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1. Introduction

Let X be a nonempty universal set, and let d : X× X → R+ be a nonnegative real-valued function
defined on the product set X × X. We say that (X, d) is a metric space if and only if the following
conditions are satisfied:

• for any x, y ∈ M, d(x, y) = 0 implies x = y;
• (self-distance condition) for any x ∈ M, d(x, x) = 0;
• (symmetric condition) for any x, y ∈ M, d(x, y) = d(y, x);
• (triangle inequality) for any x, y, z ∈ M, d(x, z) ≤ d(x, y) + d(y, z).

In the literature, different kinds of spaces are considered by weakening the above conditions.
Wilson [1] says that (X, d) is a quasi-metric space when the symmetric condition is not satisfied; that is,
the following conditions are satisfied:

• for any x, y ∈ M, d(x, y) = 0 if and only if x = y;
• for any x, y, z ∈ M, d(x, z) ≤ d(x, y) + d(y, z).

After that, many authors (referring to [2–15] and the references therein) also defined the
quasi-metric space as follows:

• for any x, y ∈ M, d(x, y) = 0 = d(y, x) if and only if x = y;
• for any x, y, z ∈ M, d(x, z) ≤ d(x, y) + d(y, z).

However, these two definitions are not equivalent. The reason is that d(x, y) = 0 does not
necessarily imply d(y, x) = 0, since the symmetric condition is not satisfied. It is clear to see that, in the
Wilson’s sense, we also have d(y, x) = 0 if and only if y = x.

Wilson [16] also says that (X, d) is a semi-metric space when the triangle inequality is not satisfied;
that is, the following conditions are satisfied:

• for any x, y ∈ M, d(x, y) = 0 if and only if x = y;
• for any x, y ∈ M, d(x, y) = d(y, x).

On the other hand, Matthews [11] says that (X, d) is a partial metric space if and only if the
following conditions are satisfied:
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• for any x, y ∈ M, x = y if and only if d(x, x) = d(x, y) = d(y, y);
• for any x, y ∈ M, d(x, x) ≤ d(x, y);
• for any x, y ∈ M, d(x, y) = d(y, x).
• for any x, y, z ∈ M, d(x, z) ≤ d(x, y) + d(y, z)− d(y, y).

The partial metric space does not assume the self-distance condition d(x, x) = 0.
In this paper, we shall consider a so-called pre-metric space in which we just assume that

d(x, y) = 0 implies x = y for any x, y ∈ X. In other words, the pre-metric space does not assume
the self-distance condition and symmetric condition. Since the triangle inequality plays a very
important role, without considering the symmetric condition, the triangle inequality can be considered
in four forms, which was not discussed in the literature. Based on the four different kinds of
triangle inequalities, we can induce the T1-space space from the pre-metric space under some
suitable conditions.

This paper is organized as follows. In Section 2 , we propose the so-called pre-metric space
in which four forms of triangle inequalities are considered and studied. Many basic properties are
also obtained for further investigation. In Section 3, we induce the T1-space from a given pre-metric
space under some suitable assumptions. In Section 4, the limits in pre-metric space are also studied.
We present the consistency of limit concepts in the pre-metric space and the induced topologies.

2. Definitions and Properties

In this section, we shall introduce the concept of pre-metric space, and the four concepts of triangle
inequalities. We also derive some interesting properties that will be used in the further study. Without
considering the symmetric condition, we first introduce four types of triangle inequality as follows.

Definition 1. Let X be a nonempty universal set, and let d be a mapping defined on X× X into R+.

• We say that d satisfies the ./-triangle inequality if and only if the following inequality is satisfied:

d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.

• We say that d satisfies the .-triangle inequality if and only if the following inequality is satisfied:

d(x, y) + d(z, y) ≥ d(x, z) for all x, y, z ∈ X.

• We say that d satisfies the /-triangle inequality if and only if the following inequality is satisfied:

d(y, x) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.

• We say that d satisfies the �-triangle inequality if and only if the following inequality is satisfied:

d(y, x) + d(z, y) ≥ d(x, z) for all x, y, z ∈ X.

It is obvious that if d satisfies the symmetric condition, then the concepts of ./-triangle inequality,
.-triangle inequality, /-triangle inequality and �-triangle inequality are all equivalent.

