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Abstract:



Let [image: there is no content] be a category whose objects are semigroups with topology and morphisms are closed semigroup relations, in particular, continuous homomorphisms. An object X of the category [image: there is no content] is called [image: there is no content]-closed if for each morphism [image: there is no content] in the category [image: there is no content] the image Φ(X)={y∈Y:∃x∈X(x,y)∈Φ} is closed in Y. In the paper we survey existing and new results on topological groups, which are [image: there is no content]-closed for various categories [image: there is no content] of topologized semigroups.
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1. Introduction and Survey of Main Results


In this paper, we recognize topological groups which are [image: there is no content]-closed for some categories [image: there is no content] of Hausdorff topologized semigroups.



A topologized semigroup is a topological space S endowed with an associative binary operation [image: there is no content], [image: there is no content]. If the binary operation is (separately) continuous, then S is called a ([image: there is no content]) topological semigroup. A topologized semigroup S is called [image: there is no content] if it is semitopological and for every [image: there is no content] the map [image: there is no content], [image: there is no content], is continuous. A topologized semigroup S is called [image: there is no content] if for every [image: there is no content] the right shift [image: there is no content], [image: there is no content], is continuous.



All topologized semigroups considered in this paper (except for those in Proposition 10 and Example 2) are assumed to be Hausdorff .



Topologized semigroups are objects of many categories which differ by morphisms. The most obvious category for morphisms has continuous homomorphisms between topologized semigroups. A bit wider category for morphisms has partial homomorphisms, i.e., homomorphisms defined on subsemigroups. The widest category for morphisms has semigroup relations. By a semigroup relation between semigroups [image: there is no content] we understand a subsemigroup [image: there is no content] of the product semigroup [image: there is no content].



Now we recall some standard operations on (semigroup) relations. For two (semigroup) relations [image: there is no content] and [image: there is no content] their composition is the (semigroup) relation [image: there is no content] defined by Ψ∘Φ={(x,z)∈X×Z:∃y∈Y(x,y)∈Φ,(y,z)∈Ψ}. For a (semigroup) relation [image: there is no content] its inverse [image: there is no content] is the (semigroup) relation [image: there is no content].



For a relation [image: there is no content] and subsets [image: there is no content] the set R(A)={y∈X:∃a∈A(a,y)∈R} is the image of A under the relation R. If [image: there is no content] is a semigroup relation between semigroups [image: there is no content], then for any subsemigroup [image: there is no content] its image [image: there is no content] is a subsemigroup of Y. For a relation [image: there is no content] the sets [image: there is no content] and [image: there is no content] are called the range and domain of R, respectively.



Semigroup relations between semigroups can be equivalently viewed as multimorphisms. By a multimorphism between semigroups [image: there is no content] we understand a multi-valued function [image: there is no content] such that [image: there is no content] for any [image: there is no content]. Observe that a multi-valued function [image: there is no content] between semigroups is a multimorphism if and only if its graph [image: there is no content] is a subsemigroup in [image: there is no content]. Conversely, each subsemigroup [image: there is no content] determines a multimorphism [image: there is no content], [image: there is no content]. In the sequel we shall identify multimorphisms with their graphs.



A multimorphism [image: there is no content] between semigroups [image: there is no content] is called a partial homomorphism if for each [image: there is no content] the set [image: there is no content] contains at most one point. Each partial homomorphism [image: there is no content] can be identified with the unique function [image: there is no content] such that [image: there is no content] for each [image: there is no content]. This function [image: there is no content] is a homomorphism from the subsemigroup [image: there is no content] to the semigroup Y.



For a class [image: there is no content] of Hausdorff topologized semigroups by [image: there is no content] we denote the category whose objects are topologized semigroups in the class [image: there is no content] and morphisms are closed semigroup relations between the topologized semigroups in the class [image: there is no content]. The category [image: there is no content] contains the subcategories [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] whose objects are topologized semigroups in the class [image: there is no content] and morphisms are isomorphic topological embeddings, injective continuous homomorphisms, continuous homomorphisms, and partial continuous homomorphisms with closed domain, respectively.



In this paper, we consider some concrete instances of the following general notion.



Definition 1.

Let [image: there is no content] be a category of topologized semigroups and their semigroup relations. A topologized semigroup X is called[image: there is no content]-closed if for any morphism [image: there is no content] of the category [image: there is no content] the range [image: there is no content] is closed in Y.





In particular, for a class [image: there is no content] of topologized semigroups, a topologized semigroup X is called



	
[image: there is no content]-closed if for each isomorphic topological embedding [image: there is no content] the image [image: there is no content] is closed in Y;



	
[image: there is no content]-closed if for any injective continuous homomorphism [image: there is no content] the image [image: there is no content] is closed in Y;



	
[image: there is no content]-closed if for any continuous homomorphism [image: there is no content] the image [image: there is no content] is closed in Y;



	
[image: there is no content]-closed if for any continuous homomorphism [image: there is no content] defined on a closed subsemigroup [image: there is no content] the image [image: there is no content] is closed in Y;



	
[image: there is no content]-closed if for any topologized semigroup [image: there is no content] and any closed subsemigroup [image: there is no content] the range Φ(X):={y∈Y:∃x∈X(x,y)∈Φ} of [image: there is no content] is closed in Y.






It is clear that for any class [image: there is no content] of Hausdorff topologized semigroups and a topologized semigroup X we have the implications:


c:C−closed⇒p:C−closed⇒h:C−closed⇒i:C−closed⇒e:C−closed.











In this paper, we are interested in characterizing topological groups which are [image: there is no content]-, [image: there is no content]-, [image: there is no content]-, [image: there is no content]- or [image: there is no content]-closed for the following classes of Hausdorff topologized semigroups:

	
TS of all topological semigroups,



	
pTS of all powertopological semigroups,



	
sTS of all semitopological semigroups,



	
rTS of all right-topological semigroups,



	
TG of all topological groups,



	
pTG of all paratopological groups,



	
qTG of all quasitopological groups,



	
sTG of all semitopological groups,



	
rTG of all right-topological groups.








We recall that a paratopological group is a group G endowed with a topology making it a topological semigroup. So, the inversion operation is not necessarily continuous. A quasitopological group is a topologized group G such that for any [image: there is no content] and [image: there is no content] the map [image: there is no content], [image: there is no content], is continuous.



The inclusion relations between the classes of topologized semigroups are described in the following diagram (in which an arrow [image: there is no content] between classes [image: there is no content] indicates that [image: there is no content]).



[image: Axioms 06 00023 i001]



In this paper we shall survey existing and new results related to the following general problem (consisting of [image: there is no content] subproblems).



Problem 1.

Given a class C∈{TS,pTS,sTS,rTS,TG,qTG,pTG,sTG,rTG} and a class of morphisms [image: there is no content] detect topological groups which are f:C-closed.





For the categories e:TG and e:qTG the answer to this problem is known and is a combined result of Raikov [1] who proved the equivalence [image: there is no content] and Bardyla, Gutik, Ravsky [2] who proved the equivalence [image: there is no content].



Theorem 1 (Raikov, Bardyla–Gutik–Ravsky).

For a topological group X the following conditions are equivalent:

	(1) 

	
X is e:TG-closed;




	(2) 

	
X is e:qTG-closed;




	(3) 

	
X is complete.











A topological group X is complete if it is complete in its two-sided uniformity, i.e., the uniformity, generated by the entourages [image: there is no content] where U runs over neighborhoods of the unit in X.



On the other hand, Gutik ([3] 2.5) answered Problem 1 for the category e:sTS:



Theorem 2 (Gutik).

A topological group is compact if and only if it is e:sTS-closed.





Theorems 1 and 2 and the trivial inclusions qTG⊃TG⊂pTG⊂TS⊂pTS⊂sTS imply the following diagram of implications between various [image: there is no content]-closedness properties of a topological group:



[image: Axioms 06 00023 i002]



This diagram shows that various [image: there is no content]-closedness properties of topological groups fill and organize the “space” between compactness and completeness.



In fact, under different names, [image: there is no content]-closed topological (semi)groups have been already considered in mathematical literature. As we have already mentioned, e:TG-closed topological groups appeared in Raikov’s characterization [1] of complete topological groups. The study of Lie groups which are i:TG-closed or h:TG-closed was initiated by Omori [4] in 1966 and continued by Goto [5] and currently by Bader and Gelander [6]. e:TS-Closed and h:TS-closed topological semigroups were introduced in 1969 by Stepp [7,8] who called them maximal and absolutely maximal semigroups, respectively. The study of h:TG-closed, p:TG-closed and c:TG-closed topological groups (called h-complete, hereditarily h-complete and c-compact topological groups, respectively) was initiated by Dikranjan and Tonolo [9] and continued by Dikranjan, Uspenskij [10], see the monograph of Lukàcs [11] and survey ([12] §4) of Dikranjan and Shakhmatov. The study of e:pTG-closed paratopological groups was initiated by Banakh and Ravsky [13,14], who called them H-closed paratopological groups. In [2,15,16,17] Hausdorff e:TS-closed (resp. h:TS-closed) topological semigroups are called (absolutely) H-closed. In [3] Gutik studied and characterized e:sTS-closed topological groups (calling them H-closed topological groups in the class of semitopological semigroups). The papers [18,19] are devoted to recognizing [image: there is no content]-closed topological semilattices for various categories [image: there is no content] of topologized semigroups. In the paper [20] the author studied [image: there is no content]-closedness properties in Abelian topological groups and proved the following characterization (implying the famous Prodanov-Stoyanov Theorem on the precompactness of minimal Abelian topological groups, see [20]).



Theorem 3 (Banakh).

An Abelian topological group X is compact if and only if X is i:TG-closed.





In Corollary 7 we shall complement this theorem proving that an Abelian topological group is compact if and only if it is e:sTG-closed.



The results of Banakh [20] and Ravsky [14] combined with Theorem 22 (proved in this paper) imply the following characterization of Abelian topological groups which are e:pTG-, e:TS- or e:pTS-closed.



Theorem 4 (Banakh, Ravsky).

For an Abelian topological group X the following conditions are equivalent:

	(1) 

	
X is e:pTG-closed;




	(2) 

	
X is e:TS-closed;




	(3) 

	
X is e:pTS-closed;




	(4) 

	
X is complete and has compact exponent;




	(5) 

	
X is complete and for every injective continuous homomorphism [image: there is no content] to a topological group Y the group [image: there is no content] is periodic.











A group X is called periodic if each element of X has finite order. Theorem 4(4) involves the (important) notion of a topological groups of compact exponent, which is defined as follows.



Definition 2.

A topological group X has (pre)compact exponent if for some [image: there is no content] the set [image: there is no content] has compact closure in X (resp. is totally bounded in X).





Theorems 3 and 4 and Corollary 7 imply that for Abelian groups, the diagram describing the interplay between various [image: there is no content]-closedness properties collapses to the following form (containing only three different types of closedness: compactness, completeness, and completeness combined with compact exponent):



[image: Axioms 06 00023 i003]



So, the problem remains to investigate the [image: there is no content]-closedness properties for non-commutative topological groups. Now we survey the principal results (known and new) addressing this complex and difficult problem. We start with the following characterization of e:TS-closed topological groups, proved in Section 4.



Theorem 5.

A topological group X is e:TS-closed if and only if X is Weil-complete and for every continuous homomorphism [image: there is no content] into a Hausdorff topological semigroup Y the complement [image: there is no content] is not an ideal in the semigroup [image: there is no content].





Using Theorems 3–5 we shall prove that various [image: there is no content]-closedness properties have strong implications on the structure of subgroups related to commutativity, such as the subgroups of the topological derived series or the central series of a given topological group.



We recall that for a group G its commutator [image: there is no content] is the subgroup generated by the set [image: there is no content]. The topological derived series


[image: there is no content]








of a topological group G consists of the subgroups defined by the recursive formula [image: there is no content] for [image: there is no content].



A topological group G is called solvable if [image: there is no content] for some [image: there is no content]. The quotient group [image: there is no content] is called the Abelianization of a topological group X.



The central series


[image: there is no content]








of a (topological) group G consists of (closed) normal subgroups defined by the recursive formula


Zn+1(G):={z∈G:∀x∈Gzxz−1x−1∈Zn(G)}forn∈ω.











