1
+

(k0 + 1)(n− k0 + 1/2)
(n + 1)(n− k0)

× n− k0

k0 + 1

=
k0 + 1/2

n + 1
+

n− k0 + 1/2
n + 1

= 1

and,

dn+1,k0 Hn+1,k0 =dn+1,k0

(
n− k0

k0

)(
αn,k0 +

k0

n− 2k0 + 1
βn,k0−1

)
=

dn+1,k0

cn,k0

× cn,k0

(
n− k0

k0

)
αn,k0

+
dn+1,k0

dn,k0−1
×

(n−k0
k0

)

(n−k0
k0−1)

× k0

n− 2k0 + 1
× dn,k0−1

(
n− k0

k0 − 1

)
βn,k0−1

=
dn+1,k0

cn,k0

+
dn+1,k0

dn,k0−1
×

(n−k0
k0

)

(n−k0
k0−1)

× k0

n− 2k0 + 1

=
n + 1− k0

n + 1
+

k0

n + 1
× n + 1− 2k0

k0
× k0

n + 1− 2k0

=
n + 1− k0

n + 1
+

k0

n + 1
= 1.

Therefore, by induction, we conclude that (35) holds for any integer pair (n, k0) with n > 2k0 > 0
and hence item (1) holds.
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It remains to show that item (3) holds. That is am satisfies the sum rules of order 2(n + 1).
By Lemma 5, we see that am satisfies the sum rules of order 2n + 1; that is,

∑
|β| odd

am(β)βµ = ∑
|β| even

am(β)βµ ∀|µ| 6 2n.

Noting that am is full-axis symmetric, we have ∑|β| odd am(β)βµ = 0 for any |µ| odd.
Together with that am is interpolatory, we conclude that,

∑
|β| odd

am(β)βµ = ∑
|β| even

am(β)βµ ∀|µ| 6 2n + 1.

We are done.

4. Conclusions

We show that there exists a family of unique quincunx interpolatory masks in arbitrary dimensions.
Such a family of masks is real-valued and full-axis symmetric. We present the explicit form of the family
of two-dimensional quincunx interpolatory masks which also show their nonnegativity property in
the frequency domain. It remains open for the explicit form of such a family in dimension d > 3.
We conjecture that such an explicit form exists and the nonnegativity property holds as well.
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