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Abstract:



This paper gives a study of a two dimensional version of the theory of normal surfaces; namely, a study o normal curves and their relations with respect to geodesic curves. This study results with a nice discrete approximation of geodesics embedded in a triangulated orientable Riemannian surface. Experimental results of the two dimensional case are given as well.
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1. Introduction


Motivated by the topological theory of normal surface we give in this paper a complete study of the relations between geodesic curves and normal curves embedded in a triangulated Riemannian surface.



Normal surface theory is a topological piecewise linear ([image: there is no content] for short) counterpart of the differential geometric theory of minimal surfaces. This theory studies the ways surfaces intersect with a given triangulation of a 3-manifold. A surface is normal if it intersects the tetrahedra of a triangulation in a fairly simple manner. It was proved by Haken in [1] that every incompressible (i.e., topologically non trivial) surface embedded in a triangulated 3-manifold can be continuously deformed to a normal surface with respect to any given triangulation of the manifold.



Having the theory of normal surfaces, it is then desirable to interpret minimal surfaces in terms of normal surfaces. In this direction Jaco and Rubinstein presented in [2] a [image: there is no content] version, that is based on normal surfaces, of minimal and least area surfaces in a triangulated 3-manifold . It is shown in [2] that [image: there is no content] minimal and [image: there is no content] least area surfaces share many properties of classical minimal and least area surfaces. These results are the first to make precise the analogy between minimal and normal surfaces. However, the extent at which this analogy holds is far from being fully understood. For instance, the following two questions are very natural in this context, yet both of them are still open.



(I) Is it possible to subdivide a given triangulation of a 3-manifold arbitrarily fine, to obtain sequences of [image: there is no content]-minimal surfaces that converge in some suitable way to classical minimal surfaces?



An affirmative answer to the above question gives an alternative topological-combinatorial proof of many classical existence results of least area incompressible surfaces in 3-manifolds, such as those obtained for example in [3], using partial differential equations. Moreover, the use of existing algorithms for finding normal surfaces makes this topological-combinatorial result of computable algorithmic nature.



The second question is the following:



(II) Can every minimal surface in the smooth sense, be presented as a limit surface of a sequence of [image: there is no content]-minimal surfaces, appropriately constructed?



Answering these questions, at least partially will be the focus of two followup papers.



In this paper we will address these questions in one dimension lower. That is in the context of curves on surfaces. In particular the following theorems will be proved:



Theorem 1.

Let [image: there is no content] be a triangulated Riemannian surface. Then there exists a flow defined on the set of normal homotopy classes of curves that deforms each class to a geodesic curve in that class.





Theorem 2.

Let [image: there is no content] be a hyperbolic triangulated surface isometrically embedded in some [image: there is no content]. Let γ be a curve on Σ that is either a shortest geodesic between two given points p and q on Σ, in a homotopy class rel[image: there is no content], or a shortest closed geodesic in a homotopy class in Σ. Then there exists a sequence of [image: there is no content] triangulated 2-submanifolds of [image: there is no content], [image: there is no content], each of them is a [image: there is no content]-approximation of Σ, and a sequence of [image: there is no content]-curves [image: there is no content], each of which is normal with respect to [image: there is no content] so that [image: there is no content] converges to γ.





Theorem 1 gives rise to a curve shortening flow. Such flows are of major importance both theoretically and applicatively speaking, (see [4,5,6,7,8]). For instance, such flows are extensively used to identify malignant tissues in medical images and many other image segmentation problems.



In Section 2 we will give an essential preliminaries. This will include basic definitions and notations. In particular, normal curves will be defined in this section. Section 3 is devoted to the proof of Theorem 1. In Section 4 we will describe some experimental implementations of the curve shortening flow described in Section 3. These results will include some synthetic examples as well as examples in which this flow was tested on real data. In Section 5 Theorem 8 will be proved. In Section 6 we regard normal curves from the view point of the dual graph. Last, in Appendix A we will give a brief introduction to the theory of normal surfaces.




2. Preliminaries


2.1. Simplicial Complexes


Definition 1.

A collection K of simplices is called a simplicial complex if

	
If [image: there is no content], then [image: there is no content].



	
Let [image: there is no content] and let [image: there is no content]. Then [image: there is no content].



	
K is locally finite.








|K|=⋃σ∈Kσ is called the underlying polyhedron (or polytope) of K.





Remark 1.

A triangulated manifold is regarded as a cell complex, and the complex structure is given by the triangulation.





Definition 2.

A complex [image: there is no content] is called a subdivision of K iff

	
[image: there is no content];



	
if [image: there is no content], then there exists [image: there is no content] such that [image: there is no content].








If [image: there is no content] is a subdivision of K we denote it by [image: there is no content].



Let K be a simplicial complex and let [image: there is no content]. If L is a simplicial complex, then it is called a subcomplex of K.





Definition 3.

Let [image: there is no content]. Then


St(a,K)=⋃a∈σσ∈Kσ








is called the star of [image: there is no content].



If [image: there is no content], then we define: [image: there is no content].





