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Abstract: A nonlinear eigenvalue problem is generally described by an equation of the form F(λ, x) = 0,
where F(λ, 0) = 0 for all λ, and contains by definition two unknowns: the eigenvalue parameter λ and
the “nontrivial” vector(s) x corresponding to it. The nonlinear dependence of F can be in either of them
(and of course in both), and also the research in this area seems to follow two quite different directions.
In this review paper, we try to collect some points of possible common interest for both fields.
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1. Introduction

Nonlinear eigenvalue problems are generally described by equations of the form

F(λ, x) = 0 (λ ∈ K, x ∈ E) (1)

where K (= R or C) is the field of real or complex numbers, and E is a real or complex Banach space
that can in particular be the n-space Rn or Cn. In Equation (1), F is a continuous map of K× E into E,
and it is assumed that F(λ, 0) = 0 for all scalars λ. That is to say, x = 0 solves trivially Equation (1) for
all λ; and one looks therefore for those λ’s (the eigenvalues of F) such that Equation (1) has a solution
x 6= 0 (an eigenvector of F corresponding to λ).

Of course, Equation (1) contains as a (very) special case the proper eigenvalue-eigenvector
equation of Linear Algebra and Linear Functional Analysis,

F(λ, x) = Ax− λx = (A− λI)x = 0 (2)

in which A ∈ L(E), the space af all bounded linear operators acting in E and I is the identity map;
to stress the linearity of A, we write as usual Ax rather than A(x). In addition to Equation (2), consider
now the following special forms of Equation (1):

F(λ, x) = G(λ)x = 0, (3)

and
F(λ, x) = A(x)− λC(x) = 0. (4)

Evidently, both Equations (3) and (4) encompass the classical case Equation (2). However, there
is quite a difference between them: in Equation (3), F depends linearly on x and arbitrarily in λ,
the latter dependence being driven by a map G : K → L(E), while, in Equation (4), it is rather the
opposite, for here it is the dependence on x that is (possibly) nonlinear as dictated by the continuous
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maps A, C : E → E. One first consequence is that the terms eigenvalue/eigenvector/eigenspace retain
their usual significance in the case of Equation (3), while on the contrary they have in general a poor
meaning in the case of Equation (4). On the other hand, in the latter case, assuming that C(x) 6= 0 for
x 6= 0, the eigenvalue associated with an eigenvector is uniquely determined, for A(x̂)− λ1C(x̂) =
A(x̂)− λ2C(x̂) with x̂ 6= 0 implies that λ1 = λ2, while in the former case this is not necessarily true.

In fact, in the past decades both Equations (3) and (4) have been usually referred to as Nonlinear
Eigenvalue Problems. Those of the type in Equation (3), especially with E = Kn, have been extensively
studied in Numerical Analysis and Matrix Analysis (see, for instance, the review paper [1], where the
abbreviation NLEVP is used to designate them), while problems of the type in Equation (4) have formed
a main subject in Nonlinear Functional Analysis and its applications to differential equations, and are at
the basis of, among others, Bifurcation Theory; see, for instance, the nowadays classic book [2] or the
most recent [3].

Historically, the study of Nonlinear Eigenvalue Problems can be dated back to nearly one century
ago, if we look in particular to the work—inspired by D. Hilbert and E. Landau—of E. Schmidt
and A. Hammerstein, and subsequently of M. Golomb, on parameter-dependent nonlinear integral
equations of the form

λu(x) =
∫

Ω
k(x, y) f (y, u(y)) dy.

On the eastern side of Europe, the investigation of this kind of problems received a strong impulse
in the former Soviet Union on behalf of M.A. Krasnosel’skii and I.T. Gohberg. They were both pupils
of M.G. Krein, and their subsequent work during many decades of the second half of the last century
seems to have developed mainly on problems of the type in Equation (3) by Gohberg, and mainly on
problems of the type in Equation (4) by Krasnosel’skii. For this reason, and in honor of these two true
giants of Nonlinear Functional Analysis, I will often refer in the sequel to Equation (3) as describing
problems of type G, and to Equation (4) as describing problems of type K.

The present paper does not contain new results in either field. It is rather a tentative review,
having as a prominent scope that of indicating some problems and methods followed in each of the
two classes, with a look for possible future interactions between them. This is done in the main part of
the paper (Section 2). In fact, as to problems of type G—of which I became aware only a short time
ago—my presentation (Section 2.1) will be that of a beginner, and limited to a few historical remarks,
accompanied by some indication for further study and some motivation from ODEs.