A group G is called nilpotent if [image: there is no content] for some [image: there is no content]. The subgroup [image: there is no content] is called the center of the group G and is denoted by [image: there is no content].



The following theorem unifies Propositions 4 and Corollaries 6 and 9.



Theorem 6.

Let X be a topological group.

	(1) 

	
If X is e:pTG-closed, then the center [image: there is no content] has compact exponent.




	(2) 

	
If X is e:TS-closed, then for any closed normal subgroup [image: there is no content] the center [image: there is no content] of the quotient topological group [image: there is no content] has precompact exponent.




	(3) 

	
If X is i:TG-closed or e:sTS-closed, then the center [image: there is no content] of X is compact.




	(4) 

	
If X is h:TG-closed, then for any closed normal subgroup [image: there is no content] the center [image: there is no content] is compact; in particular, the Abelianization [image: there is no content] of X is compact.











Theorem 6(3), combined with an old result of Omori ([4] Corollary 1.3), implies the following characterization of i:TG-closed groups in the class of connected nilpotent Lie groups.



Theorem 7.

A connected nilpotent Lie group X is i:TG-closed if and only if X has compact center.





Applying the statements (2) and (4) of Theorem 6 inductively, we obtain the following corollary describing the compactness properties of some characteristic subgroups of a [image: there is no content]-closed topological group (see Corollary 5, Proposition 7 and Theorem 35).



Corollary 1.

Let X be a topological group.

	(1) 

	
If X is e:TS-closed, then for every [image: there is no content] the subgroup [image: there is no content] has compact exponent.




	(2) 

	
If X is h:TS-closed, then for every [image: there is no content] the subgroup [image: there is no content] is compact.




	(3) 

	
If X is p:TG-closed, then for every [image: there is no content] the quotient topological group [image: there is no content] is compact.











The three items of Corollary 1 imply the following three characterizations. The first of them characterizes nilpotent complete group of compact exponent and is proved in Theorem 22.



Theorem 8.

For a nilpotent topological group X the following conditions are equivalent:

	(1) 

	
X is complete and has compact exponent;




	(2) 

	
X is e:TS-closed;




	(3) 

	
X is e:pTS-closed.











In Example 2 we shall observe that the discrete topological group [image: there is no content] of isometries of [image: there is no content] is e:TS-closed but does not have compact exponent. This shows that Theorem 8 does not generalize to solvable groups.



Theorem 9 (Dikranjan, Uspenskij).

For a nilpotent topological group X the following conditions are equivalent:

	(1) 

	
X is compact;




	(2) 

	
X is h:TG-closed.











For Abelian topological groups Theorem 9 was independently proved by Zelenyuk and Protasov ([21]).



A topological group X is called hypoabelian if for each non-trivial closed subgroup X the commutator [image: there is no content] is not dense in X. It is easy to see that each solvable topological group is hypoabelian.



Theorem 10 (Dikranjan, Uspenskij).

For a solvable (more generally, hypoabelian) topological group X the following conditions are equivalent:

	(1) 

	
X is compact;




	(2) 

	
X is p:TG-closed;




	(3) 

	
any closed subgroup of X is h:TG-closed.











The last two theorems were proved by Dikranjan and Uspenskij in ([10] 3.9 and 3.10) (in terms of the h-completeness, which is an alternative name for the h:TG-closedness).



The Weyl-Heisenberg group [image: there is no content] (which is a non-compact i:TG-closed nilpotent Lie group) shows that h:TG-closedness in Theorem 9 cannot be weakened to the i:TG-closedness (see Example 1 for more details).



On the other hand, the solvable Lie group [image: there is no content] of orientation preserving isometries of the complex plane is h:TS-closed and not compact, which shows that the p:TG-closedness in Theorem 10(2) cannot be replaced by the h:TG-closedness of X. This example (analyzed in details in Section 10) answers Question 3.13 in [10] and Question 36 in [12].



Nonetheless, the p:TG-closedness of the solvable group X in Theorem 10(2) can be replaced by the h:TG-closedness of X under the condition that the group X is balanced and MAP-solvable.



A topological group X is called balanced if for any neighborhood [image: there is no content] of the unit there exists a neighborhood [image: there is no content] of the unit such that [image: there is no content] for all [image: there is no content]. A topological group X is balanced if and only if the left and right uniformities on X coincide.



A topological group X is called maximally almost periodic (briefly MAP) if it admits a continuous injective homomorphism [image: there is no content] into a compact topological group K. By Theorem 37, for any productive class C⊃TG of topologized semigroups, the [image: there is no content]-closedness and [image: there is no content]-closedness are equivalent for MAP topological groups.



A topological group X is defined to be MAP-solvable if there exists an increasing sequence [image: there is no content] of closed normal subgroups in X such that for every [image: there is no content] the quotient group [image: there is no content] is Abelian and MAP. Since locally compact Abelian groups are MAP, each solvable locally compact topological group is MAP-solvable.



The following theorem (proven in Section 9) nicely complements Theorem 10 of Dikranjan and Uspenskij. Example 3 of non-compact solvable h:TS-closed Lie group [image: there is no content] shows that the “balanced” requirement cannot be removed from the conditions (2), (3).



Theorem 11.

For a solvable topological group X the following conditions are equivalent:

	(1) 

	
X is compact;




	(2) 

	
X is balanced, locally compact, and h:TG-closed;




	(3) 

	
X is balanced, MAP-solvable and h:TG-closed.











It is interesting that the proof of this theorem exploits a good piece of the descriptive set theory (that dealing with K-analytic spaces). Also methods of descriptive set theory are used for establishing the interplay between i:TG-closed and minimal topological groups.



We recall that a topological group X is minimal if each continuous bijective homomorphism [image: there is no content] onto a topological group Y is open (equivalently, is a topological isomorphism). By the fundamental theorem of Prodanov and Stoyanov [22], each minimal topological Abelian group is precompact, i.e., has compact Raikov completion. Groups that are minimal in the discrete topology are called non-topologizable. For more information on minimal topological groups we refer the reader to the monographs [11,23] and the surveys [24,25].



The definition of minimality implies that a minimal topological group is i:TG-closed if and only if it is e:TG-closed if and only if it is complete. In particular, each minimal complete topological group is i:TG-closed. By Theorem 3, the converse implication holds for Abelian topological groups. It also holds for [image: there is no content]-narrow topological groups of countable pseudocharacter.



Theorem 12.

An ω-narrow topological group X of countable pseudocharacter is i:TG-closed if and only if X is complete and minimal.





A subset [image: there is no content] of a topological group X is called [image: there is no content]-narrow if for any neighborhood [image: there is no content] of the unit there exists a countable set [image: there is no content] such that [image: there is no content]. [image: there is no content]-Narrow topological groups were introduced by Guran [26] (as [image: there is no content]-bounded groups) and play important role in the theory of topological groups [27]. Theorem 12 will be proved in Section 5 (see Theorem 31). This theorem suggests the following open problem.



Problem 2.

Is each i:TG-closed topological group minimal?





Observe that a complete MAP topological group is minimal if and only if it is compact. So, for MAP topological groups Problem 2 is equivalent to another intriguing open problem.



Problem 3.

Is each i:TG-closed MAP topological group compact?





For [image: there is no content]-narrow topological groups an affirmative answer to this problem follows from Theorem 37 and the characterization of h:TG-closedness in term of total completeness and total minimality, see Theorem 13.



Following [11], we define a topological group G to be totally complete (resp. totally minimal) if for any closed normal subgroup [image: there is no content] the quotient topological group [image: there is no content] is complete (resp. minimal). Totally minimal topological groups were introduced by Dikranjan and Prodanov in [28]. By ([11] 3.45), each totally complete totally minimal topological group is absolutely TG-closed.



Theorem 13.

An ω-narrow topological group is h:TG-closed if and only if it is totally complete and totally minimal.





Theorem 13 will be proved in Section 6 (see Theorem 33). This theorem complements a characterization of h:TG-closed topological groups in terms of special filters, due to Dikranjan and Uspenskij [10] (see also [11] 4.24). Using their characterization of h:TG-closedness, Dikranjan and Uspenskij [10] proved another characterization.



Theorem 14 (Dikranjan, Uspenskij).

A balanced topological group is h:TG-closed if and only if it is c:TG-closed.





The compactness of [image: there is no content]-narrow i:TG-closed MAP topological groups can be also derived from the compactness of the [image: there is no content]-conjucenter[image: there is no content] defined for any topological group X as the set of all points [image: there is no content] whose conjugacy class [image: there is no content] is [image: there is no content]-narrow in X.



A topological group X is defined to be [image: there is no content]-balanced if for any neighborhood [image: there is no content] of the unit there exists a countable family [image: there is no content] of neighborhoods of the unit such that for any [image: there is no content] there exists [image: there is no content] such that [image: there is no content]. It is known (and easy to see) that each [image: there is no content]-narrow topological group is [image: there is no content]-balanced. By Katz Theorem [27], a topological group is [image: there is no content]-balanced if and only if it embeds into a Tychonoff product of first-countable topological groups. The following theorem can be considered as a step towards the solution of Problem 3.



Theorem 15.

If an ω-balanced MAP topological group X is i:TG-closed, then its ω-conjucenter [image: there is no content] is compact.





A topological group G is called hypercentral if for each closed normal subgroup [image: there is no content], the quotient group [image: there is no content] has non-trivial center [image: there is no content]. It is easy to see that each nilpotent topological group is hypercentral. Theorem 15 implies the following characterization (see Corollary 17).



Corollary 2.

A hypercentral topological group X is compact if and only if X is ω-balanced, MAP, and i:TG-closed.





Remark 1.

Known examples of non-topologizable groups (due to Klyachko, Olshanskii, and Osin [29]) show that the compactness does not follow from the pTS- or c:TG-closedness even for 2-generated discrete topological groups (see Example 4).





The following diagram describes the implications between various completeness and closedness properties of a topological group. By simple arrows we indicate the implications that hold under some additional assumptions (written in italic near the arrow).



[image: Axioms 06 00023 i004]



The curved horizontal implications, holding under the assumption of compact exponent, are proved in Theorems 24 and 32.




2. Completeness of Topological Groups Versus [image: there is no content]-closedness


To discuss the completeness properties of topological groups, we need to recall some known information related to uniformities on topological groups (see [27,30] for more details). We refer the reader to ([31] Ch.8) for basic information on uniform spaces. Here we recall that a uniform space [image: there is no content] is complete if each Cauchy filter [image: there is no content] on X converges to some point [image: there is no content]. A filter on a set X is a non-empty family of non-empty subsets of X, which is closed under finite intersections and taking supersets. A subfamily [image: there is no content] is called a base of a filter [image: there is no content] if each set [image: there is no content] contains some set [image: there is no content].



A filter [image: there is no content] on a uniform space [image: there is no content] is Cauchy if for each entourage [image: there is no content] there is a set [image: there is no content] such that [image: there is no content]. A filter on a topological space X converges to a point [image: there is no content] if each neighborhood of x in X belongs to the filter. A uniform space [image: there is no content] is compact if and only if the space is complete and totally bounded in the sense that for every entourage [image: there is no content] there exists a finite subset [image: there is no content] such that [image: there is no content] where [image: there is no content].



Each topological group [image: there is no content] with unit e carries four natural uniformities:

	
the left uniformity [image: there is no content] generated by the base [image: there is no content];



	
the right uniformity [image: there is no content] generated by the base [image: there is no content];



	
the two-sided uniformity [image: there is no content] generated by the base [image: there is no content];



	
the Roelcke uniformity [image: there is no content] generated by the base [image: there is no content].








It is well-known (and easy to see) that a topological group X is complete in its left uniformity if and only if it is complete in its right uniformity. Such topological groups are called Weil-complete. A topological group is complete if it is complete in its two-sided uniformity. Since each Cauchy filter in the two-sided uniformity is Cauchy in the left and right uniformities, each Weil-complete topological group is complete. For an Abelian (more generally, balanced) topological group X all four uniformities [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] coincide, which implies that X is Weil-complete if and only if it is complete.



An example of a complete topological group, which is not Weil-complete is the Polish group [image: there is no content] of all bijections of the discrete countable space [image: there is no content] (endowed with the topology of pointwise convergence, inherited from the Tychonoff product [image: there is no content]).