Definition 4.

Let [image: there is no content] be a [image: there is no content] embedding of an m-complex K. Let [image: there is no content] be a positive continuous function. Then a map [image: there is no content] is called a δ-approximation to f if:

	
There exists a subdivision [image: there is no content] of K such that [image: there is no content]



	
[image: there is no content], for any [image: there is no content]



	
[image: there is no content] , for any [image: there is no content] and for all [image: there is no content].










Definition 5.

Let [image: there is no content] be a [image: there is no content] triangulated m-manifold embedded in [image: there is no content]. Let [image: there is no content] be a simplex. The vertex map [image: there is no content], is determined by [image: there is no content], where v is a vertex of s. The linear extension of [image: there is no content] is called the secant map induced by [image: there is no content], and it is denoted by [image: there is no content].






2.2. Fat Triangulations


Definition 6.


	
A triangle in [image: there is no content] is called [image: there is no content]-fat iff all its angles are larger than a prescribed value [image: there is no content].



	
A k-simplex [image: there is no content], [image: there is no content], is [image: there is no content]-fat if all its facets are [image: there is no content]-fat for some [image: there is no content].



	
A triangulation [image: there is no content] is fat if all its simplices are [image: there is no content]-fat for some [image: there is no content].










The importance of fat triangulations is stressed by the following example.



Schwartz Lantern



The Schwartz lantern is given by the following:



Example 1.

Let [image: there is no content] be the standard cylinder [image: there is no content] of hight 1 and radius 1 in [image: there is no content]. Let [image: there is no content] be the “lantern” that is given as the [image: there is no content] triangulated surface so that the vertices of its triangulation are placed on [image: there is no content]. Suppose the set of vertices of [image: there is no content] consists of [image: there is no content] points so that n points are evenly placed along the circle [image: there is no content] and [image: there is no content] points are placed along the vertical direction as indicated in the following Figure 1.

Figure 1. Schwartz Lantern.



[image: Axioms 06 00026 g001]







Simple computation shows that each of the [image: there is no content] triangles of [image: there is no content] has base length [image: there is no content] and hight [image: there is no content]. Following this, the area of the lantern thus satisfies:


A(Gn)≥n412n14narctan(π2n).



(1)







As [image: there is no content], [image: there is no content], hence the following holds:


A(Gn)≥n8,



(2)




so [image: there is no content] blows up to ∞ as n goes to ∞. On the other hand, it can be shown that if the [image: there is no content] points are places so that the triangles of [image: there is no content] are fat then [image: there is no content].





2.2.1. Existence Results


Existence of fat triangulations of Riemannian manifolds is guaranteed by the studies given in [9,10,11,12,13]. These are summarized below.



Theorem 3.

Every compact [image: there is no content] Riemannian manifold admits a fat triangulation [10].





Theorem 4.

Every open (unbounded) [image: there is no content] Riemannian manifold admits a fat triangulation [11].





Theorem 5.

Let [image: there is no content] be an n-dimensional [image: there is no content] Riemannian manifold with boundary, having a finite number of compact boundary components [13]. Then, any fat triangulation of [image: there is no content] can be extended to a fat triangulation of [image: there is no content].





The motivation for having fat triangulations for manifolds in terms of [image: there is no content]-approximations is stressed by the following theorem.



Theorem 6.

Let [image: there is no content] be a [image: there is no content] triangulated m-manifold embedded in [image: there is no content] [14]. Then, for [image: there is no content], there exist [image: there is no content], such that, for any [image: there is no content], fulfilling the following conditions:

	
diam(τ)<ϵ



	
τ is [image: there is no content]-fat





then, the secant map [image: there is no content] is a δ-approximation of [image: there is no content].





Definition 7.

Let [image: there is no content] be a Riemannian manifold. The Hausdorff metric is a metric defined on the set of compact subsets of [image: there is no content] by setting: [image: there is no content], for any two compact subsets A and B, of [image: there is no content], see [15].







2.3. Normal Curves


This section reviews essential background on normal curves. Most of definition and facts, even if some of them are new with respect to the existing literature, are merely obvious modifications of what is considered for surfaces, (See Appendix A). Along this subsection [image: there is no content] denotes a closed, smooth orientable surface [image: there is no content], endowed with a triangulation [image: there is no content], and a Euclidean or hyperbolic metric [image: there is no content]. We assume [image: there is no content] is a geodesic triangulation i.e., every edge of it is a geodesic arc between two vertices.



Definition 8.

A normal curve is a curve so that each intersection arc of the curve with a 2-face is an arc that has its end points on two different edges of the 2-face. See Figure 2 below.

Figure 2. Normal and not normal pieces.



[image: Axioms 06 00026 g002]










2.4. Geometric Measures


2.4.1. Weight and Length


Let [image: there is no content] be a triangulated Riemannian surface and let [image: there is no content] be a rectifiable curve embedded in [image: there is no content] and transverse to [image: there is no content]. Define the weight of [image: there is no content][image: there is no content], to be the total number of intersection points of the curve with [image: there is no content].