Example 1. We define a function d : R+ ×R+ → R+ by d(x, y) = max{x, y}. Then d(x, x) = x for any
x ≥ 0, which also says that d(x, x) is not always zero. It is not hard to check

max{x, y}+ max{y, z} ≥ max{x, z},

which also says that
d(x, y) + d(y, z) ≥ d(x, z).
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This shows that d satisfies the ./-triangle inequality. Since d also satisfies the symmetric condition, it
means that all the four forms of triangle inequalities are equivalent. However, since d(x, x) > 0 for x > 0, it
says that (R+, d) is still not a metric space.

Example 2. We define a function d : R+ ×R+ → R+ by

d(x, y) =

{
x if x ≥ y
2y− x if x < y.

Then d(x, x) = x for any x ≥ 0, which also says that d(x, x) is not always zero. For x > y, we see that
d(x, y) = x and d(y, x) = 2x − y, which says that d(x, y) 6= d(y, x) in general; that is, the symmetric
condition is not satisfied. It is not hard to check

d(x, y) + d(y, z) ≥ d(x, z).

This shows that d also satisfies the ./-triangle inequality.

Examples 1 and 2 say that d(x, x) 6= 0 for x 6= 0. Therefore, we propose the following definition.

Definition 2. Let X be a nonempty universal set, and let d be a mapping defined on X× X into R+. We say
that (X, d) is a pre-metric space if and only if d(x, y) = 0 implies x = y for any x, y ∈ X.

We see that (X, d) is a quasi-metric space if and only if (X, d) is a pre-metric space satisfying the
./-triangle inequality and d(x, x) = 0 for all x ∈ X.

Example 3. Examples 1 and 2 are pre-metric spaces, since it is not hard to check that d(x, y) = 0 implies
x = y = 0 based on the nonnegativity.

Remark 1. Let (X, d) be a pre-metric space. Then d(x, y) = 0 implies x = y, which also implies d(x, y) =
0 = d(x, x) = d(y, x) without needing the symmetric condition. We remark that this symmetric situation can
only happen when d(x, y) = 0 or d(y, x) = 0. Therefore, if d(x, y) > 0 then we cannot have d(x, y) = d(y, x)
in general. On the other hand, we also see that d(x, y) = 0 or d(y, x) = 0 implies d(x, x) = 0. However, this
situation does not say d(x, x) = 0 for all x ∈ X. We can just say that d(x, x) = 0 when d(x, y) = 0 for some
x, y ∈ X. In other words, we can just say that d(x, x) = 0 for some x ∈ X. This situation can also be realized
from Example 2.

Proposition 1. Let X be a nonempty universal set, and let d be a mapping defined on X× X into R+. Suppose
that the following conditions are satisfied:

• d(x, x) = 0 for all x ∈ X;
• d satisfies the .-triangle inequality or the /-triangle inequality or the �-triangle inequality.

Then d satisfies the symmetric condition.

Proof. Suppose that d satisfies the .-triangle inequality. Then, given any x, y ∈ X, we have

d(x, y) ≤ d(x, x) + d(y, x) = d(y, x).

By interchanging the roles of x and y, we can also obtain d(y, x) ≤ d(x, y). This shows that
d(x, y) = d(y, x). The other cases of satisfying the /-triangle inequality and the �-triangle inequality
can be similarly obtained. This completes the proof.

Remark 2. Suppose that d(x, x) = 0 for all x ∈ X, and that d satisfies the ◦-triangle inequality for some
◦ ∈ {., /, �}. Then, using Proposition 1, we see that all the four forms of triangle inequalities are equivalent.
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3. T1-Space

We want to show that the pre-metric space along with the different kinds of triangle inequalities
can induce the T1-Space based on the concepts of open balls defined below.

Definition 3. Let (X, d) be a pre-metric space. Given r > 0, the open balls centered at x are denoted and
defined by

B/(x; r) = {y ∈ X : d(x, y) < r}

and
B.(x; r) = {y ∈ X : d(y, x) < r} .

Let B/ denote the family of all open balls B/(x; r), and let B. denote the family of all open balls B.(x; r).