The completion of a topological group X by its two-sided uniformity is called the Raikov-completion of X. It is well-known that the Raikov-completion of a topological group has a natural structure of a topological group, which contains X as a dense subgroup. On the other hand, the completion of a topological group X by its left (or right) uniformity carries a natural structure of a topological semigroup, called the (left or right) Weil-completion of the topological group, see ([32] 8.45). For example, the left Weil-completion of the Polish group [image: there is no content] is the semigroup of all injective functions from [image: there is no content] to [image: there is no content].



So, if a topological group X is not complete, then X admits a non-closed embedding into its Raikov-completion, which implies that it is not [image: there is no content]-closed for any class [image: there is no content] of topologized semigroups, containing all complete topological groups. If X is not Weil-complete, then X admits a non-closed embedding into its (left or right) Weil-completion, which implies that it is not [image: there is no content]-closed for any class [image: there is no content] of topologized semigroups, containing all Tychonoff topological semigroups. Let us write these facts for future references.



Theorem 16.

Assume that a class [image: there is no content] of topologized semigroups contains all Raikov-completions (and Weil-completions) of topological groups. Each [image: there is no content]-closed topological group is (Weil-)complete. In particular, each e:TG-closed topological group is complete and each e:TS-closed topological group is Weil-complete.





We recall that a non-empty subset I of a semigroup S is called an ideal in S if [image: there is no content].



Theorem 17.

Assume that a topological group X admits a non-closed topological isomorphic embedding [image: there is no content] into a Hausdorff semitopological semigroup Y.

	(1) 

	
If X is Weil-complete, then [image: there is no content] is an ideal of the semigroup [image: there is no content].




	(2) 

	
If X is complete, then {yn:y∈f(X)¯∖f(X),n∈N}⊂f(X)¯∖f(X).











Proof. 

To simplify notation, it will be convenient to identify X with its image [image: there is no content] in Y. Replacing Y by the closure [image: there is no content] of X, we can assume that the group X is dense in the semigroup Y.



1. First, we assume that X is Weil-complete. Given any [image: there is no content] and [image: there is no content], we should prove that [image: there is no content].



To derive a contradiction, assume that [image: there is no content]. On the topological group X, consider the filter [image: there is no content] generated by the base consisting of the intersections [image: there is no content] of X with neighborhoods [image: there is no content] of y in Y. The Hausdorff property of Y ensures that this filter does not converge in the Weil-complete group X and thus is not Cauchy in the left uniformity of X. This yields an open neighborhood [image: there is no content] of the unit of the group X such that [image: there is no content] for any set [image: there is no content] and any [image: there is no content]. Since X carries the subspace topology, the space Y contains an open set [image: there is no content] such that [image: there is no content].



The separate continuity of the binary operation on Y yields an open neighborhood [image: there is no content] of the point x in Y such that [image: there is no content]. Choose any point [image: there is no content] and find a neighborhood [image: there is no content] of the point y in Y such that [image: there is no content]. Now consider the set [image: there is no content] and observe that [image: there is no content] and hence [image: there is no content], which contradicts the choice of [image: there is no content]. This contradiction shows that [image: there is no content].



By analogy we can prove that [image: there is no content].



2. Next, assume that X is complete. In this case we should prove that [image: there is no content] for any [image: there is no content] and [image: there is no content]. To derive a contradiction, assume that [image: there is no content] for some [image: there is no content] and [image: there is no content]. On the group X consider the filter [image: there is no content] generated by the base [image: there is no content] where [image: there is no content] runs over neighborhoods of y in Y. The filter [image: there is no content] converges to the point [image: there is no content] and hence is divergent in X (by the Hausdorff property of Y). Since X is complete, the divergent filter [image: there is no content] is not Cauchy in its two-sided uniformity. This allows us to find an open neighborhood [image: there is no content] of the unit such that [image: there is no content] for any points [image: there is no content]. Choose an open set [image: there is no content] such that [image: there is no content].



By finite induction, we shall construct a sequence [image: there is no content] of points of the group X such that [image: there is no content] for all [image: there is no content]. To start the inductive construction, let [image: there is no content] be the unit of the group X. Assume that for some positive [image: there is no content] the point [image: there is no content] with [image: there is no content] has been constructed. By the separate continuity of the semigroup operation in Y, the point y has a neighborhood [image: there is no content] such that [image: there is no content]. Choose any point [image: there is no content], put [image: there is no content] and observe that [image: there is no content], which completes the inductive step.



After completing the inductive construction, we obtain a point [image: there is no content] such that [image: there is no content]. By analogy we can construct a point [image: there is no content] such that [image: there is no content]. The separate continuity of the binary operation in Y yields a neighborhood [image: there is no content] of y such that [image: there is no content]. Then the set [image: there is no content] has the property: [image: there is no content] which implies that [image: there is no content]. However, this contradicts the choice of the neighborhood [image: there is no content]. ☐





Now we describe a construction of the ideal union of topologized semigroups, which allows us to construct non-closed embeddings of topologized semigroups.



Let [image: there is no content] be a continuous homomorphism between topologized semigroups [image: there is no content] such that [image: there is no content] is an ideal in Y and [image: there is no content]. Consider the set [image: there is no content] endowed with the semigroup operation defined by


[image: there is no content]











Here by ∗ and · we denote the binary operations of the semigroups X and Y, respectively. The set [image: there is no content] is endowed with the topology consisting of the sets [image: there is no content] such that

	
for any [image: there is no content], some neighborhood [image: there is no content] of x is contained in W;



	
for any [image: there is no content] there exists an open neighborhood [image: there is no content] of y such that [image: there is no content].








This topology turns [image: there is no content] into a topologized semigroup, which be called the ideal union of the semigroups X and Y along the homomorphism h.



The following theorem can be derived from the definition of the ideal union.



Theorem 18.

Let [image: there is no content] be a continuous homomorphism between topologized semigroups such that [image: there is no content] is an ideal in Y and [image: there is no content]. The topologized semigroup [image: there is no content] has the following properties:

	(1) 

	
X is an open subsemigroup of [image: there is no content];




	(2) 

	
X is closed in [image: there is no content] if and only if [image: there is no content] is closed in Y;




	(3) 

	
If X and Y are (semi)topological semigroups, then so is the topologized semigroup [image: there is no content];




	(4) 

	
If the spaces [image: there is no content] are Hausdorff (or regular or Tychonoff), then so is the space [image: there is no content].











We shall say that a class [image: there is no content] of topologized semigroups is stable under taking

	
topological isomorphisms if for any topological isomorphism [image: there is no content] between topologized semigroups [image: there is no content] the inclusion [image: there is no content] implies [image: there is no content];



	
closures if for any topologized semigroup [image: there is no content] and a subgroup [image: there is no content] the closure [image: there is no content] of X in Y is a topologized semigroup that belongs to the class [image: there is no content];



	
ideal unions if for any continuous homomorphism [image: there is no content] between semigroups [image: there is no content] with [image: there is no content] being an ideal in Y, disjoint with X, the topologized semigroup [image: there is no content] belongs to the class [image: there is no content].








Theorems 17 and 18 imply the following characterization.



Theorem 19.

Assume that a class [image: there is no content] of Hausdorff semitopological semigroups is stable under topological isomorphisms, closures and ideal unions. A Weil-complete topological group [image: there is no content] is [image: there is no content]-closed if and only if for every continuous homomorphism [image: there is no content] into a topologized semigroup [image: there is no content] the set [image: there is no content] is not an ideal in [image: there is no content].





Proof. 

To prove the “only if” part, assume that there exits a continuous homomorphism [image: there is no content] into a topologized semigroup [image: there is no content] such that [image: there is no content] is dense in Y and [image: there is no content] is an ideal of [image: there is no content]. In particular, [image: there is no content], which means that [image: there is no content] is not closed in Y. Taking into account that the class [image: there is no content] is stable under closures, we conclude that [image: there is no content] is a topologized semigroup in the class [image: there is no content]. So, we can replace Y by [image: there is no content] and assume that the subgroup [image: there is no content] is dense in Y. Replacing Y by its isomorphic copy, we can assume that [image: there is no content]. In this case we can consider the ideal sum [image: there is no content] and conclude that it belongs to the class [image: there is no content] (since [image: there is no content] is stable under ideal unions). By Theorem 18(2), the topological group X is not closed in [image: there is no content], which means that X is not [image: there is no content]-closed.



To prove the “if” part, assume that the Weil-complete topological group X is not [image: there is no content]-closed. Then X admits a non-closed topological isomorphic embedding [image: there is no content] into a topologized semigroup [image: there is no content]. By Theorem 17(1), the complement [image: there is no content] is an ideal in [image: there is no content]. ☐






3. Topological Groups of (Pre)compact Exponent


In this section, we study topological groups of compact exponent. We shall say that a topological group X has compact exponent (resp. finite exponent) if there exists a number [image: there is no content] such that the set [image: there is no content] is contained is a compact (resp. finite) subset of X. A complete topological group has compact exponent if and only if it has precompact exponent in the sense that for some [image: there is no content] the set [image: there is no content] is precompact. A subset A of a topological group X is called precompact if for any neighborhood [image: there is no content] of the unit there exists a finite subset [image: there is no content] such that [image: there is no content].



Lemma 1.

A topological group X is precompact if and only if for any neighborhood [image: there is no content] of the unit there exists a finite subset [image: there is no content] such that [image: there is no content].





Proof. 

The “only if” part is trivial. To prove the “if” part, assume that for any neighborhood [image: there is no content] of the unit there exists a finite subset [image: there is no content] such that [image: there is no content]. Given a neighborhood [image: there is no content] of the unit, we need to find a finite subset [image: there is no content] such that [image: there is no content]. Choose a neighborhood [image: there is no content] of the unit such that [image: there is no content]. By our assumption, there exists a finite set [image: there is no content] such that [image: there is no content]. By ([33] 12.6), for some [image: there is no content] there exists a finite subset [image: there is no content] such that [image: there is no content]. Then [image: there is no content] and hence [image: there is no content] for [image: there is no content]. ☐





The following proposition shows that our definition of a group of finite exponent is equivalent to the standard one.



Proposition 1.

A group X has finite exponent if and only if there exists [image: there is no content] such that for every [image: there is no content] the power [image: there is no content] coincides with the unit of the group X.





Proof. 

The “if” part is trivial. To prove the “only if” part, assume that X has finite exponent and find [image: there is no content] such that the set [image: there is no content] is finite.



It follows that for every [image: there is no content] the powers [image: there is no content], [image: there is no content], belong to the set F. So, by the Pigeonhole Principle, [image: there is no content] for some numbers [image: there is no content]. Consequently, for the number [image: there is no content] the power [image: there is no content] is the unit e of the group X. Then for the number [image: there is no content] we have [image: there is no content]. ☐





This characterization implies that being of finite exponent is a 3-space property.



Corollary 3.

Let H be a normal subgroup of a group G. The group G has finite exponent if and only if H and [image: there is no content] have finite exponent.





A similar 3-space property holds also for topological groups of compact exponent. A subgroup H of a group G is called central if H is contained in the centerZ(G)={x∈G:∀g∈Gxg=gx} of the group G.



Proposition 2.

Let Z be a closed central subgroup of a topological group X. The topological group X has precompact exponent if and only if the topological groups Z and [image: there is no content] have precompact exponent.





Proof. 

If the topological group X has precompact exponent, then for some [image: there is no content] the set [image: there is no content] is precompact in X. It follows that the intersection [image: there is no content] is precompact in Z and the image [image: there is no content] of [image: there is no content] under the quotient homomorphism [image: there is no content] is precompact in the quotient topological group Y.



The proof of the “if” part is more complicated. Assume that the topological groups Z and [image: there is no content] have precompact exponent. Then there exist natural numbers n and m such that the sets [image: there is no content] and [image: there is no content] are precompact. The set B contains the unit of the group Y and hence [image: there is no content] for all positive [image: there is no content].



We claim that the set [image: there is no content] is precompact in X. Given any open neighborhood [image: there is no content] of the unit, we should find a finite subset [image: there is no content] such that the set [image: there is no content]. Since the set [image: there is no content] is symmetric, it suffices to find [image: there is no content] such that [image: there is no content]. Using the continuity of the group operations, choose a neighborhood [image: there is no content] of the unit such that [image: there is no content] and [image: there is no content]. Let [image: there is no content] be the quotient homomorphism.