Definition 9.


	
A curve embedded in Σ and transverse to [image: there is no content] will be called normally short iff its weight is minimal with respect to its homotopy class.



	
A closed normal curve that is not null homotopic (a.k.a essential), is called normally shortest if its weight is minimal with respect to all homotopy classes of essential curves in Σ.








Unless mentioned otherwise, when dealing with curves with boundary, normally short/shortest will always be considered with respect to homotopy rel-∂-points.





Let [image: there is no content] be an embedded curve in [image: there is no content] transverse to [image: there is no content]. A local isotopy of [image: there is no content] is an isotopy which slides a non normal piece of [image: there is no content] across the edge intersected by this piece. Fix a given triangulation. Then the following facts hold:

	
A normally short curve must be normal. This holds since if there exists a non-normal piece in some 2-face then it can be isotoped through the edge it intersects twice, thus reducing weight by at least two in contradiction to the minimality.



	
For any close curve there exists a finite sequence of local isotopies which deforms the curve either to a normal curve or a curve which is completely included in just one triangle. In particular, if the curve is not null-homotopic, it is isotopic to a normal curve. This is true since the weight of a curve is an integer valued function which is bounded from below by zero, hence any curve is isotopic to some curve of minimal weight in its isotopy class which is either normal or has zero weight in which case it is entirely contained in a single 2-face.









2.4.2. Curvature


Definition 10.

If Γ is a normal curve then its curvature [image: there is no content], is defined as follows. At a point inside a 2-face it is given by the geodesic curvature at that point, and at a point which belongs to [image: there is no content] it is given by [image: there is no content], where [image: there is no content] are the angles between the vectors [image: there is no content], tangent to Γ, at that point, and the vector [image: there is no content], which is tangent to the edge at this point. See Figure 3.

Figure 3. Curvature at intersection with the 1-skeleton.



[image: Axioms 06 00026 g003]









A normal curve is straight, if it has zero curvature at each intersection point with the edges of [image: there is no content].



Lemma 1.

Let α be a piecewise smooth normal curve on a smooth triangulated surface [image: there is no content]. Suppose [image: there is no content] is an intersection point of the curve on the interior of some edge e, so that α is straight at x in the sense defined above. Assume, in addition, that the restriction of α to the two faces meeting along e are geodesic curves in these two triangles. Then the geodesic curvature of α at x exists and equals zero:


[image: there is no content]













Proof. 

Since the surface is smooth there exists well defined tangent plane for [image: there is no content] at x. Let [image: there is no content] be the tangent vector field defined along [image: there is no content]. Let [image: there is no content] the tangent vectors of [image: there is no content] and the tangent vector of e, all at the point x. Assuming that [image: there is no content] is a geodesic in both triangles meeting along e we have that [image: there is no content], as [image: there is no content], and the same holds while [image: there is no content]. In addition, since [image: there is no content] make an angle of [image: there is no content] at x, T is also well defined at x and we have that the covariant derivative of T w.r.t itself is given by


[image: there is no content]








 ☐





Remark 2.

The curvature measure defined is a straight forward modification of the curvature measure defined in [2], for normal surfaces in 3-manifolds (see Appendix A), however Lemma 1 does not hold for surfaces in 3-manifolds. The difference between curves on surfaces and surfaces in 3-manifolds is basically the same as the difference between calculus in one variable to calculus in multiple variables.





Remark 3.

Following Cheeger and Ebin ([16]—Chapter 1), one has that if Γ is a rectifiable curve (i.e., of finite total length), which minimizes length with respect to small perturbations then it has to be straight at all intersection points with [image: there is no content] and each segment in [image: there is no content], which connects two consecutive points in [image: there is no content] is a geodesic. Since each edge of [image: there is no content] is a geodesic segment, and since the surface Σ is hyperbolic, in particular there is a unique geodesic that connects every pair of points on Σ, it follows that if Γ is a curve which minimizes length then every segment of Γ either coincides with an edge of [image: there is no content], or is a normal arc, or a union of such arcs.








3. Shortening Through Straightening


In this section we will present a new method for shortening curves that is defined on normal curves. We will show that this method gives rise to a flow under which a normal curve converges to a geodesic.



Let C be a rectifiable curve on a triangulated Riemannian surface [image: there is no content]. Before describing the following straightening procedure it is necessary to extend the definition of a straight curve so that the curve is allowed to go through a vertex. Suppose [image: there is no content] goes trough a vertex V of [image: there is no content], then [image: there is no content] is straight at V if the two angles [image: there is no content] and [image: there is no content], formed by [image: there is no content] at V, as shown in Figure 4, are equal.


Figure 4. Straight curve at a vertex.



[image: Axioms 06 00026 g004]






Consider the following procedure.

	
Normalize C with respect to [image: there is no content]. For the shortening procedure the definition of normal curves is altered a bit. A normal curve is allowed to go through a vertex of [image: there is no content].



	
Take a least-weight normal curve [image: there is no content], isotopic to C.