In the sequel, we also assume that the open balls B/(x; r) and B.(x; r) are nonempty for each
x ∈ X and r > 0. In other words, given any x ∈ X and r > 0, we assume that there exist y1 and y2

such that d(x, y1) < r and d(x, y2) < r, respectively. It is also clear that if d satisfies the symmetric
condition, then

B/(x; r) = B.(x; r).

In this case, we simply write B(x; r) to denote the open balls centered at x, and write B to denote
the family of all open balls B(x; r).

Proposition 2. Let (X, d) be a pre-metric space.

(i) Given any x ∈ X, we have the following properties.

• Suppose that d(x, x) = 0. Then x ∈ B/(x; r) ∈ B/ and x ∈ B.(x; r) ∈ B. for all r > 0.
• Suppose that x ∈ B/(x; r) for all r > 0, or that x ∈ B.(x; r) for all r > 0. Then d(x, x) = 0.

(ii) If x 6= y, then there exist r1 > 0 and r2 > 0 such that y 6∈ B/(x; r1) and y 6∈ B.(x; r2).
(iii) For each x ∈ X, we have the following properties.

• Given any B/(x; r) ∈ B/, there exists n ∈ N such that B/(x; 1
n ) ⊆ B/(x; r).

• Given any B.(x; r) ∈ B., there exists n ∈ N such that B.(x; 1
n ) ⊆ B.(x; r).

Proof. The first statement of part (i) is obvious. To prove the second statement of part (i), we take
a sequence {rn}∞

n=1 of positive numbers such that it is decreasing to zero. Then we have d(x, x) < rn

for all n, which implies d(x, x) = 0 by taking n → ∞. To prove part (ii), since x 6= y, it follows that
d(x, y) > 0 and d(y, x) > 0 by the definition of pre-metric space. Using the denseness of R, there exists
r1 > 0 such that 0 < r1 < d(x, y), which also says that y 6∈ B/(x; r1). We also have y 6∈ B.(x; r2) for
some r2 > 0 satisfying 0 < r2 < d(y, x). Part (iii) follows from the existence of a positive integer n with
1/n < r. This completes the proof.

Proposition 3. Let (X, d) be a pre-metric space. Then we have the following inclusions.

(i) Suppose that d satisfies the ./-triangle inequality.

• Given any y ∈ B/(x; r), there exists r̄ > 0 such that B/(y; r̄) ⊆ B/(x; r).
• Given any y ∈ B.(x; r), there exists r̄ > 0 such that B.(y; r̄) ⊆ B.(x; r).

(ii) Suppose that d satisfies the .-triangle inequality. Given any y ∈ B/(x; r), there exists r̄ > 0 such that
B.(y; r̄) ⊆ B/(x; r) and B.(y; r̄) ⊆ B.(x; r).

(iii) Suppose that d satisfies the /-triangle inequality. Given any y ∈ B.(x; r), there exists r̄ > 0 such that
B/(y; r̄) ⊆ B.(x; r) and B/(y; r̄) ⊆ B/(x; r).

(iv) Suppose that d satisfies the �-triangle inequality.
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• Given any y ∈ B/(x; r), there exists r̄ > 0 such that B/(y; r̄) ⊆ B.(x; r).
• Given any y ∈ B.(x; r), there exists r̄ > 0 such that B.(y; r̄) ⊆ B/(x; r).

(v) Suppose that d satisfies the .-triangle inequality and the /-triangle inequality.

• Given any y ∈ B/(x; r), there exists r̄ > 0 such that B/(y; r̄) ⊆ B/(x; r).
• Given any y ∈ B.(x; r), there exists r̄ > 0 such that B.(y; r̄) ⊆ B.(x; r).

Proof. To prove part (i), for y ∈ B/(x; r) and z ∈ B/(y; r̄), let r̄ ≤ r − d(x, y). Using the ./-triangle
inequality, we have

d(x, z) ≤ d(x, y) + d(y, z) < d(x, y) + r̄ ≤ d(x, y) + r− d(x, y) = r,

which says that z ∈ B/(x; r). Therefore we obtain the inclusion B/(y; r̄) ⊆ B/(x; r). For y ∈ B.(x; r)
and z ∈ B.(y; r̄), let r̄ ≤ r− d(y, x). Then we can similarly obtain the inclusion B.(y; r̄) ⊆ B.(x; r).