Claim 1.

For the precompact set [image: there is no content] the intersection [image: there is no content] is a neighborhood of the unit in X.






Proof. By the precompactness of [image: there is no content] and the openness of the quotient homomorphism [image: there is no content], there exists a finite set [image: there is no content] such that [image: there is no content]. We claim that the neighborhood [image: there is no content] is contained in [image: there is no content] for any [image: there is no content]. Indeed, for any [image: there is no content] and [image: there is no content], we can find [image: there is no content] such that [image: there is no content] and hence [image: there is no content] for some [image: there is no content] and [image: there is no content]. Then [image: there is no content] (here we use that z belongs to the center of the group X). ☐





By the precompactness of the sets [image: there is no content], there exist a finite set [image: there is no content] such that [image: there is no content] and a finite set [image: there is no content] such that [image: there is no content]. We claim that the finite set F={bna:b∈B′,a∈A′} has the desired property: [image: there is no content] for any [image: there is no content].



The choice of m ensures that [image: there is no content]. So, we can find elements [image: there is no content], [image: there is no content] and [image: there is no content] such that [image: there is no content] and hence [image: there is no content] (we recall that the element [image: there is no content] belongs to the center of X).



Observe that [image: there is no content]. For every [image: there is no content] the element [image: there is no content] belongs to [image: there is no content] and by Claim 1, [image: there is no content]. So,


[image: there is no content]








 ☐





For complete topological groups, the precompactness of exponent is recognizable by countable subgroups.



Proposition 3.

A complete topological group X has precompact exponent if and only if each countable subgroup of X has precompact exponent.





This proposition can be easily derived from the following (probably known) lemma.



Lemma 2.

A subset A of a topological group X is precompact if and only if for each countable subgroup [image: there is no content] the intersection [image: there is no content] is precompact in the topological group H.





Proof. 

The “only if” part is trivial. To prove the “only if” part, assume that A is not precompact. Then [image: there is no content] is not precompact and hence there exists a neighborhood [image: there is no content] of the unit such that [image: there is no content] for any finite subset [image: there is no content]. By Zorn’s Lemma, there exists a maximal subset [image: there is no content] which is U-separated in the sense that [image: there is no content] for any distinct points [image: there is no content]. The maximality of E guarantees that for any [image: there is no content] there exists [image: there is no content] such that [image: there is no content] or [image: there is no content] (and hence [image: there is no content]). Consequently, [image: there is no content]. The choice of U ensures that the set E is infinite. Then we can choose any infinite countable set [image: there is no content] and consider the countable subgroup H generated by [image: there is no content]. It follows that the intersection [image: there is no content] containes the infinite U-separated set [image: there is no content] and hence is not precompact in H. ☐






4. On [image: there is no content]-closed Topological Groups


In this section, we collect some results on [image: there is no content]-closed topological groups for various classes [image: there is no content].



First, observe that Theorems 16, 17 and 19 imply the following theorem (announced as Theorem 5 in the introduction).



Theorem 20.

A topological group X is e:TS-closed if and only if X is Weil-complete and for every continuous homomorphism [image: there is no content] into a Hausdorff topological semigroup Y the complement [image: there is no content] is not an ideal in the semigroup [image: there is no content].





We recall that a topologized semigroup X is defined to be a powertopological semigroup if it is semitopological and for every [image: there is no content] the power map [image: there is no content], [image: there is no content], is continuous. By pTS we denote the class of Hausdorff powertopological semigroups.



Theorem 21.

Each complete topological group X of compact exponent is e:pTS-closed.





Proof. 

Fix a number [image: there is no content] and a compact set [image: there is no content] such that [image: there is no content]. To show that X is e:pTS-closed, assume that X is a subgroup of some Hausdorff powertopological semigroup Y. The Hausdorff property of Y ensures that the compact set K is closed in Y. Then the continuity of the power map [image: there is no content], [image: there is no content], implies that the set


[image: there is no content]








containing X is closed in Y and hence contains [image: there is no content]. If X is not closed in Y, then we can find a point [image: there is no content] and conclude that [image: there is no content]. However, this contradicts Theorem 17(2). ☐





Corollary 4.

For a topological group X of precompact exponent the following conditions are equivalent:

	(1) 

	
X is complete;




	(2) 

	
X is e:TG-closed;




	(3) 

	
X is e:TS-closed;




	(4) 

	
X is e:pTS-closed.











Proof. 

The implications [image: there is no content] follow from the inclusions pTS⊃TS⊃TG, [image: there is no content] and [image: there is no content] follow from Theorems 16 and 21, respectively. ☐





Proposition 4.

If a topological group X is e:TS-closed, then for any closed normal subgroup [image: there is no content] the center [image: there is no content] of the quotient group [image: there is no content] has precompact exponent.





Proof. 

Let [image: there is no content] be the quotient topological group, [image: there is no content] be the quotient homomorphism and Z={z∈Z:∀g∈Gzg=gz} be the center of the group G. Assuming that Z does not have precompact exponent, we conclude that the completion [image: there is no content] of Z does not have compact exponent. Applying Theorem 20, we obtain a continuous injective homomorphism [image: there is no content] to a topological group Y such that the closure [image: there is no content] of [image: there is no content] in Y contains an element y such that [image: there is no content] for all [image: there is no content].



Observe that the family [image: there is no content] is open in [image: there is no content] is a Hausdorff topology on Z turning it into a topological group, which is topologically isomorphic to the topological group [image: there is no content]. Then the completion [image: there is no content] of the topological group [image: there is no content] contains an element [image: there is no content] such that [image: there is no content] for all [image: there is no content].



Let [image: there is no content] be the topology of the topological group G. Taking into account that the subgroup Z is central in G, we can show that the family τe={U·V:e∈U∈TG,e∈V∈τZ} satisfies the Pontryagin Axioms ([27] 1.3.12) and hence is a neighborhood base at the unit of some Hausdorff group topology [image: there is no content] on G. The definition of this topology implies that the subgroup Z remains closed in the topology [image: there is no content] and the subspace topology [image: there is no content] on Z coincides with the topology [image: there is no content]. Then the completion [image: there is no content] of the topological group [image: there is no content] is contained in the completion [image: there is no content] of the topological group [image: there is no content] and hence [image: there is no content]. Now consider the subsemigroup S of [image: there is no content], generated by the set [image: there is no content]. Observe that [image: there is no content]. Since the group Z is central in G, the element z commutes with all elements of G. This implies that S={gzn:g∈G,n∈ω} and hence S∖G={gzn:g∈G,n∈N} is an ideal in G. Let [image: there is no content] be the identity homomorphism. Then for the homomorphism [image: there is no content] the complement [image: there is no content] is an ideal in S. By Theorem 20, the topological group X is not e:TS-closed. This is a desired contradiction showing that the topological group [image: there is no content] has precompact exponent. ☐





We recall that for a topological group X its central series [image: there is no content] consists of the subgroups defined recursively as Zn+1(X)={z∈X:∀x∈Xzxz−1x−1∈Zn(X)} for [image: there is no content].



Corollary 5.

If a topological group X is e:TS-closed, then for every [image: there is no content] the subgroup [image: there is no content] has compact exponent.





Proof. 

First observe that the topological group X is complete, being e:TS-closed. Then its closed subgroups [image: there is no content], [image: there is no content], also are complete. So, it suffices to prove that for every [image: there is no content] the topological group [image: there is no content] has precompact exponent. This will be proved by induction on n. For [image: there is no content] the trivial group [image: there is no content] obviously has precompact exponent. Assume that for some [image: there is no content] we have proved that the subgroup [image: there is no content] has precompact exponent. By Proposition 4, the center [image: there is no content] of the quotient topological group [image: there is no content] has precompact exponent. Since [image: there is no content], we see that the quotient topological group [image: there is no content] has precompact exponent. By Proposition 4, the topological group [image: there is no content] has precompact exponent. ☐





Corollary 5 implies the following characterization of e:TS-closed nilpotent topological groups (announced in the introduction as Theorem 8).



Theorem 22.

For a nilpotent topological group X the following conditions are equivalent:

	(1) 

	
X is e:TS-closed;




	(2) 

	
X is e:pTS-closed;




	(3) 

	
X is Weil-complete and has compact exponent;




	(4) 

	
X is complete and has compact exponent.











Proof. 

The implications [image: there is no content] and [image: there is no content] are trivial, and [image: there is no content] was proved in Theorem 21. It remains to prove that [image: there is no content]. So, assume that the nilpotent topological group X is e:TS-closed. By Theorem 16, X is Weil-complete. By Corollary 5, for every [image: there is no content] the subgroup [image: there is no content] has compact exponent. In particular, X has compact exponent, being equal to [image: there is no content] for a sufficiently large number n. ☐





We do not know if Theorem 22 remains true for hypercentral topological groups. We recall that a topological group X is hypercentral if for each closed normal subgroup [image: there is no content] the quotient group [image: there is no content] has non-trivial center. Each nilpotent topological group is hypercentral.



Problem 4.

Has each e:TS-closed hypercentral topological group compact exponent?





The following characterization of compact topological groups shows that the e:pTS-closedness of X in Theorem 22 cannot be replaced by the e:sTS-closedness. The equivalence [image: there is no content] was proved by Gutik [3].



Theorem 23.

For a topological group X the following conditions are equivalent:

	(1) 

	
X is compact;




	(2) 

	
X is e:sTS-closed;




	(3) 

	
X is e:rTG-closed.











Proof. 

The implication [image: there is no content] is trivial.



To prove that [image: there is no content], assume that a topological group X is e:sTS-closed. Then it is e:TG-closed and hence complete (by Theorem 16). Assuming that X is not compact, we conclude that X is not totally bounded. So, there exists a neighborhood [image: there is no content] of the unit such that [image: there is no content] for any finite subset [image: there is no content].



Chose any element [image: there is no content] and consider the space [image: there is no content] endowed with the Hausdorff topology [image: there is no content] consisting of sets [image: there is no content] such that [image: there is no content] is open in X and if [image: there is no content], then [image: there is no content] for some finite subset [image: there is no content]. Extend the group operation of X to a semigroup operation on [image: there is no content] letting [image: there is no content] for all [image: there is no content]. It is easy to see that [image: there is no content] is a Hausdorff semitopological semigroup containing X as a non-closed subgroup and witnessing that X is not e:sTS-closed.



To prove that [image: there is no content], assume that a topological group X is e:rTG-closed. Then it is e:TG-closed and hence complete (by Theorem 16). Assuming that X is not compact, we conclude that X is not totally bounded. By Lemma 2, X contains a countable subgroup which is not totally bounded. Now Lemma 3 (proved below) implies that X is not e:rTG-closed, which is a desired contradiction. ☐





A topology [image: there is no content] on a group X is called right-invariant (resp. shift-invariant) if {Ux:U∈τ,x∈X}=τ (resp. {xUy:U∈τ,x,y∈X}=τ). This is equivalent to saying that [image: there is no content] is a right-topological (resp. semitopological) group.



Lemma 3.

If a topological group X contains a countable subgroup Z which is not totally bounded, then the group [image: there is no content] admits a Hausdorff right-invariant topology τ such that the subgroup [image: there is no content] is not closed in the right-topological group [image: there is no content] and [image: there is no content] is topologically isomorphic to X. Moreover, if the subgroup Z is central in X, then [image: there is no content] is a semitopological group.





Proof. 

Identify the product group [image: there is no content] with the direct sum [image: there is no content]. In this case the group [image: there is no content] is identified with the subgroup [image: there is no content] of the group [image: there is no content]. Let [image: there is no content] be an enumeration of the countable subgroup Z. Since Z is not totally bounded, there exists a neighborhood [image: there is no content] of the unit such that [image: there is no content] for any finite subset [image: there is no content] (see Lemma 1). Using this property of Z, we can inductively construct a sequence of points [image: there is no content] of Z such that for every [image: there is no content] the following condition is satisfied:

	(a)

	
[image: there is no content] where




	(b)

	
Fn={e}∪xi1xi2⋯xikzjε:k∈ω,n>i1>⋯>ik,j≤n,ε∈{0,1}.