	
Straighten [image: there is no content] at all intersections with the edges of [image: there is no content], except at vertices. If [image: there is no content] intersects a vertex then this point does not change.



	
Subdivide [image: there is no content], using the median subdivision, to obtain a new triangulation [image: there is no content].



	
Go to (1) while C is replaced by [image: there is no content].








Remark 4.

Step 3 is done by moving each internal point of a edge x, which belongs to [image: there is no content] according to,


∂x∂t=cos(θ1)+cos(θ2),



(3)




where [image: there is no content] are as before. In particular case at which x is at an edge of [image: there is no content] angles [image: there is no content] and [image: there is no content] are measured with respect to some chosen direction vector on the tangent plane to Σ at x. Using a partition of unity we can smoothly extend this process inside some small collar neighborhood of [image: there is no content], see Figure 5.

Figure 5. Shortening by straightening.



[image: Axioms 06 00026 g005]









Theorem 7.

The obtained sequence of straight curves converges to a smooth geodesic on Σ.





Proof. 

Let [image: there is no content] denote the n-th subdivision where [image: there is no content] is the initial triangulation. Let [image: there is no content] be the mesh of [image: there is no content]. If x is an intersection point of [image: there is no content] with some edge of [image: there is no content] then the curvature at x is zero, for [image: there is no content] is assumed to be straight. Otherwise, x is a point on the interior of one of the normal pieces of [image: there is no content] inside some triangle [image: there is no content]. First, observe that at each iteration while normalizing is applied (Step [image: there is no content] above), each obtained normal arc is contained in the “parent” triangle of the triangle it pathes through, since it is a piece of a normal arc at the previous iteration, see Figure 6.


Figure 6. A normalized piece.



[image: Axioms 06 00026 g006]






Hence, since vertices are becoming dense in the surface, the obtained sequence of normal curves is a Cauchy sequence, so it converges to a limit curve [image: there is no content] in the topological completion of the space of normal curves on [image: there is no content].



Claim 3.1.

The limit curve [image: there is no content] is a geodesic.





Proof. 

Let [image: there is no content] be some positive number. Let [image: there is no content] be some triangle of [image: there is no content]. Let [image: there is no content] be a normal piece inside [image: there is no content], and let [image: there is no content] be the end points of that normal piece (Figure 7).


Figure 7. The curvature inside a triangle.



[image: Axioms 06 00026 g007]








According to Proposition [image: there is no content] of [17] since [image: there is no content] is rectifiable it has a Lipschitz parametrization, hence there exists a constant M so that,


dΣ(y1,y2)≤L(Cn^|τ)≤M·dΣ(y1,y2)≤M·λn



(4)







In addition, since [image: there is no content] is a normal piece there is some [image: there is no content] so that [image: there is no content] is in the [image: there is no content]-neighborhood of [image: there is no content] in [image: there is no content]. Hence,


min{L(Cn^|y1x),L(Cn^|xy2)}≤δ.



(5)







From Lemma 1 the curvature as defined is continuous, so there exists such [image: there is no content] satisfying,


[image: there is no content]








therefore


|K(C(n)^,x)|≤δ.











Hence, if [image: there is no content] is the limit curve of the sequence [image: there is no content], then at every point [image: there is no content] the geodesic curvature of [image: there is no content] is zero, so [image: there is no content] is a geodesic. ☐



This completes the proof of Theorem 7. ☐





Remark 5.

Normality of curves, is crucial and best illustrated by the lemma above for if the curve was not normal then we could not assume a bound on the arc length of its normal pieces, relative to the distance between [image: there is no content] and [image: there is no content] above, even when the division parameter λ gets very small.






4. Experimental Results


In this subsection some initial experimental results will be presented. This is the place to thank the students Chen Harel, Amir Gilad, Dima Serf and Gleb Lander from the Technion Electrical Engineering Department for their devoted work while programming the implementation of the curve shortening algorithm described above, in the course of their undergraduate studies. As an initial stage the dual graph of [image: there is no content] is built and a shortest path between the two triangles containing these points is found using the well known Dijekstra algorithm, see [18]. This shortest path in the dual graph corresponds to the minimal number of triangles one has to travel through in order to get from one point to the other. The obtained set of triangles is called the triangle path between the two points. A triangle path is illustrated in Figure 8 below, on a surface modelling a hand. In a second stage an initial guess for the shortest geodesic is chosen and then evolved according to the straightening algorithm above.


Figure 8. Triangle path.



[image: Axioms 06 00026 g008]






4.1. Synthetic Surfaces


The following two examples demonstrate the algorithm as tested on synthetic surfaces.



Example 2.

In Example 2 the algorithm is tested on a 2-sphere. Figure 9 shows the two antipodal points along with the obtained path are shown. The Path coincides with the half circle painted in red (the dark half circle following the bright one shown in the figure).

Figure 9. Sphere.



[image: Axioms 06 00026 g009]









Example 3.

In Example 3 the algorithm is tested on a knotted torus. Figure 10 shows the obtained path.

Figure 10. Knotted torus.