To prove part (ii), for y ∈ B/(x; r) and z ∈ B.(y; r̄), let r̄ ≤ r − d(x, y). Using the .-triangle
inequality, we have

d(x, z) ≤ d(x, y) + d(z, y) < d(x, y) + r̄ ≤ d(x, y) + r− d(x, y) = r,

which says that z ∈ B/(x; r). Therefore we obtain the inclusion B.(y; r̄) ⊆ B/(x; r). We can similarly
obtain the inclusion B.(y; r̄) ⊆ B.(x; r).

Parts (iii) and (iv) can be similarly obtained. To prove the first statement of part (v), using part
(ii), we can take r̄∗ > 0 such that B.(y; r̄∗) ⊆ B/(x; r). Using part (iii), we can also take r̄ > 0 such
that B/(y; r̄) ⊆ B.(y; r̄∗). This shows that B/(y; r̄) ⊆ B/(x; r). The second statement of part (v) can be
similarly obtained. This completes the proof.

Proposition 4. Let (X, d) be a pre-metric space. Then we have the following inclusions.

(i) Suppose that d satisfies the ./-triangle inequality.

• If x ∈ B/(x1, r1) ∩ B/(x2, r2), then there exists r3 > 0 such that

B/(x, r3) ⊆ B/(x1, r1) ∩ B/(x2, r2).

• If x ∈ B.(x1, r1) ∩ B.(x2, r2), then there exists r3 > 0 such that

B.(x, r3) ⊆ B.(x1, r1) ∩ B.(x2, r2).

(ii) Suppose that d satisfies the .-triangle inequality. If x ∈ B/(x1, r1) ∩ B/(x2, r2), then there exists r3 > 0
such that

B.(x, r3) ⊆ B/(x1, r1) ∩ B/(x2, r2) and B.(x, r3) ⊆ B.(x1, r1) ∩ B.(x2, r2).

(iii) Suppose that d satisfies the /-triangle inequality. If x ∈ B.(x1, r1) ∩ B.(x2, r2), then there exists r3 > 0
such that

B/(x, r3) ⊆ B.(x1, r1) ∩ B.(x2, r2) and B/(x, r3) ⊆ B/(x1, r1) ∩ B/(x2, r2).

(iv) Suppose that d satisfies the �-triangle inequality.

• If x ∈ B/(x1, r1) ∩ B/(x2, r2), then there exists r3 > 0 such that

B/(x, r3) ⊆ B.(x1, r1) ∩ B.(x2, r2).

• If x ∈ B.(x1, r1) ∩ B.(x2, r2), then there exists r3 > 0 such that

B.(x, r3) ⊆ B/(x1, r1) ∩ B/(x2, r2).
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(v) Suppose that d satisfies the .-triangle inequality and the /-triangle inequality. We have the following inclusions.

• If x ∈ B/(x1, r1) ∩ B/(x2, r2), then there exists r4 > 0 such that

B/(x, r4) ⊆ B/(x1, r1) ∩ B/(x2, r2).

• If x ∈ B.(x1, r1) ∩ B.(x2, r2), then there exists r4 > 0 such that

B.(x, r4) ⊆ B.(x1, r1) ∩ B.(x2, r2).

Proof. To prove part (i), for x ∈ B/(x1, r1) and x ∈ B/(x2, r2), using part (i) of Proposition 3, there exist
r̄1 and r̄2 such that

B/(x, r̄1) ⊆ B/(x1, r1) and B/(x, r̄2) ⊆ B/(x2, r2).

We take r3 = min{r̄1, r̄2}. Then

B/(x, r3) ⊆ B/(x, r̄1) ∩ B/(x, r̄2) ⊆ B/(x1, r1) ∩ B/(x2, r2).

Therefore we obtain the first inclusion. The second inclusion can be similarly obtained.
To prove part (ii), for x ∈ B/(x1, r1) and x ∈ B/(x2, r2), using part (ii) of Proposition 3, there exist

r̄1 and r̄2 such that
B.(x, r̄1) ⊆ B/(x1, r1) and B.(x, r̄1) ⊆ B.(x1, r1).

and
B.(x, r̄2) ⊆ B/(x2, r2) and B.(x, r̄2) ⊆ B.(x2, r2).