For every [image: there is no content] consider the subset


Σm:={(0,e)}∪{(n,xi1⋯xin):n∈N,i1>⋯>in>m}⊂Z×X.











On the group [image: there is no content], consider the topology [image: there is no content] consisting of subsets [image: there is no content] such that for every [image: there is no content] there exists [image: there is no content] and a neighborhood [image: there is no content] of g such that [image: there is no content]. The definition of the topology [image: there is no content] implies that for any [image: there is no content] and [image: there is no content] the set [image: there is no content] belongs to [image: there is no content]. So, [image: there is no content] is a right-topological group. If the subgroup Z is central, then for every [image: there is no content] and [image: there is no content] we get [image: there is no content], so we can find a neighborhood [image: there is no content] of [image: there is no content] and [image: there is no content] such that [image: there is no content]. Then [image: there is no content] is a neighborhood of g in X such that [image: there is no content], which means that the set [image: there is no content] belongs to the topology [image: there is no content] and the topology [image: there is no content] is invariant.



Let us show that for any open set [image: there is no content] and any [image: there is no content] the set [image: there is no content] belongs to the topology [image: there is no content].



For every [image: there is no content] we can find [image: there is no content] and a sequence [image: there is no content] such that [image: there is no content]. Choose neighborhoods [image: there is no content] of the unit such that [image: there is no content] and [image: there is no content]. Then


[image: there is no content]








and hence [image: there is no content].



Observe that for every [image: there is no content] and [image: there is no content], have [image: there is no content], which implies that X is a subgroup of the right-topological group [image: there is no content]. The subgroup X is not closed in [image: there is no content] as [image: there is no content] contains any point [image: there is no content] with [image: there is no content].



It remains to check that the right-topological semigroup [image: there is no content] is Hausdorff. Given any element [image: there is no content], we should find a neighborhood [image: there is no content] and [image: there is no content] such that [image: there is no content]. If [image: there is no content], then we can find a neighborhood [image: there is no content] of the unit such that [image: there is no content] and hence [image: there is no content].



So, we assume that [image: there is no content] and hence [image: there is no content] for some [image: there is no content]. Choose a neighborhood [image: there is no content] of the unit such that [image: there is no content] and if [image: there is no content], then [image: there is no content].



We claim that [image: there is no content]. Assuming that this intersection is not empty, fix an element [image: there is no content]. The inclusion [image: there is no content] implies that [image: there is no content] for some numbers [image: there is no content], [image: there is no content], and [image: there is no content]. On the other hand, the inclusion [image: there is no content] implies that [image: there is no content] for some numbers [image: there is no content] and [image: there is no content] and some [image: there is no content]. It follows that


[image: there is no content]



(1)







Let [image: there is no content] be the largest number [image: there is no content] such that [image: there is no content] for all [image: there is no content]. Three cases are possible.



(1) [image: there is no content]. In this case the numbers [image: there is no content] and [image: there is no content] are well-defined and distinct. The Equality (1) implies [image: there is no content]. If [image: there is no content], then


xiλ=xjλ⋯xjluxv−1(xiλ+1⋯xik)−1⊂xjλ⋯xjluzmWv−1(xiλ+1⋯xik)−1⊂⊂xjλ⋯xjlVzmWV−1(xiλ+1⋯xik)−1⊂xjλ⋯xjlzmWWV−1(xiλ+1⋯xik)−1⊂FiλW3Fiλ,








which contradicts the choice of [image: there is no content].



If [image: there is no content], then


[image: there is no content]








which contradicts the choice of [image: there is no content].



(2) [image: there is no content] and [image: there is no content]. In this case, Equation (1) implies that [image: there is no content] and [image: there is no content]. Then [image: there is no content], which contradicts the choice of V.



(3) [image: there is no content] and [image: there is no content]. In this case, Equation (1) implies that [image: there is no content] and hence [image: there is no content] which contradicts the choice of [image: there is no content].



(4) [image: there is no content] and [image: there is no content]. In this case, Equation (1) implies that [image: there is no content] and hence [image: there is no content] which contradicts the choice of [image: there is no content]. This contradiction finishes the proof of the Hausdorff property of the topology [image: there is no content]. ☐





Lemmas 2 and 3 have two implications.



Corollary 6.

Each e:sTG-closed topological group has compact center.





Corollary 7.

An Abelian topological group is compact if and only if it is e:sTG-closed.





Problem 5.

Is a topological group compact if it is e:sTG-closed?






5. On [image: there is no content]-closed Topological Groups


In this section, we collect some results on [image: there is no content]-closed topological groups for various classes [image: there is no content] of topologized semigroups. First we prove that for topological groups of precompact exponent, many of such closedness properties are equivalent.



Theorem 24.

For a topological group X of precompact exponent the following conditions are equivalent:

	(1) 

	
X is i:TS-closed;




	(2) 

	
X is i:TG-closed.











Proof. 

The implications [image: there is no content] is trivial and follows from the inclusion TG⊂TS. To prove that [image: there is no content], assume that X is i:TG-closed and take any continuous injective homomorphism [image: there is no content] to a Hausdorff topological semigroup Y. We need to show that [image: there is no content] is closed in Y. Replacing Y by [image: there is no content], we can assume that the group [image: there is no content] is dense in Y. We claim that Y is a topological group.



First observe that the image [image: there is no content] of the unit [image: there is no content] of the group X is a two-sided unit of the semigroup Y (since the set [image: there is no content] is closed in Y and contains the dense subset [image: there is no content] ).



Since the complete group X has precompact exponent, it has a compact exponent and hence for some number [image: there is no content] of the set [image: there is no content] has compact closure [image: there is no content]. By the continuity of h and the Hausdorff property of Y, the image [image: there is no content] is a compact closed subset of Y. Consequently, the set [image: there is no content] is closed in Y. Taking into account that [image: there is no content] contains the dense subset [image: there is no content], we conclude that [image: there is no content].



Now consider the compact subset [image: there is no content] in [image: there is no content]. Let [image: there is no content] be the coordinate projections. We claim that these projections are bijective. Since [image: there is no content] is a group, for every [image: there is no content] there exists a unique element [image: there is no content] with [image: there is no content]. This implies that the projection [image: there is no content], [image: there is no content], is injective. Given any element [image: there is no content] find an element [image: there is no content] and observe that [image: there is no content] and hence the pair [image: there is no content] belongs to [image: there is no content] witnessing that the map [image: there is no content] is surjective. Being a bijective continuous map defined on the compact space [image: there is no content], the map [image: there is no content] is a homeomorphism. By analogy we can prove that the projection [image: there is no content], [image: there is no content], is a homeomorphism. Then the inversion map [image: there is no content], [image: there is no content] is continuous.



Now consider the continuous map [image: there is no content] defined by [image: there is no content] for [image: there is no content]. This map is well-defined since [image: there is no content] for all [image: there is no content]. Observe that for every element y of the group [image: there is no content], the element [image: there is no content] coincides with the inverse element of y in the group [image: there is no content]. Consequently, [image: there is no content] for all [image: there is no content] and by the continuity of the map [image: there is no content] this equality holds for every [image: there is no content]. This means that each element y of the semigroup Y has inverse [image: there is no content] and hence Y is a group. Moreover, the continuity of the map [image: there is no content] ensures that Y is a topological group. So, [image: there is no content] is an injective continuous homomorphism to a topological group. Since X is i:TG-closed, the image [image: there is no content] is closed in Y. ☐





Theorems 22 and 24 imply the following characterization.



Corollary 8.

A nilpotent topological group X is i:TS-closed if and only if X is e:TS-closed and i:TG-closed.





The above results allow us to reduce the problem of detecting i:TS-closed topological groups to the problem of detecting i:TG-closed topological groups. So, now we establish some properties of i:TG-closed topological groups.



Theorem 25.

The center of any i:TG-closed topological group X is compact.





Proof. 

To derive a contradiction, assume that the center Z of an i:TG-closed topological group X is not compact. Being i:TG-closed, the topological group X is complete and so is its closed subsemigroup Z. By Theorem 3, the non-compact complete Abelian topological group Z is not i:TG-closed and hence admits a non-complete weaker Hausdorff group topology [image: there is no content].



Let [image: there is no content] be the topology of X and [image: there is no content]. Consider the family


τe={V·U:V∈Te,e∈U∈τZ}








of open neighborhoods of the unit in the topological group X. It can be shown that [image: there is no content] satisfies the Pontryagin Axioms ([27] 1.3.12) and hence is a base of some Hausdorff group topology [image: there is no content] on X. Observe that the topology [image: there is no content] induces the topology [image: there is no content] on the subgroup Z, which remains closed in the topology [image: there is no content]. Since the topological group [image: there is no content] is not complete, the topological group [image: there is no content] is not complete, too. Then the identity map [image: there is no content] into the completion [image: there is no content] of [image: there is no content] has non-closed image, witnessing that the topological group X is not i:TG-closed. This is a desired contradiction, completing the proof of the theorem. ☐





Theorem 25 can be reversed for connected nilpotent Lie groups.



Theorem 26.

A connected nilpotent Lie group X is i:TG-closed if and only if X has compact center.





Proof. 

The “only if” part follows from Theorem 25 and the “if” part was proved by Omori ([4] Corollary 1.3) (see also [5] and [6] Theorem 5.1). ☐





Example 1.

An example of a non-compact connected nilpotent Lie group with compact center is the classical Weyl-Heisenberg group [image: there is no content] where


H(R)=1ab01c001:a,b,c∈RandZ=10b010001:b∈Z.











By Theorem 26, the Weyl-Heisenberg group [image: there is no content] is i:TG-closed. On the other hand, [image: there is no content] admits a continuous homomorphism onto the real line, which implies that [image: there is no content] is not h:TG-closed. The group [image: there is no content] is known to be minimal, see ([25] 5), ([34] 5.5), [35]. Being minimal and non-compact, the complete group [image: there is no content] is not MAP.





We recall that a topological group X is minimal if each continuous bijective homomorphism [image: there is no content] to a topological group Y is a topological isomorphism. This definition implies the following (trivial) characterization.



Proposition 5.

A minimal topological group X is i:TG-closed if and only if X is e:TG-closed.





Now we characterize i:TG-closed [image: there is no content]-narrow topological groups which are Čech-complete or Polish.



We recall that a topological group X is [image: there is no content]-narrow if for any neighborhood [image: there is no content] of the unit in X there exists a countable set [image: there is no content] such that [image: there is no content]. The following classical theorem of Guran [26] (see also ([27] Theorem 3.4.23)) describes the structure of [image: there is no content]-narrow topological groups.



Theorem 27 (Guran).

A topological group X is ω-narrow if and only if X is topologically isomorphic to a subgroup of a Tychonoff product [image: there is no content] of Polish groups.





A topological group is called Čech-complete if its topological space is Čech-complete, i.e., is a [image: there is no content]-set in its Stone-Čech compactification. By Theorem 4.3.7 [27], each Čech-complete topological group is complete. By Theorem 4.3.20 [27], a topological group G is Čech-complete if and only if G contains a compact subgroup K such that the left quotient space [image: there is no content] is metrizable by a complete metric.



In the subsequent proofs we shall use the following known Open Mapping Principle for [image: there is no content]-narrow Čech-complete topological groups.



Theorem 28

(Open Mapping Principle, [27] Corollary 4.3.33). Each continuous surjective homomorphism [image: there is no content] between ω-narrow Čech-complete topological groups is open.





Theorem 29.

An ω-narrow i:TG-closed topological group X is Čech-complete if and only if it admits an injective continuous homomorphism [image: there is no content] to a Čech-complete topological group Y.





Proof. 

The “only if” part is trivial. To prove the “if part”, assume that X admits a continuous injective homomorphism [image: there is no content] to a Čech-complete topological group Y. Since X is i:TG-closed, the image [image: there is no content] is closed in Y and hence [image: there is no content] is a Čech-complete topological group. Replacing Y by [image: there is no content], we can assume that [image: there is no content].



We claim that the bijective homomorphism [image: there is no content] is open and hence is a topological isomorphism. Given any open neighborhood [image: there is no content] of the unit, we should show that its image [image: there is no content] is a neighborhood of the unit in Y. Using Guran’s Theorem 27, we can find a continuous homomorphism [image: there is no content] to a Polish group P and an open neighborhood [image: there is no content] of the unit such that [image: there is no content].