[image: Axioms 06 00026 g010]










4.2. “Real” Data and Weighted Triangulation


As the Dijekstra algorithm for finding shortest path in a graph is suitable also to weighted graphs, where in this case a positive set of weights is assigned to the set of edges of the graph, and each weight reflects the cost of going through the specific edge. The algorithm above can be applied on weighted triangulations as well. A weighted triangulation is a triangulation endowed with a set of positive weights, assigned on the set of triangles, so that each weight reflects the cost it takes to path through the specific triangle when traveling from one chosen point to the other. Given this, the triangle path will be found using the weighted Dijekstra algorithm on the dual graph to the triangulation.



Example 4.

In Example 4 the algorithm is tested on a triangulated surface presenting a patch of the surface of the Earth. A chosen area in the Neveda Desert is represented as a triangulated surface. Figure 11 presents the overall area from which the examples are taken. Figure 12 shows an example of the extracted triangulated surface representing a chosen patch in the overall area.

Figure 11. Overall area.



[image: Axioms 06 00026 g011]





Figure 12. Triangulated surface of the Earth.



[image: Axioms 06 00026 g012]







The weight on each triangle is proportional to its height. Figure 13 shows the obtained path between a chosen pair of points.


Figure 13. Earth route.



[image: Axioms 06 00026 g013]






The Following Figure 14 shows the outcome of the algorithm in the presence of an obstacle. The chosen points are located on two sides of a lake, and the obtained route indeed avoids the lake.


Figure 14. Walk around a lake.



[image: Axioms 06 00026 g014]










5. [image: there is no content] Approximations of Geodesics


Theorem 8.

Let Σ be a hyperbolic surface isometrically embedded in some [image: there is no content]. Let γ be a curve on Σ that is either a shortest geodesic between two given points p and q on Σ or, a shortest closed geodesic in Σ. Then there exists a sequence of [image: there is no content] 2-submanifolds of [image: there is no content], [image: there is no content], each of them is a [image: there is no content]-approximation of Σ, and a sequence of [image: there is no content]-curves [image: there is no content], each of which is normal with respect to [image: there is no content] so that [image: there is no content] converges to γ.





Proof. 

The [image: there is no content]-approximation is given by the secant map as in Definition 5. Recall that according to Remark 3 every shortest path is a collection of normal pieces and pieces that coincide with edges of [image: there is no content]. Each normal piece of [image: there is no content] can be projected to a linear normal piece on a planar triangle of the secant approximation exactly in the same way as was done for surfaces. Every piece that coincides with an edge is projected onto the corresponding edge of the secant approximation of [image: there is no content]. This projection yields the sequence of curves that approximates [image: there is no content]. ☐






6. Reflections in the Dual Graph


Let [image: there is no content] be a normal curve on the triangulated surface [image: there is no content]. Suppose [image: there is no content] are two fixed points on [image: there is no content] interior in some two 2-cells, [image: there is no content], respectively. It is possible that [image: there is no content]. Then [image: there is no content] naturally defines a weighted path [image: there is no content] in the dual graph [image: there is no content] of [image: there is no content], in the following way.

	
Each vertex of the dual path [image: there is no content] corresponds to a triangle intersected by [image: there is no content].



	
Each edge of [image: there is no content] is assigned to an edge of [image: there is no content] at which [image: there is no content] crosses from one 2-cell to an adjacent one.



	
Each edge of [image: there is no content] is weighted according to the number of times [image: there is no content] crosses through the corresponding edge of [image: there is no content].



	
The length of [image: there is no content] is defined to be the sum of weights of all its edges.








Remark 6.

It is essential at this context to consider curves that are normally shortest, since while proving some of the following lemmas isotopy classes may change.





Lemma 2.

Let γ be a normally shortest curve that is either a simple closed curve or a curve that connects two given distinct points, p and q. Then, γ has at most one normal piece in every triangle of [image: there is no content].





Proof. 

Suppose conversely, that there is some triangle [image: there is no content] the intersection of which with [image: there is no content] is made of more than one normal piece. For simplicity suppose for the moment that it is made of two normal pieces. The general case will easily follow. Endowing the curve [image: there is no content] with an orientation, gives rise to four different types of such intersection patterns. In any of the following figures, the numbering of the points on the edges of [image: there is no content] is according to their order with respect to the chosen orientation.

	
Two parallel intersections: [image: there is no content] passes through [image: there is no content] twice between the same two edges of [image: there is no content] with the same orientation.



	
Anti parallel intersection: [image: there is no content] as in [image: there is no content] yet, with opposite orientations.



	
Non parallel: Only one pair of points is on the same edge.








In any of the four cases the point 1 is connected to 4. A distinction will now be made between simple close curves and curves with boundary.



If [image: there is no content], then by doing the above replacement another curve is obtained that also connects p to q which may or may not stay normal with respect to the triangulation yet, its weight is strictly smaller than the weight of [image: there is no content]. In case it is not normal it is normalized while further reducing weight. All in all, a normal curve is obtained, which connects the two ∂-points and has a lesser weight than [image: there is no content] in contradiction to the fact that [image: there is no content] is normally shortest. Refer to Figure 15 and Figure 16 for two typical examples.