Let r3 = min{r̄1, r̄2}. Then

B.(x, r3) ⊆ B.(x, r̄1) ∩ B.(x, r̄2) ⊆ B/(x1, r1) ∩ B/(x2, r2)

and
B.(x, r3) ⊆ B.(x, r̄1) ∩ B.(x, r̄2) ⊆ B.(x1, r1) ∩ B.(x2, r2).

Therefore we obtain the desired inclusions.
Parts (iii) and (iv) can be similarly obtained. To prove the first statement of part (v), using part (iii)

of Proposition 3 and part (ii) of this proposition, we can find r4 > 0 such that

B/(x, r4) ⊆ B.(x, r3) ⊆ B/(x1, r1) ∩ B/(x2, r2).

The second statement can be similarly obtained. This completes the proof.

Proposition 5. Let (X, d) be a pre-metric space. Suppose that x 6= y. Then we have the following properties.

(i) Suppose that d satisfies the ./-triangle inequality or the �-triangle inequality. Then B/(x; r)∩ B.(y; r) = ∅
and B.(x; r) ∩ B/(y; r) = ∅ for some r > 0.

(ii) Suppose that d satisfies the .-triangle inequality. Then B/(x; r) ∩ B/(y; r) = ∅ for some r > 0.
(iii) Suppose that d satisfies the /-triangle inequality. Then B.(x; r) ∩ B.(y; r) = ∅ for some r > 0.

Proof. Since x 6= y, it says that d(x, y) > 0 and d(y, x) > 0. We consider the following cases.

• Suppose that d satisfies the .-triangle inequality. Let r ≤ d(x, y)/2. We are going to prove
B/(x; r) ∩ B/(y; r) = ∅ by contradiction. Suppose that z ∈ B/(x; r) ∩ B/(y; r). Since d satisfies the
.-triangle inequality, it follows that

d(x, y) ≤ d(x, z) + d(y, z) < r + r = 2r ≤ d(x, y),
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which is a contradiction. Suppose that d satisfies the /-triangle inequality. Then we can similarly
obtain the desired result.

• Suppose that d satisfies the ./-triangle inequality. Let r ≤ d(x, y)/2. For z ∈ B/(x; r) ∩ B.(y; r),
it follows that

d(x, y) ≤ d(x, z) + d(z, y) < r + r = 2r ≤ d(x, y),

which is a contradiction. On the other hand, let r ≤ d(y, x)/2, for z ∈ B.(x; r) ∩ B/(y; r),
it follows that

d(y, x) ≤ d(y, z) + d(z, x) < r + r = 2r ≤ d(y, x),

which is a contradiction. Suppose that d satisfies the �-triangle inequality. Then we can similarly
obtain the desired result.

This completes the proof.

Theorem 1. Let (X, d) be a pre-metric space. Define

τ/ = {O/ ⊆ X : x ∈ O/ if and only if there exist r > 0 such that x ∈ B/(x; r) ⊆ O/} . (1)

and
τ. = {O. ⊆ X : x ∈ O. if and only if there exist r > 0 such that x ∈ B.(x; r) ⊆ O.} . (2)

Suppose that d satisfies the ./-triangle inequality. Then we have the following results.

• Assume additionally that d(x, x) = 0 for all x ∈ X, or that x ∈ B/(x; r) for all x ∈ X and r > 0.
Then (X, τ/) is a T1-space such that B/ is a base for the topology τ/.

• Assume additionally that d(x, x) = 0 for all x ∈ X, or that x ∈ B.(x; r) for all x ∈ X and r > 0.
Then (X, τ.) is a T1-space such that B. is a base for the topology τ..

The T1-spaces (X, τ/) and (X, τ.) also satisfy the first axiom of countability. Moreover, B/(x; r) is a τ/-open
set and B.(x; r) is a τ.-open set.

Proof. Using part (i) of Proposition 2 and part (i) of Proposition 4, we see that τ/ is a topology such
that B/ is a base for τ/. Part (ii) of Proposition 2 says that (X, τ/) is a T1-space. Part (iii) of Proposition 2
says that there exists a countable local base at each x ∈ X for τ/, which also says that τ/ satisfies
the first axiom of countability. Regarding τ., we can similarly obtain the desired results. Finally,
part (i) of Proposition 3 says that B/(x; r) is a τ/-open set and B.(x; r) is a τ.-open set. This completes
the proof.