Consider the injective continuous homomorphism [image: there is no content], [image: there is no content]. Since the group X is [image: there is no content]-narrow and i:TG-closed, the image [image: there is no content] is an [image: there is no content]-narrow closed subgroup of the Čech-complete topological group [image: there is no content]. Consequently, [image: there is no content] is an [image: there is no content]-narrow Čech-complete topological group. By Theorem 28, the projection [image: there is no content], [image: there is no content], is open. Consequently, [image: there is no content] is a neighborhood of the unit in Y. ☐





Problem 6.

Assume that X is an i:TG-closed ω-narrow topological group containing a compact [image: there is no content]-subgroup K. Is X Čech-complete?





The answer to this problem is affirmative if the compact [image: there is no content]-subgroup [image: there is no content] is a singleton (in which case the topological group X has countable pseudocharacter).



We recall that a topological space X has countable pseudocharacter if for each point [image: there is no content] there exists a countable family [image: there is no content] of open sets in X such that [image: there is no content]. By PG we denote the class of Polish groups, i.e., topological groups whose topological space is Polish (= separable completely metrizable).



Theorem 30.

An i:PG-closed topological group X is Polish if and only if X is ω-narrow and has countable pseudocharacter.





Proof. 

The “only if” part is trivial. To prove the “if” part, assume that X is [image: there is no content]-narrow and has countable pseudocharacter. Using Guran’s characterization of [image: there is no content]-narrow topological groups, we can show that X admits an injective continuous homomorphism [image: there is no content] into a Polish group Y. By analogy with the proof of Theorem 29, it can be shown that the homomorphism h is open and hence h is a topological isomorphism. So, X is Polish, being topologically isomorphic to the Polish group Y. ☐





Now we present a characterization of i:TG-closed topological groups in the class of [image: there is no content]-narrow topological groups of countable pseudocharacter.



Theorem 31.

For an ω-narrow topological group X of countable pseudocharacter the following conditions are equivalent:

	(1) 

	
X is Polish and minimal;




	(2) 

	
X is complete and minimal;




	(3) 

	
X is i:TG-closed;




	(4) 

	
X is i:PG-closed.











Proof. 

The implications [image: there is no content] and [image: there is no content] are trivial, and [image: there is no content] follows from (the trivial) Proposition 5. To prove that [image: there is no content], assume that the topological group X is i:PG-closed. By Theorem 30, the topological group X is Polish. To show that X is minimal, take any continuous bijective homomorphism [image: there is no content] to a topological group Z. Observe that the topological group Z is i:PG-closed, [image: there is no content]-narrow, and has countable pseudocharacter (being the continuous bijective image of the i:PG-closed Polish group X). By Theorem 30, the topological group Z is Polish and by Theorem 28, the homomorphism h is open and hence is a topological isomorphism. So, X is minimal. ☐





Problem 7.

Is a topological group compact if it is i:qTG-closed?






6. On [image: there is no content]-closed Topological Groups


In this section, we collect some results on [image: there is no content]-closed topological groups for various classes [image: there is no content] of topologized semigroups. First observe the following trivial characterization of [image: there is no content]-closed topological groups.



Proposition 6.

Let [image: there is no content] be a class of topological groups. A topological group X is [image: there is no content]-closed if and only if for any closed normal subgroup [image: there is no content] the quotient topological group [image: there is no content] is [image: there is no content]-closed.





Proposition 6 and Theorem 24 implies the following characterization.



Theorem 32.

For a topological group X of precompact exponent the following conditions are equivalent:

	(1) 

	
X is h:TS-closed;




	(2) 

	
X is h:TG-closed.











Also Theorem 25 and Proposition 6 imply:



Corollary 9.

For any closed normal subgroup N of an h:TG-closed topological group X the quotient topological group [image: there is no content] has compact center [image: there is no content]. In particular, the Abelianization [image: there is no content] of X is compact.





We recall that for a topological group X its central series [image: there is no content] consists of the subgroups defined recursively as Zn+1(G)={z∈X:∀x∈Xzxz−1x−1∈Zn(X)} for [image: there is no content].



Proposition 7.

If a topological group X is h:TG-closed, then for every [image: there is no content] the subgroup [image: there is no content] is compact.





Proof. 

The compactness of the subgroups [image: there is no content] will be proved by induction on n. For [image: there is no content] the compactness of the trivial group [image: there is no content] is obvious. Assume that for some [image: there is no content] we have proved that the subgroup [image: there is no content] is compact. By Corollary 9, the center [image: there is no content] of the quotient topological group [image: there is no content] is compact. Since [image: there is no content], we see that the quotient topological group [image: there is no content] is compact. By ([27] Corollary 1.5.8) (the 3-space property of the compactness), the topological group [image: there is no content] is compact. ☐





Proposition 7 implies the following characterization of h:TG-closed nilpotent topological groups, first proved by Dikranjan and Uspenskij ([10] 3.9).



Corollary 10 (Dikranjan, Uspenskij).

A nilpotent topological group is compact if and only if it is h:TG-closed.





We recall that a topological group X is totally minimal if for any closed normal subgroup [image: there is no content] the quotient topological group [image: there is no content] is minimal. Proposition 6 and Theorem 31 imply the following characterization.



Corollary 11.

For an ω-narrow topological group X of countable pseudocharacter the following conditions are equivalent:

	(1) 

	
X is h:TG-closed;




	(2) 

	
X is h:PG-closed.




	(3) 

	
X is Polish and totally minimal.











In fact, the countable pseudocharacter can be removed from this corollary. Following [11], we define a topological group X to be totally complete if for any closed normal subgroup [image: there is no content] the quotient topological group [image: there is no content] is complete. It is easy to see that each h:TG-closed topological group is totally complete. By ([11] 3.45), a topological group is h:TG-closed if it is totally complete and totally minimal. These observations are complemented by the following characterization.



Theorem 33.

For an ω-narrow topological group X the following conditions are equivalent:

	(1) 

	
X is h:TG-closed;




	(2) 

	
X is totally complete and totally minimal.











Proof. 

The implication [image: there is no content] was proved by Lukács ([11] 3.45). The implication [image: there is no content] will be derived from the following lemma.





Lemma 4.

Each ω-narrow h:TG-closed topological group X is minimal.






Proof. We should prove that each continuous bijective homomorphism [image: there is no content] to a topological group Y has continuous inverse [image: there is no content]. Since X embeds into the Tychonoff product of Polish groups, it suffices to check that for every continuous homomorphism [image: there is no content] to a Polish group P the composition [image: there is no content] is continuous. Since X is h:TG-closed, the image [image: there is no content] is closed in P. Replacing P by [image: there is no content], we can assume that [image: there is no content]. Let [image: there is no content] be the kernel of the homomorphism p. Observe that the quotient topological group [image: there is no content] admits a bijective continuous homomorphism [image: there is no content] such that [image: there is no content] where [image: there is no content] is the quotient homomorphism. It follows that the quotient topological group [image: there is no content] has countable pseudocharacter. Moreover, the topological group [image: there is no content] is [image: there is no content]-narrow and h:TG-closed being a continuous homomorphic image of the [image: there is no content]-narrow h:TG-closed topological group X. By Corollary 11, the group [image: there is no content] is Polish and minimal. Consequently, [image: there is no content] is a topological isomorphism.



Now we shall prove that the image [image: there is no content] of [image: there is no content] is closed in Y. Consider the continuous homomorphism [image: there is no content], [image: there is no content], and observe that its image [image: there is no content] is a closed subgroup of [image: there is no content] by the i:TG-closedness of X. Consequently, the homomorphism [image: there is no content] has closed graph [image: there is no content]. Since the intersection [image: there is no content] is a closed subset of [image: there is no content] the homomorphism [image: there is no content] has closed kernel


[image: there is no content]











which coincides with [image: there is no content]. Let [image: there is no content] be the quotient topological group and [image: there is no content] be the quotient homomorphism.



The continuous bijective homomorphism [image: there is no content] induces a continuous bijective homomorphism [image: there is no content] making the following diagram commutative.



[image: Axioms 06 00023 i005]



The minimality of the Polish group [image: there is no content] guarantees that the bijective homomorphism [image: there is no content] is a topological isomorphism, which implies that the homomorphism [image: there is no content] is continuous. ☐





Now we are able to prove the implication [image: there is no content] of Theorem 33. Given an [image: there is no content]-narrow h:TG-closed topological group X and a closed normal subgroup [image: there is no content], we should check that the quotient topological group [image: there is no content] is complete and minimal. Observe that [image: there is no content] is [image: there is no content]-narrow and h:TG-closed (being a continuous homomorphic image of the [image: there is no content]-bounded h:TG-closed topological group X). By Theorem 16, the h:TG-closed topological group [image: there is no content] is complete and by Lemma 4, it is minimal. ☐



Remark 2.

By Theorem 5.1 of [6], the class of h:TG-closed topological groups includes all quasi semi-simple topological groups (introduced in Definition 3.2 of [6]). Applying Theorem 33, we conclude that each ω-narrow quasi semi-simple topological group is totally minimal, which generalizes Corollary 5.3 of [6] (establishing the total minimality of separable quasi semi-simple groups).






7. On [image: there is no content]-closed Topological Groups


In this section, we collect some results on [image: there is no content]-closed topological groups for various classes [image: there is no content] of topologized semigroups.



Theorem 34.

Let [image: there is no content] be a class of topologized semigroups, containing all Abelian topological groups. For a topological group X the following conditions are equivalent:

	(1) 

	
X is [image: there is no content]-closed;




	(2) 

	
each closed subsemigroup of X is [image: there is no content]-closed;




	(3) 

	
each closed subgroup of X is [image: there is no content]-closed.











Proof. 

The equivalence [image: there is no content] follows immediately from the definitions of [image: there is no content]-closed and [image: there is no content]-closed topological groups, and [image: there is no content] is trivial.



To prove that [image: there is no content], assume that each closed subgroup of X is [image: there is no content]-closed, and take any closed subsemigroup [image: there is no content] of X. We claim that S is a subgroup of X. Given any element [image: there is no content], consider the closure Z of the cyclic subgroup [image: there is no content]. By our assumption, Z is [image: there is no content]-closed and by Theorem 3, the Abelian [image: there is no content]-closed topological group Z is compact. Being a compact monothetic group, Z coincides with the closure of the subsemigroup [image: there is no content] and hence is contained in the closed subsemigroup S. Then [image: there is no content] and S is a subgroup of X. By (3), S is [image: there is no content]-closed. ☐





For topological groups of precompact exponent, Theorem 32 implies the following characterization.



Corollary 12.

For any topological group X of precompact exponent the following conditions are equivalent:

	(1) 

	
X is p:TG-closed;




	(2) 

	
X is p:TS-closed.











An interesting property of p:TG-closed topological groups was discovered by Dikranjan and Uspenskij ([10] 3.10). This property concerns the transfinite derived series [image: there is no content] of a topological group X, which consists of the closed normal subgroups [image: there is no content] of X, defined by the transfinite recursive formulas:


[image: there is no content]











The closed subgroup


[image: there is no content]








is called the hypocommutator of X. A topological group is called hypoabelian it its hypocommutator is trivial.



Theorem 35 (Dikranjan, Uspenskij).

For each p:TG-closed topological group X the quotient topological group [image: there is no content] is compact.





Corollary 13.

A hypoabelian topological group is compact if and only if it is p:TG-closed.





Since solvable topological groups are hypoabelian, Corollary 13 implies the following characterization of compactness of solvable topological groups.



Corollary 14.

A solvable topological group X is compact if and only if it is p:TG-closed.



By ([10] 2.16), a balanced topological group is p:TG-closed if and only if it is c:TG-closed.





Problem 8.

Is each balanced p:TS-closed topological group c:TS-closed?






8. On Closedness Properties of MAP Topological Groups


In this section, we establish some properties of MAP topological groups. We recall that a topological group X is maximally almost periodic (briefly, MAP) if it admits a continuous injective homomorphism into a compact topological group.



Theorem 36.

A topological group X is compact if and only if X is p:TG-closed and MAP.