Figure 15. Resolving parallel components.



[image: Axioms 06 00026 g015]





Figure 16. Resolving non parallel components.



[image: Axioms 06 00026 g016]






If [image: there is no content] is a simple close curve then in addition to connecting point 1 to 4, then the point 3 is connected to 2. This way two simple close curves [image: there is no content] and [image: there is no content] are obtained , that either intersect each other at some point inside [image: there is no content] or they are disjoint in [image: there is no content], as seen in Figure 17 and Figure 18, showing the typical possibilities in this case. This of course depends on the way [image: there is no content] passes through [image: there is no content].


Figure 17. Intersecting closed curves.



[image: Axioms 06 00026 g017]





Figure 18. Disjoint closed curves.



[image: Axioms 06 00026 g018]






Suppose [image: there is no content]. In this case both of them are normal with respect to [image: there is no content], and it is necessary to show that at least one of them is essential. If say, [image: there is no content] is null homotopic in [image: there is no content] it must separate a disk in [image: there is no content] but then by the Jordan curve theorem it must intersect with [image: there is no content] at an additional point as well. This intersection point has to be outside of [image: there is no content] but, the parts of both [image: there is no content] and [image: there is no content] outside of the triangle [image: there is no content] coincide with the pieces of the initial curve [image: there is no content], therefore [image: there is no content] has a self intersection point and this contradicts the assumption that it is simple.



Suppose now that [image: there is no content] and [image: there is no content] are disjoint from each other, and suppose both of them are null homotopic in [image: there is no content]. In this case the initial curve [image: there is no content] can be reproduced as a connected sum of [image: there is no content] and [image: there is no content] inside the triangle [image: there is no content], thus making [image: there is no content] null homotopic in contradiction to its being essential. Suppose [image: there is no content] is essential. Still, as indicated in the Figure 18, it may happen that [image: there is no content] is not normal. In this case it is further normalized until a normal simple closed curve is obtained. This normal curve has strictly less weight than the initial curve [image: there is no content], again forming a contradiction.



The same argument will go also for the general case of more than two normal pieces inside a triangle thus completing the proof. ☐





Lemma 3.

A path in the dual graph for which all weights along its edges are equal to 1 is realizable as a normal curve with respect to [image: there is no content].





Proof. 

The proof is obvious by assigning a normal piece to every pair of consecutive edges along the path. ☐





Theorem 9.

A normal curve is normally shortest if and only if its corresponding dual path is a shortest path according to the length function defined in Section 6.





Proof. 

From Lemmas 2 and 3 there is a correspondence between unitary normal curves, i.e., curves that have at most one normal piece inside each triangle, and unitary pathes in the dual graph, i.e., paths for which the weight along each edge is one, so that, the weight of each normal curve, is equal to the length of its dual path and vice versa. The proof thus follows. ☐





Corollary 1.

There is an algorithm which finds in finite time a normally shortest curve on a triangulated surface.





Proof. 

For a start find a least-weight dual curve in the dual graph using one of the numerous existing algorithms, such as the Dijekstra algorithm. Afterwards we use Theorem 9 to find its realization as a least-weight normal curve. A rough estimation on the complexity of this algorithm shows that it is in the order of the complexity of finding the least weighted curve in the dual graph times the complexity of building the dual graph. Building the dual graph is proportional to the number of triangles in the original triangulation while the complexity of say, Dijekstra algorithm is in the magnitude of [image: there is no content], where n is the number of vertices in the dual graph which is equal to the number of triangles in the original graph. All in all a rough estimation of the complexity of the algorithm is [image: there is no content]. ☐
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Appendix A. Normal Surfaces


In this section we will give some preliminary definitions and notations from normal surface theory that will be used later in this work.



Normal surfaces were first introduced in the study of 3-manifolds by H. Kneser [19], in the early 1930’s. Kneser used normal surfaces for his proof of the existence of prime decomposition of 3-manifolds. Normal surfaces were further used by W. Haken in the 1960’s [1], while giving Haken the possibility to develop a combinatorial viewpoint on topological problems such as the recognition of the unknot and other problems related to 3-manifolds, in the aim of producing computable algorithms. Nowadays, normal surfaces are extensively used and studied in overall aspects of 3-manifold topology and geometry, yielding more and more results and algorithms. The novice reader should look into [1,20]. Among other things, there is an algorithm that uses normal surfaces in order to decide in finite time whether or not a given 3-manifold is Haken, see [21].



Throughout this section (M,G,T) will denote a 2-dimensional surface, [image: there is no content], embedded in 3-manifold [image: there is no content], which admits a triangulation, [image: there is no content].



Definition A1.

An isotopy [image: there is no content] is a normal isotopy with respect to a given triangulation [image: there is no content], if [image: there is no content] for every [image: there is no content] and for all simplices [image: there is no content]. We further say that two submanifolds of [image: there is no content] are normally isotopic if there exists a normal isotopy which carries one to the other.