We remark that, in Theorem 1, although we assume d(x, x) = 0 for all x ∈ X, (X, d) is not
necessarily a metric space, since the symmetric condition is still not satisfied. The following example
provides this observation.

Example 4. We define a function d : R+ ×R+ → R+ by

d(x, y) =


x if x > y
0 if x = y
2y− x if x < y.

Then d(x, x) = 0 for all x ∈ X. By referring to Example 2, we also see that the symmetric condition is not
satisfied, and that d satisfies the ./-triangle inequality. Using Theorem 1, we can induce two T1-spaces (R+, τ/)

and (R+, τ.). Moreover, the spaces (R+, τ/) and (R+, τ.) also satisfy the first axiom of countability.
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4. Limits in Pre-Metric Space

Let (X, d) be a pre-metric space. Since the symmetric condition is not necessarily satisfied,
the different concepts of limit are proposed below.

Definition 4. Let (X, d) be a pre-metric space, and let {xn}∞
n=1 be a sequence in X.

• We write xn
d.−→ x as n→ ∞ if and only if d(xn, x)→ 0 as n→ ∞.

• We write xn
d/−→ x as n→ ∞ if and only if d(x, xn)→ 0 as n→ ∞.

• We write xn
d−→ x as n→ ∞ if and only if

lim
n→∞

d(xn, x) = lim
n→∞

d(x, xn) = 0.

The uniqueness of limits will be discussed below.

Proposition 6. Let (X, d) be a pre-metric space, and let {xn}∞
n=1 be a sequence in X.

(i) Suppose that d satisfies the ./-triangle inequality or �-triangle inequality. If xn
d/−→ x and xn

d.−→ y,
then x = y.

(ii) Suppose that d satisfies the /-triangle inequality. If xn
d.−→ x and xn

d.−→ y, then x = y. In other words,
the d.-limit is unique.

(iii) Suppose that d satisfies the .-triangle inequality. If xn
d/−→ x and xn

d/−→ y, then x = y. In other words,
the d/-limit is unique.

Proof. To prove part (i), we first assume that d satisfies the ./-triangle inequality. Then

d(x, y) ≤ d(x, xn) + d(xn, y)→ 0 + 0 = 0,

which says that x = y. Now suppose that d satisfies the �-triangle inequality. Then

d(y, x) ≤ d(xn, y) + d(x, xn)→ 0 + 0 = 0

which also says that x = y. The other cases can be similarly obtained. This completes the proof.

Let (X, τ) be a topological space. The sequence {xn}∞
n=1 in X converges to x ∈ X with respect to

the topology is denoted by xn
τ−→ x as n→ ∞.

Proposition 7. Let (X, d) be a pre-metric space. Suppose that d satisfies the ./-triangle inequality or the
.-triangle inequality or the /-triangle inequality. Assume that d(x, x) = 0 for all x ∈ X. Then the following
statements hold true.

(i) Let τ. be the topology defined by (1) in Theorem 1, and let {xn}∞
n=1 be a sequence in X. Then xn

τ.−→ x as

n→ ∞ if and only if xn
d.−→ x as n→ ∞.

(ii) Let τ/ be the topology defined by (2) in Theorem 1, and let {xn}∞
n=1 be a sequence in X. Then xn

τ/−→ x as

n→ ∞ if and only if xn
d/−→ x as n→ ∞.

Proof. Under the assumptions, Theorem 1 says that we can induce two topologies τ. and τ/. It suffices

to prove part (i). Suppose that xn
τ.−→ x as n → ∞. Given any ε > 0, there exits nε ∈ N such that

xn ∈ B.(x; ε) for all n ≥ nε, i.e., d(xn, x) < ε for all n ≥ nε. This says that d(xn, x) → 0 as n → ∞.
Conversely, if d(xn, x)→ 0 as n→ ∞, then, given any ε > 0, there exists nε ∈ N such that d(xn, x) < ε

for all n ≥ nε, which says that xn ∈ B.(x; ε) for all n ≥ nε. This shows that xn
τ.−→ x as n→ ∞, and the

proof is complete.
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Let (X, d) be a pre-metric space. We consider the following sets

B̄/(x; r) = {y ∈ X : d(x, y) ≤ r} and B̄.(x; r) = {y ∈ X : d(y, x) ≤ r} .