Proof. 

The “only if” part is trivial. To prove the “if’ part, assume that X is p:TG-closed and MAP. Then X is complete. Assuming that X is not compact, we can apply Lemma 2 and find a non-compact closed separable subgroup [image: there is no content]. Since X is p:TG-closed, the closed subgroup H of X is h:TG-closed and by Lemma 4, it is minimal and being complete and MAP, is compact. However, this contradicts the choice of H. ☐





The notion of a MAP topological group can be generalized as follows. Let [image: there is no content] be a class of topologized semigroups. A topologized semigroup X is defined to be [image: there is no content]-MAP if it admits a continuous injective homomorphism [image: there is no content] to some compact topologized semigroup [image: there is no content]. So, MAP is equivalent to TG-MAP.



Theorem 37.

Let [image: there is no content], [image: there is no content] be two classes of Hausdorff topologized semigroups such that for any [image: there is no content] and [image: there is no content] the product [image: there is no content] belongs to the class [image: there is no content]. A [image: there is no content]-MAP topologized semigroup X is [image: there is no content]-closed if and only if it is [image: there is no content]-closed.





Proof. 

The “if” part is trivial. To prove the “only if” part, assume that a topologized group X is [image: there is no content]-MAP and [image: there is no content]-closed. To prove that X is [image: there is no content]-closed, take any continuous homomorphism [image: there is no content] to a topologized semigroup [image: there is no content]. Since X is [image: there is no content]-MAP, there exists a continuous injective homomorphism [image: there is no content] into a compact topologized semigroup [image: there is no content]. By our assumption, the topologized semigroup [image: there is no content] belongs to the class [image: there is no content]. Since the homomorphism [image: there is no content], [image: there is no content], is continuous and injective, the image [image: there is no content] of the [image: there is no content]-closed semigroup X in the semigroup [image: there is no content] is closed. By ([31] 3.7.1), the projection [image: there is no content] is a closed map (because of the compactness of K). Then the projection [image: there is no content] is closed in Y. ☐





Since compact topological groups are balanced, each MAP topological group admits a continuous injective homomorphism into a balanced topological group. By [27] (p. 69) a topological group X is balanced iff each neighborhood [image: there is no content] of the unit contains a neighborhood [image: there is no content] of the unit which is invariant in the sense that [image: there is no content] for all [image: there is no content].



Proposition 8.

Let X be an i:TG-closed topological group. For each continuous injective homomorphism [image: there is no content] to a balanced topological group Y and each closed normal subgroup [image: there is no content] the image [image: there is no content] is closed in Y.





Proof. 

To derive a contradiction, assume that the image [image: there is no content] of some closed normal subgroup [image: there is no content] is not closed in Y. Let [image: there is no content] be the family of open neighborhoods of the unit in the topological group X and [image: there is no content] be the family of open invariant neighborhoods of the unit in the balanced topological group Y. It can be shown that the family


B={V·(f|Z)−1(W):V∈BX,W∈BY}








satisfies the Pontryagin Axioms ([27] 1.3.12) and hence is a base of some Hausdorff group topology [image: there is no content] on X. In this topology the subgroup Z is closed and is topologically isomorphic to the topological group [image: there is no content] which is not closed in Y and hence is not complete. Then the topological group [image: there is no content] is not complete too, and hence is not closed in its completion [image: there is no content]. Now we see that the identity homomorphism [image: there is no content] witnesses that X is not i:TG-closed. This contradiction completes the proof. ☐





In the proof of our next result, we shall need the (known) generalization of the Open Mapping Principle 28 to homomorphisms between K-analytic topological groups.



We recall [36] that a topological space X is K-analytic if [image: there is no content] for some continuous function [image: there is no content] defined on an [image: there is no content]-subset Z of a compact Hausdorff space C. It is clear that the continuous image of a K-analytic space is K-analytic and the product [image: there is no content] of a K-analytic space A and a compact Hausdorff space C is K-analytic.



A topological group is called K-analytic if its topological space is K-analytic. In ([36] §I.2.10)) it was shown that Open Mapping Principle 28 generalizes to homomorphisms defined on K-analytic groups.



Theorem 38

(K-analytic Open Mapping Principle, ([36] §I.2.10)). Each continuous homomorphism h:X→Y from a K-analytic topological group X onto a Baire topological group Y is open.



Theorem 38 will be used in the proof of the following lemma.





Lemma 5.

Let X be an i:TG-closed MAP topological group. For a closed normal subgroup [image: there is no content] and a continuous homomorphism [image: there is no content] to a topological group Y, the image [image: there is no content] is compact if and only if [image: there is no content] is contained in a K-analytic subspace of Y.





Proof. 

The “only if” part is trivial. To prove the “if” part, assume that the image [image: there is no content] is contained in a K-analytic subspace A of Y.



Being MAP, the group X admits a continuous injective homomorphism [image: there is no content] to a compact topological group K. By Proposition 8, the image [image: there is no content] is a compact subgroup of K.



Now consider the continuous injective homomorphism [image: there is no content], [image: there is no content]. By the i:TG-closedness, the image [image: there is no content] is closed in [image: there is no content]. Then the space [image: there is no content] is K-analytic (as a closed subspace of the K-analytic space [image: there is no content]). Observe that [image: there is no content] is a subgroup of [image: there is no content].



By the K-analytic Open Mapping Principle 38, the bijective continuous homomorphism [image: there is no content], [image: there is no content], from the K-analytic group H to the compact group [image: there is no content] is open and hence is a topological isomorphism. Consequently, the topological group H is compact and so is its projection [image: there is no content] onto Y. ☐





We recall that a topological group is [image: there is no content]-balanced iff it embeds into a Tychonoff product of metrizable topological groups.



Corollary 15.

If an ω-balanced MAP topological group X is i:TG-closed, then each ω-narrow closed normal subgroup of X is compact.





Proof. 

Being [image: there is no content]-balanced and complete, the topological group X can be identified with a closed subgroup of a Tychonoff product [image: there is no content] of complete metrizable topological groups.



Fix an [image: there is no content]-narrow closed normal subgroup H in X and observe that for every [image: there is no content] the projection [image: there is no content] is an [image: there is no content]-narrow and hence separable subgroup of the metrizable topological group [image: there is no content]. Then the closure of [image: there is no content] in the complete metrizable topological group [image: there is no content] is a Polish (and hence K-analytic) group. By Proposition 8, the group [image: there is no content] is compact. Being a closed subgroup of the product [image: there is no content] of compact topological groups, the topological group H is compact, too. ☐





We recall that for a topological group X the [image: there is no content]-conjucenter[image: there is no content] of X consists of the points [image: there is no content] whose conjugacy class [image: there is no content] is [image: there is no content]-narrow in X. A subset A of a topological group X is called [image: there is no content]-narrow if for each neighborhood [image: there is no content] of the unit there exists a countable set [image: there is no content] such that [image: there is no content].



Theorem 39.

Each i:TG-closed ω-balanced MAP topological group X has compact ω-conjucenter [image: there is no content].





Proof. 

First we prove that [image: there is no content] is precompact. Assuming the opposite, we can apply Lemma 2 and find a countable subgroup [image: there is no content] whose closure [image: there is no content] is not compact. By the definition of [image: there is no content], each element [image: there is no content] has [image: there is no content]-narrow conjugacy class [image: there is no content]. By ([27] 5.1.19), the [image: there is no content]-narrow set [image: there is no content] generates an [image: there is no content]-narrow subgroup H. It is clear that H is normal. By Corollary 15, the closure [image: there is no content] of H is compact, which is not possible as [image: there is no content] contains the non-compact subgroup [image: there is no content]. This contradiction completes the proof of the precompactness of [image: there is no content]. Then the closure [image: there is no content] of the subgroup [image: there is no content] in X is a compact normal subgroup of X. The normality of [image: there is no content] guarantees that for every [image: there is no content] the conjugacy class [image: there is no content] is precompact and hence [image: there is no content]-narrow, which means that [image: there is no content]. Therefore, the [image: there is no content]-conjucenter [image: there is no content] is compact. ☐





For any topological group X let us define an increasing transfinite sequence [image: there is no content] of closed normal subgroups defined by the recursive formulas


Z0(X)={e},Zα+1(X):={z∈X:∀x∈Xxzxz−1∈Zα(X)}for any ordinal α andZβ(X) is the closure of the normal group ⋃α<βZβ(X) for a limit ordinal β.











The closed normal subgroup [image: there is no content] is called the hypercenter of the topological group X. We recall that a topological group X is hypercentral if for every closed normal subgroup [image: there is no content] the quotient topological group [image: there is no content] has non-trivial center [image: there is no content]. It is easy to see that a topological group X is hypercentral if and only if its hypercenter equals X. It follows that a discrete topological group is hypercentral if and only if it is hypercentral in the standard algebraic sense ([37] 364). Observe that each nilpotent topological group is hypercentral. More precisely, a group X is nilpotent if and only if [image: there is no content] for some finite number [image: there is no content].



Corollary 16.

If an ω-balanced MAP topological group X is i:TG-closed, then its hypercenter [image: there is no content] is contained in the ω-conjucenter [image: there is no content] and hence is compact.





Proof. 

By Theorem 39, the [image: there is no content]-conjucenter [image: there is no content] of X is compact. By transfinite induction we shall prove that for every ordinal [image: there is no content] the subgroup [image: there is no content] is contained in [image: there is no content]. This is trivial for [image: there is no content]. Assume that for some ordinal [image: there is no content] we have proved that [image: there is no content]. If the ordinal [image: there is no content] is limit, then


[image: there is no content]











Next, assume that [image: there is no content] is a successor ordinal. To prove that [image: there is no content], take any point [image: there is no content] and observe that [image: there is no content] and hence [image: there is no content] is [image: there is no content]-narrow. So, [image: there is no content] and [image: there is no content].



By the Principle of Tranfinite Induction, the subgroup [image: there is no content] for every ordinal [image: there is no content]. Then the hypercenter [image: there is no content] is contained in [image: there is no content] and is compact, being equal to [image: there is no content] for a sufficiently large ordinal [image: there is no content]. ☐





Corollary 17.

A hypercentral topological group X is compact if and only if X is i:TG-closed, ω-balanced, and MAP.





Problem 9.

Is each h:TG-closed hypercentral MAP topological group compact?






9. The Compactness of h:TG-closed MAP-Solvable Topological Groups


In this section, we detect compact topological groups among h:TG-closed MAP-solvable topological groups. We define a topological group X to be MAP-solvable if there exists a decreasing sequence [image: there is no content] of closed normal subgroups in X such that for every [image: there is no content] the quotient group [image: there is no content] is Abelian and MAP. It is clear that each MAP-solvable topological group is solvable. By the Pontryagin Duality ([27] 9.7.5) (see also [38]), each locally compact Abelian group is MAP. This observation implies the following characterization.



Proposition 9.

A locally compact topological group is MAP-solvable if and only if it is solvable.





Now we prove that balanced MAP-solvable h:TG-closed topological groups are compact. We recall that a topological group X is called a balanced if each neighborhood [image: there is no content] of the unit contains a neighborhood [image: there is no content] of the unit such that [image: there is no content] for all [image: there is no content].



Theorem 40.

For a solvable topological group X the following conditions are equivalent:

	(1) 

	
X is compact;




	(2) 

	
X is balanced, locally compact and h:TG-closed;




	(3) 

	
X is balanced, MAP-solvable and h:TG-closed.











Proof. 

The implication [image: there is no content] is trivial and [image: there is no content] follows from Proposition 9. To prove that [image: there is no content], assume that a topological group X balanced, MAP-solvable and h:TG-closed. Being MAP-solvable, X admits a decreasing sequence of closed normal subgroups [image: there is no content] such that for every [image: there is no content] the quotient group [image: there is no content] is Abelian and MAP.



To prove that the group [image: there is no content] is compact, it suffices to show that for every [image: there is no content] the quotient group [image: there is no content] is compact. This is trivial for [image: there is no content]. Suppose that for some [image: there is no content] the group [image: there is no content] is compact. Assuming that the quotient group [image: there is no content] is not compact, we conclude that the normal Abelian subgroup [image: there is no content] of G is not compact. The h:TG-closedness of X implies the h:TG-closedness of the quotient group G. Then G is complete and by Lemma 2, the non-compact closed subgroup A of X contains a countable subgroup Z whose closure [image: there is no content] is not compact.