Definition A2.

Let [image: there is no content] denote a tetrahedron of a given triangulation and let [image: there is no content] denote a face of [image: there is no content]. A normal arc in [image: there is no content], is an arc properly embedded in [image: there is no content], such that its end points are on two different edges of [image: there is no content]. A normal curve in [image: there is no content], is a curve properly embedded in [image: there is no content], transverse to the edges of [image: there is no content], so that its intersection with each 2-face consists of collection of normal arcs. A normal disk is a disk [image: there is no content], properly embedded in a tetrahedron [image: there is no content] such that [image: there is no content], is a simple closed normal curve in [image: there is no content]. An elementary disk is a normal disk so that its boundary is either a triangle that separates one vertex on [image: there is no content], from all three other vertices [image: there is no content], or a quadrilateral (quad for short) that partitions the vertices of the tetrahedron into two separated pairs.





Elementary disks are illustrated in Figure A1, and they come in seven different types corresponding to seven possibilities to partition the set of vertices of a tetrahedron into subsets according to the definition. In the sequel we will sometimes refer to the boundary of an elementary disk as a 3-gon or 4-gon according to its being a triangle or a quad, and for a general normal disk we may refer to its boundary as an n-gon.


Figure A1. Elementary disks.
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Definition A3.

A surface [image: there is no content] properly embedded in [image: there is no content] is normal with respect to [image: there is no content] if it is transverse to the skeleta of [image: there is no content], and if its intersections with any of the tetrahedra of [image: there is no content] is composed of a (possibly empty) collection of disjoint elementary disks.





Note that since the surface is embedded, we can have only one type of 4-gon at each tetrahedron.




Appendix B. Possible Normal Disk Types


The length of a normal curve is the number of normal arcs consisting it. Recall that the boundary of a normal disk is a simple closed normal curve on the boundary of a tetrahedron that forms a polygon. A thorough analysis of the possible length such a polygon can have, was done by Thompson and Stocking in [20,22] respectively. It is summarized as follows.



Lemma A1.

If [image: there is no content] is a normal disk then [image: there is no content] is an n-gon where n is either 3, 4 or an even number [image: there is no content] [20,22].





Figure A3 shows an example of a normal disk whose boundary is of length eight.


Figure A3. Octagon normal disk.
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Appendix C. Weight and Area


Definition A4.

Let [image: there is no content] be a surface properly embedded in [image: there is no content] and transverse to the skeleta of [image: there is no content], ([image: there is no content] needs not be normal).

	
The weight [image: there is no content], of [image: there is no content] is the total number of intersections of the surface with the 1-skeleton [image: there is no content].



	
A metric on each 2-face of [image: there is no content] is induced by identifying the face with an ideal triangle in the hyperbolic plane [image: there is no content]. As a result we can measure the length of each arc in [image: there is no content]. The length [image: there is no content], of [image: there is no content] is defined as the total sum of lengths of all arcs in [image: there is no content].



	
The area of [image: there is no content] is defined as the ordered pair [image: there is no content], lexicographically ordered.










Definition A5.


	
A surface [image: there is no content] is called least weight iff its weight is minimal amongst all surfaces in its isotopy class.



	
A normal surface is called a [image: there is no content]-minimal surface iff its length is a stationary point with respect to small variations in its normal isotopy class.



	
A surface is of [image: there is no content]-least area surface iff its area is minimal in its isotopy class.










Definition A5 above is equivalent to the following. If ϝ:G×(-δδ)↦M, is a small variation of [image: there is no content], and [image: there is no content], and suppose [image: there is no content]. Then, [image: there is no content] is normally minimal if,


ddsℓ(s)|s=0=0,








where, [image: there is no content].



Notice that each two normally isotopic surfaces have the same weight. In addition, one can show that a least weight surface must be normal. Using this observation, the generality of normal surfaces is stressed by the following theorem,



Theorem A1.

([1,2]) Let [image: there is no content] be a surface properly embedded in a 3-manifold [image: there is no content]. Then, for any triangulation [image: there is no content], of [image: there is no content], there is a finite sequence of compressions, ∂-compressions and local isotopies, that deforms [image: there is no content] into a(possibly empty) set of surfaces that are normal, w.r.t. [image: there is no content], and another (maybe empty) set of surfaces, each of which is entirely contained in a single tetrahedron of [image: there is no content]. In particular, if [image: there is no content] is irreducible, and [image: there is no content] is incompressible and ∂-incompressible, then it is isotopic to a normal surface.





Remark A1.

The natural candidate for a surface to be isotoped to, is a least weight surface in an isotopy class. From the proof of Theorem A1 one immediately obtains that a least weight surface is normal. Furthermore, Theorem A1 reflects nicely the analogy between normal surfaces and minimal surfaces. In [23,24,25] Meeks and Yau make a thorough study of minimal and least area surfaces in 3-manifolds and using partial differential equations techniques they show among other things that an incompressible surface is isotopic to a least area surface. Hence, in a way Theorem A1 can be regarded as a combinatorial counterpart of this result.