If the symmetric condition is satisfied, then we simply write B̄(x; r). We are going to consider
the closeness of B̄/(x; r) and B̄.(x; r). Let us recall that, given a topological space (X, τ), we say that
a subset F of X is τ-closed if and only if τ-cl(F) = F, where τ-cl(F) denotes the τ-closure of F.

Proposition 8. Let (X, d) be a pre-metric space. Suppose that d satisfies d(x, x) = 0 for all x ∈ X and the
./-triangle inequality. We have the following results.

• B̄/(x; r) is τ.-closed. In other words, we have τ.-cl(B̄/(x; r)) = B̄/(x; r).
• B̄.(x; r) is τ/-closed. In other words, we have τ/-cl(B̄.(x; r)) = B̄.(x; r).

Proof. Under the assumptions, Theorem 1 says that we can induce two topologies τ. and τ/ satisfying
the first axiom of countability. To prove the first statement, for y ∈ τ.-cl(B̄/(x; r)), since (X, τ.) satisfies

the first axiom of countability, there exists a sequence {yn}∞
n=1 in B̄/(x; r) such that yn

τ.−→ y as n→ ∞.
We also have d(x, yn) ≤ r for all n. By part (i) of Proposition 7, we have d(yn, y)→ 0 as n→ ∞ for all.
The ./-triangle inequality says that

d(x, y) ≤ d(x, yn) + d(yn, y) ≤ r + d(yn, y)→ r as n→ ∞,

which shows y ∈ B̄/(x; r). Therefore we obtain τ.-cl(B̄/(x; r)) = B̄/(x; r). The second statement can
be similarly obtained. This completes the proof.

Proposition 9. Let (X, d) be a pre-metric space. Suppose that the following conditions are satisfied.

• d satisfies the .-triangle inequality and the /-triangle inequality simultaneously.
• d(x, x) = 0 for all x ∈ X.

Then d satisfies the symmetric condition; that is, (X, d) is a metric space.

Proof. Using part (i) of Proposition 2 and part (v) of Proposition 4, we see that τ/ defined by (1) in
Theorem 1 is a topology such that B/ is a base for τ/. Part (iii) of Proposition 2 says that there exists a
countable local base at each x ∈ X for τ/, which also says that τ/ satisfies the first axiom of countability.
For y ∈ τ/-cl(B̄/(x; r)), the first axiom of countability says that there exists a sequence {yn}∞

n=1 in

B̄/(x; r) such that yn
τ/−→ y as n→ ∞. We also have d(x, yn) ≤ r for all n. By part (ii) of Proposition 7,

we have d(y, yn)→ 0 as n→ ∞. The .-triangle inequality says that

d(x, y) ≤ d(x, yn) + d(y, yn) ≤ r + d(y, yn)→ r as n→ ∞,

which shows y ∈ B̄/(x; r), i.e., τ/-cl(B̄/(x; r)) = B̄/(x; r). On the other hand, we also have

d(y, x) ≤ d(y, yn) + d(x, yn) ≤ d(y, yn) + r → r as n→ ∞,

which shows y ∈ B̄.(x; r). Therefore we obtain the inclusion τ/-cl(B̄/(x; r)) ⊆ B̄.(x; r), which also
says that B̄/(x; r) ⊆ B̄.(x; r). Now, given any x, y ∈ X with y 6= x, we have d(x, y) > 0. Let r = d(x, y).
Then y ∈ B̄/(x; r). This also says that y ∈ B̄.(x; r), i.e.,

d(y, x) ≤ r = d(x, y).

By interchanging the roles of x and y, we can similarly obtain d(x, y) ≤ d(y, x). This completes
the proof.
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Remark 3. Let (X, d) be a pre-metric space. Suppose that the conditions presented in Proposition 9 are
satisfied. Then (X, d) turns into a metric space. It is well-known that the metric space (X, d) can induce
a Hausdorff topological space. More precisely, using the notations in this paper, we see that τ/ = τ.

that is simply written as τ. In other words, (X, τ) is a Hausdorff space such that B is a base for the
topology τ, where B = B/ = B.. The Hausdorff space (X, τ) also satisfies the first axiom of countability.
Moreover, B(x; r) is a τ-open set and B̄(x; r) is a τ-closed set, where B(x; r) = B/(x; r) = B.(x; r) and
B̄(x; r) = B̄/(x; r) = B̄.(x; r).