Claim 2.

For every [image: there is no content] its conjugacy class [image: there is no content] is compact.






Proof. Consider the continuous map [image: there is no content], [image: there is no content], and observe that it is constant on cosets [image: there is no content], [image: there is no content]. Consequently, there exists a function [image: there is no content] such that [image: there is no content] where [image: there is no content] is a quotient homomorphism. Since the group [image: there is no content] carries the quotient topology, the continuity of f implies the continuity of [image: there is no content]. Now the compactness of the quotient group [image: there is no content] implies that the set [image: there is no content] is compact. ☐





It follows that the union [image: there is no content] is [image: there is no content]-compact and hence generates a [image: there is no content]-compact subgroup [image: there is no content], which is normal in G. Then its closure [image: there is no content] is a normal closed [image: there is no content]-narrow subgroup in G.



Claim 3.

The topological group G is balanced and MAP.






Proof. The topological group G is balanced, being a quotient group of the balanced topological group X. Let [image: there is no content] be the family of all open invariant neighborhoods of the unit in the balanced group G. To prove that X is MAP, we shall use the fact that the Abelian topological group A is MAP, which implies that the strongest totally bounded group topology [image: there is no content] on A is Hausdorff. Let us observe that for every [image: there is no content] the continuous automorphism [image: there is no content], [image: there is no content], remains continuous in the topology [image: there is no content]. Using this fact, it can be shown that the family


B={UV:U∈BG,V∈τA}








satisfies the Pontryagin Axioms ([27] 1.3.12) and hence is a base of some Hausdorff group topology [image: there is no content] on G. Observe that the subgroup A of [image: there is no content] is precompact and has compact quotient group [image: there is no content]. Since the precompactness is a 3-space property (see [27] 1.5.8), the topological group [image: there is no content] is precompact and its Raikov-completion [image: there is no content] is compact. The identity homomorphism [image: there is no content] witnesses that the topological group G is MAP. ☐





Since the topological group G is balanced, MAP and h:TG-closed, we can apply Corollary 15 and conclude that the [image: there is no content]-narrow closed normal subgroup H of G is compact, which is not possible as H contains a closed non-compact subgroup [image: there is no content]. This contradiction completes the proof of the compactness of the subgroup [image: there is no content]. Now the compactness of the groups [image: there is no content] and [image: there is no content] imply the compactness of the quotient group [image: there is no content], see ([27] 1.5.8). ☐





Since each discrete topological group is locally compact and balanced, Theorem 40 implies



Corollary 18.

A solvable topological group is finite if and only if it is discrete and h:TG-closed.






10. Some Counterexamples


In this section, we collect some counterexamples.



Our first example shows that Theorem 22 does not generalize to solvable (even meta-Abelian) discrete groups. A group G is called meta-Abelian if it contains a normal Abelian subgroup H with Abelian quotient [image: there is no content].



For an Abelian group X let [image: there is no content] be the product [image: there is no content] endowed with the operation [image: there is no content] for [image: there is no content]. The semidirect product [image: there is no content] is meta-Abelian (since [image: there is no content] is a normal Abelian subgroup of index 2 in [image: there is no content]).



By T1S we denote the family of topological semigroups X satisfying the separation axiom [image: there is no content] (which means that finite subsets in X are closed). Since TS⊂T1S, each T1S-closed topological semigroup is TS-closed.



Proposition 10.

For any Abelian group X the semidirect product [image: there is no content] endowed with the discrete topology is an e:T1S-closed MAP topological group.





Proof. 

First we show that the group [image: there is no content] is MAP. By Pontryagin Duality [27] Theorem 9.7.5, the Abelian discrete topological group X is MAP and hence admits an injective homomorphism [image: there is no content] to a compact Abelian topological group K. It easy to see that the semidirect product [image: there is no content] endowed with the group operation [image: there is no content] for [image: there is no content] is a compact topological group and the map [image: there is no content], [image: there is no content], is an injective homomorphism witnessing that the discrete topological group [image: there is no content] is MAP.



To show that [image: there is no content] is e:T1S-closed, fix a topological semigroup Y∈T1S containing the group [image: there is no content] as a discrete subsemigroup. Identify X with the normal subgroup [image: there is no content] of G. First we show that X is closed in Y. Assuming the opposite, we can find an element [image: there is no content]. Consider the element [image: there is no content] and observe that for any element [image: there is no content] we get [image: there is no content] and hence [image: there is no content], where e is the unit of the groups [image: there is no content]. The closedness of the singleton [image: there is no content] in Y and the continuity of the multiplication in the semigroup Y guarantee that the set


[image: there is no content]








is closed in Y and hence contains the closure of the group X in Y. In particular, [image: there is no content]. So, [image: there is no content]. Since the subgroup G of Y is discrete, there exists a neighborhood [image: there is no content] of e such that [image: there is no content]. By the continuity of the semigroup operation on Y, the point [image: there is no content] has a neighborhood [image: there is no content] such that [image: there is no content]. Fix any element [image: there is no content] and observe that [image: there is no content], which is not possible as the set [image: there is no content] is infinite and so is its right shift [image: there is no content] in the group G. This contradiction shows that the set X is closed in Y.



Next, we show that the shift [image: there is no content] of the set X is closed in Y. Assuming that [image: there is no content] has an accumulating point [image: there is no content] in Y, we conclude that [image: there is no content] is an accumulating point of the group X, which is not possible as X is closed in Y. So, the sets X and [image: there is no content] are closed in Y and so is their union [image: there is no content], witnessing that the group G is e:T1S-closed. ☐





Since the isometry group [image: there is no content] of [image: there is no content] is isomorphic to the semidirect product [image: there is no content], Proposition 10 implies the following fact.



Example 2.

The group [image: there is no content] endowed with the discrete topology is e:T1S-closed and MAP but does not have compact exponent.





By Dikranjan-Uspenskij Theorem 9, each h:TG-closed nilpotent topological group is compact. Our next example shows that this theorem does not generalize to solvable topological groups and thus resolves in negative Question 3.13 in [10] and Question 36 in [12].



Example 3.

The Lie group


Iso+(C)=ab01:a,b∈C,|a|=1








of orientation-preserving isometries of the complex plane is h:TS-closed and MAP-solvable but not compact and not MAP.





Proof. 

The group [image: there is no content] is topologically isomorphic to the semidirect product [image: there is no content] of the additive group [image: there is no content] of complex numbers and the multiplicative group [image: there is no content]. The semidirect product is endowed with the group operation [image: there is no content] for [image: there is no content].



It is clear that the group [image: there is no content] is meta-Abelian (and hence solvable) and not compact. Being solvable and locally compact, the group G is MAP-solvable (see Proposition 9). To prove that G is h:TS-closed, take any continuous homomorphism [image: there is no content] to a Hausdorff topological semigroup Y and assume that the image [image: there is no content] is not closed in Y. Replacing Y by [image: there is no content], we can assume that the subgroup [image: there is no content] is dense in the topological semigroup Y.



Claim 4.

The homomorphism h is injective.






Proof. Consider the closed normal subgroup [image: there is no content] of G, the quotient topological group [image: there is no content] and the quotient homomorphism [image: there is no content]. It follows that [image: there is no content] for some continuous homomorphism [image: there is no content]. We claim that the subgroup H is trivial. To derive a contradiction, assume that H contains some element [image: there is no content]. Then for every [image: there is no content] the normal subgroup H of G contains also the element [image: there is no content] and hence contains the coset [image: there is no content]. Being a subgroup, H also contains the set [image: there is no content]. Taking into account that the quotient group [image: there is no content] is compact, we conclude that [image: there is no content] is compact too. Consequently, [image: there is no content] is compact and closed in the Hausdorff space Y, which contradicts our assumption. This contradiction shows that the subgroup H is trivial and the homomorphism h is injective. ☐





Claim 5.

The map [image: there is no content] is a topological embedding.






Proof. Since h is injective, the family [image: there is no content] is open in [image: there is no content] is a Hausdorff topology turning G into a paratopological group. We need to show that [image: there is no content] coincides with the standard locally compact topology of the group G. Since the topology [image: there is no content] is weaker than the original product topology of [image: there is no content], the compact set [image: there is no content] remains compact in the topology [image: there is no content]. Then we can find a neighborhood [image: there is no content] of the unit [image: there is no content] such that [image: there is no content] is disjoint with the compact set [image: there is no content].



Using the compactness of the set [image: there is no content] and the continuity of the multiplication in G, find a neighborhood [image: there is no content] of the unit such that {ava−1:v∈V,a∈{0}×T}⊂U. We claim that [image: there is no content]. Assuming the opposite, we could find an element [image: there is no content] with [image: there is no content].



Since [image: there is no content] and [image: there is no content], there are two complex numbers [image: there is no content] such that [image: there is no content]. Observe that [image: there is no content] and similarly [image: there is no content]. Then


[image: there is no content]








which contradicts the choice of the neighborhood U. This contradiction shows that [image: there is no content] and hence V has compact closure in the spaces G and [image: there is no content]. This means that the paratopological group [image: there is no content] is locally compact and, by the Ellis Theorem ([27] 2.3.12), is a topological group. By the Open Mapping Principle 38, the identity homomorphism [image: there is no content] is a topological isomorphism and so is the homomorphism [image: there is no content]. ☐





Since the topological group G is Weil-complete (being locally compact), Theorem 17 guarantees that [image: there is no content] is an ideal of the semigroup Y. Choose any element [image: there is no content] and observe that for the compact subset [image: there is no content] the compact set [image: there is no content] is contained in the ideal [image: there is no content] and hence does not intersect K. By the Hausdorff property of the topological semigroup Y and the compactness of K, the point y has a neighborhood [image: there is no content] such that [image: there is no content]. Now take any element [image: there is no content] and find an element [image: there is no content] with [image: there is no content]. Let [image: there is no content] and observe that [image: there is no content]. Then for the element [image: there is no content] we get [image: there is no content], which contradicts the choice of the neighborhood V. This contradiction completes the proof of the h:TS-closedness of the Lie group [image: there is no content].



By Theorem 15, the non-compact [image: there is no content]-narrow h:TG-closed group [image: there is no content] is not MAP. ☐





The following striking example of Klyachko, Olshanskii and Osin ([29] 2.5) shows that the p:TS-closedness does not imply compactness even for 2-generated discrete topological groups. A group is called 2-generated if it is generated by two elements.



Example 4 (Klyachko, Olshanskii, Osin).

There exists a p:TG-closed infinite simple 2-generated discrete topological group G of finite exponent.By Theorems 14 and 32, G is p:TS-closed and is c:TG-closed.





We do not know if the groups constructed by Klyachko, Olshanskii and Osin can be c:TS-closed. So, we ask



Problem 10.

Is each c:TS-closed topological group compact?





Finally, we present an example showing that an h:TG-closed topological group needs not be e:TS-closed.



Example 5.

The symmetric group [image: there is no content] endowed with the topology of pointwise convergence has the following properties:

	(1) 

	
X is Polish, minimal, and not compact;




	(2) 

	
X is complete but not Weil-complete;




	(3) 

	
X is h:TG-closed;




	(4) 

	
X is not e:TS-closed.











Proof. 

The group [image: there is no content] is Polish, being a [image: there is no content]-subset of the Polish space [image: there is no content]. The minimality of the group [image: there is no content] is a classical result of Gaughan [39]. Being Polish, the topological group [image: there is no content] is complete. By ([23] 7.1.3), the topological group [image: there is no content] is not Weil-complete. By Theorem 16, the topological group [image: there is no content] is not e:TS-closed.



It remains to show that the topological group [image: there is no content] is h:TG-closed. Let [image: there is no content] be a continuous homomorphism to a topological group Y. By ([23] 7.1.2), the group [image: there is no content] is topologically simple, which implies that the kernel [image: there is no content] of the homomorphism h is either trivial or coincides with X. In the second case the group [image: there is no content] is trivial and hence closed in Y. In the first case, the homomorphism h is injective. By the minimality of X, the homomorphism h is an isomorphic topological embedding. The completeness of X ensures that the image [image: there is no content] is closed in Y. ☐
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