Appendix D. Curvature of Normal Surfaces


Let [image: there is no content] be a normal surface in the triangulated 3-manifold [image: there is no content]. In [2] a piecewise smooth mean curvature vector field, H, is defined on the intersection of a normal surface in the following way.



Definition A6.

Suppose α is some arc of [image: there is no content] and x is a point on α.

	
If x is a point of lying in the interior of a 2-simplex, then define


H¯(x)=∇T¯(T¯(x)),








where [image: there is no content] here stands for the tangent vector of α at x and ∇ denotes covariant derivative. Hence, [image: there is no content] at an internal point is the geodesic curvature of α considered as an arc embedded in a triangular face of the triangulation (assume α is arc-length parameterized).



	
If x∈α⋂T(1) is an end point of α, let [image: there is no content] be all arcs of G⋂T(2) emanating from x, and define


H¯(x)=Σi=1k⟨t¯i(x),V¯⟩V¯,








where [image: there is no content] is the tangent vector of [image: there is no content] at x and [image: there is no content] is a vector tangent to the edge e of T where x is included. [image: there is no content] here is the sum of all co-sines of the angles between the [image: there is no content]s and [image: there is no content].










Using first and second variations, it is shown in [2] that [image: there is no content] is a PL minimal surface iff [image: there is no content].




Appendix E. Mean Curvature Flow


As mentioned earlier classical results about the existence of least area surfaces such as [3] are based on techniques of partial differential equations. In particular, they are based on the analysis of the following mean curvature flow equation. Let [image: there is no content] be a smooth surface embedded in a Riemannian 3-manifold [image: there is no content]. Then the mean curvature flow is defined by the evolution equation, see [26]:


[image: there is no content]



(6)







That is, every point of [image: there is no content] moves in the direction of the normal vector at that point, and at velocity that is proportional to the mean curvature at that point. In contrast, based on the definition of [image: there is no content]-minimal and [image: there is no content]-least area surfaces, as well as on the definition of curvature for normal surfaces, Jaco and Rubinstaein deduced, in [2], a [image: there is no content] version of the mean curvature flow. By the analysing it they where able to obtain the following existence theorem for [image: there is no content]-minimal surfaces: A vertex linking sphere in a triangulated 3-manifold [image: there is no content] is a normal 2-sphere that is the boundary of a small 3-ball around a vertex of [image: there is no content].



Theorem A2.

([2]) In the normal homotopy class of any normal surface [image: there is no content], that is not a vertex linking sphere, there exists a [image: there is no content]-minimal surface.





Remark A2.

In the theorem above Jaco-Rubinstein also claim uniqueness of the surface; however, since the definition of [image: there is no content]-minimal as well as [image: there is no content]-least area surfaces does not account for the interior of the normal disks, the uniqueness argument in [2] holds only with respect to the boundary of any normal disks while the interior of the disk may vary. In [27] the definition of a [image: there is no content]-minimal surface is altered by putting an additional constraint that the interior of each normal disk in [image: there is no content], is a minimal surface in the usual differential geometric sense.





With this altered definition of [image: there is no content]-minimality it is shown,



Theorem A3 ([27])

There is exactly one [image: there is no content]-minimal surface in a normal homotopy class of any normal surface [image: there is no content] that is not a vertex linking sphere.






Appendix F. [image: there is no content]-Minimal Surfaces and Approximation of Least Area Surfaces


The above existence theorem gives hope that the answer to Question II, that was raised in the introduction, is affirmative. That is, it is possible to represent a least area surface as a limit surface of a sequence of [image: there is no content]-minimal surfaces. A seemingly natural approach to prove such an affirmative answer would be the following: Show it is possible to build a sequence of triangulations of the manifold [image: there is no content], of decreasing mesh, so that the given least area surface is normal with respect to each of these triangulations. Then, based on the above theorem, take the [image: there is no content]-minimal representative of the least area surface, inside its normal homotopy class, with respect to each of the triangulations. This way one obtains a sequence of [image: there is no content]-minimal surfaces that should converge to the least area surface. However, as the mesh of the triangulations decreases it may very well happen that the given least area surface will become arbitrarily close to vertices of triangulations in the sequence. This pose a major problem. In the proof of Theorem A2 above it is shown that a surface which is [image: there is no content]-minimal with respect to some triangulation cannot get close to the vertices of that triangulation. Therefore, whenever the least area surface is close to a vertex it will remain far away from all [image: there is no content]-minimal surfaces. Since any natural way to define convergence of a sequence of surfaces to some limit surface will evidently require that the surfaces in the sequence will become close, in some natural manner, to the limit surface, the constrain presented here prevents us from obtaining an affirmative answer to Question II. In two consecutive papers Question I and II will be addressed in the case of normal surfaces.
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Figure A2. Normal disks. 






Figure A2. Normal disks.
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Figure A4. Curvature at an intersection point with an edge. 






Figure A4. Curvature at an intersection point with an edge.
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