In a future study, we shall avoid to consider the conditions presented in Proposition 9. Otherwise,
the study will become trivial, based on the results of conventional metric space.
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References

1. Wilson, W.A. On Semi-metric spaces. Am. J. Math. 1931, 53, 361–373. [CrossRef]
2. Alegre, C.; Marín, J. Modified w-distances on quasi-metric spaces and a fixed point theorem on complete

quasi-metric spaces. Topol. Appl. 2016, 203, 32–41. [CrossRef]
3. Ali-Akbari, M.; Pourmahdian, M. Completeness of hyperspaces of compact subsets of quasi-metric spaces.

Acta Math. Hung. 2010, 127, 260–272. [CrossRef]
4. Cao, J.; Rodríguez-López, J. On hyperspace topologies via distance functionals in quasi-metric spaces.

Acta Math. Hung. 2006, 112, 249–268. [CrossRef]
5. Cobzas, S. Completeness in quasi-metric spaces and Ekeland Variational Principle. Topol. Appl. 2011, 158,

1073–1084. [CrossRef]
6. Collins Agyingi, A.; Haihambo, P.; Künzi, H.-P. A. Endpoints in T0-quasi-metric spaces. Topol. Appl. 2014, 168,

82–93. [CrossRef]
7. Doitchinov, D. On completeness in quasi-metric spaces. Topol. Appl. 1988, 30, 127–148. [CrossRef]
8. Künzi, H.-P.A. A construction of the B-completion of a T0-quasi-metric space. Topol. Appl. 2014, 170, 25–39.

[CrossRef]
9. Künzi, H.-P.A.; Kivuvu, C.M. The B-completion of a T0-quasi-metric space. Topol. Appl. 2009, 156, 2070–2081.

[CrossRef]
10. Künzi, H.-P.A.; Yildiz, F. Convexity structures in T0-quasi-metric spaces. Topol. Appl. 2016, 200, 2–18.

[CrossRef]
11. Matthews, S.G. Partial metric topology. Ann. N. Y. Acad. Sci. 1994, 728, 183–197. [CrossRef]
12. Romaguera, S.; Antonino, J.A. On convergence complete strong quasi-metrics. Acta Math. Hung. 1994, 64,

65–73. [CrossRef]
13. Triebel, H. A new approach to function spaces on quasi-metric spaces. Rev. Mat. Complut. 2005, 18, 7–48.

[CrossRef]
14. Ume, J.S. A minimization theorem in quasi-metric spaces and its applications. Int. J. Math. Math. Sci. 2002, 31,

443–447. [CrossRef]
15. Vitolo, P. A representation theorem for quasi-metric spaces. Topol. Appl. 1995, 65, 101–104. [CrossRef]
16. Wilson, W.A. On Quasi-metric spaces. Am. J. Math. 1931, 53, 675–684. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2307/2370790
http://dx.doi.org/10.1016/j.topol.2015.12.073
http://dx.doi.org/10.1007/s10474-010-9132-8
http://dx.doi.org/10.1007/s10474-006-0077-x
http://dx.doi.org/10.1016/j.topol.2011.03.003
http://dx.doi.org/10.1016/j.topol.2014.02.010
http://dx.doi.org/10.1016/0166-8641(88)90012-0
http://dx.doi.org/10.1016/j.topol.2014.03.017
http://dx.doi.org/10.1016/j.topol.2009.03.022
http://dx.doi.org/10.1016/j.topol.2015.12.009
http://dx.doi.org/10.1111/j.1749-6632.1994.tb44144.x
http://dx.doi.org/10.1007/BF01873971
http://dx.doi.org/10.5209/rev_REMA.2005.v18.n1.16701
http://dx.doi.org/10.1155/S0161171202110404
http://dx.doi.org/10.1016/0166-8641(95)00106-Q
http://dx.doi.org/10.2307/2371174
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Definitions and Properties
	T1-Space
	Limits in Pre-Metric Space
	References