Something more the reader will find about problems of type K, for which I have focused on a short
account of some basic results and methods from Bifurcation Theory on the one hand (Section 2.2), and
to a brief description of a very special—maybe the “closest to linear”—nonlinear eigenvalue problem
on the other (Section 2.3). The latter is the p−Laplace equation{

−div(|∇u|p−2∇u) = µ|u|p−2u in Ω
u = 0 on ∂Ω

(5)

where p > 1 and Ω is a bounded domain in Rn. Here, one can prove the existence—exactly as for the
classical Laplace operator, p = 2—of countably many eigenvalues which can be naturally arranged in
an increasing sequence

µ1 < µ2 ≤ . . . µk ≤ . . . , µk → +∞ (6)

The importance of this example is also because it shows—via the Lusternik–Schnirelmann
theory—the full strength of the variational methods and of Critical Point Theory in particular. As is
well known, these consist in searching a solution of a given equation as a critical point of a functional
(i.e., a point where the derivative of the functional vanishes), and are of the utmost importance both for
equations of the form

A(x) = 0 (7)



Axioms 2018, 7, 39 3 of 30

and for equations of the form
A(x) = λC(x) (8)

the latter being in fact the nonlinear eigenvalue problem in Equation (4) for the pair (A, C). Indeed,
if A = ∇ f and C = ∇g, then solutions of Equation (7) are the free critical points of f , while
solutions of Equation (8) are—modulo technicalities—the constrained critical points of f on the manifold
M = {x : g(x) = const.}. As explained for instance in [4], the Lusternik–Schnirelmann theory not only
guarantees, under appropriate assumptions on the nonlinear operators A and C, the existence of
infinitely many distinct eigenvalues of Equation (8), and thus in particular of Equation (5), but also
provides for them a “minimax" characterization of the form (when C = I)

λn = sup
Kn

inf
K
〈A(u), u〉,

obtained via suitable families Kn of subsets K of the unit sphere. This realizes a conceptually
beautiful (and also practically useful, see for instance [5]) extension of the Courant–Weyl principle
for the eigenvalues of a linear compact self-adjoint operator. The variational characterization of the
eigenvalues seems to be a main point of common interest for either type of nonlinear eigenvalue
problems, see, e.g., [6] and the references quoted in Sections 2.1 and 2.3.

In the second part of the paper (Section 3), we return to Equation (1) and look at the case in which
a small “perturbation parameter” ε enters in the problem, originating an equation of the form

F(ε, λ, x) = 0 (9)

of which Equation (1) is seen as the unperturbed form for ε = 0. We consider parameter-dependent
forms of both Equations (3) and (4), precisely

G(ε, λ)x = 0 (10)

and, taking in Equation (4) C = I and adding to a linear A a nonlinear perturbation εB,

Ax + εB(x) = λx. (11)

In both Equations (10) and (11), one common problem is—in the light of what is done for linear
operators [7]—to see how the perturbed eigenvalues λ(ε) (provided that they exist) will depend on
ε near a given unperturbed eigenvalue λ0. To this purpose, we review the main points of the recent
contributions [8,9], respectively, to Equation (10) and to Equation (11).

Two more points deserve to be mentioned before closing this Introduction. The first is that, for
a better understanding, Nonlinear Eigenvalue Problems—both of type G and of type K—should be
set in the more general respective context of Nonlinear Spectral Theory. References for this are [10,11],
respectively. The interested reader might look at [12] for a recent contribution to the latter. The second
fact, clear enough from this Introduction, is that we have not even attempted to mention the various
numerical methods used for the practical solution of Equation (3) in the case E = Kn. The reader
interested in this rich and fundamental research field might look into the excellent and very recent
survey paper [13].

Let me repeat in conclusion that the only reasonable scope of this paper is to possibly arouse the
curiosity of some expert in either field towards the problems treated in the other, and to give a chance
of possible inspiration for further study.
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2. The Two Types of NLEVP

2.1. Problems of Type G: (Linear) Operator- and Matrix-Valued Functions

A good point to start a presentation of nonlinear eigenvalue problems of the type in Equation (3) is
perhaps R.E.L. Turner’s paper [6] of 1968. Given a complex Hilbert space H, rather than considering the
spectrum of a single bounded linear operator A acting in H, he considers for λ ∈ C operators of the form

A− B(λ) ≡ A−
N

∑
1

λkBk (12)

where Bk ∈ L(H) are given (k = 1, . . . , N), with B1 = I; thus if N = 1 we are back to the familiar
A− λI considered in linear spectral theory. The spectrum of A− B(λ) is defined as the set of those
λ ∈ C for which A− B(λ) fails to be a homeomorphism of H onto itself. In particular, a point λ0 ∈ C
such that A− B(λ0) is not injective, i.e., such that the nullspace Ker(A− B(λ0)) 6= {0}, is an eigenvalue
of A− B(λ). Note that, in the case N = 1, these definitions of spectrum and eigenvalues of A− λI
yield what we usually call the spectrum and eigenvalues of A. The new point of view is that the
spectrum is now attributed to the (polynomial) function of C into L(H) defined putting

G(λ) = A− B(λ). (13)

In the case H = C, the spectrum so defined consists very simply of the zeroes of the polynomial
G itself. Now recall (see e.g., [14] or [15]) that, if A is compact, self-adjoint and nonnegative, then:

• The spectrum of A is at most countable and consists of a finite or infinite decreasing sequence of
non-negative eigenvalues (λn):

λ1 ≥ λ2 ≥ . . . λk ≥ . . . ...

If the sequence is infinite, then λn → 0.
• The eigenvectors (un) associated with the eigenvalues (λn) form an orthonormal basis of H.

Turner first generalizes this to operators as in Equation (12) where A is compact, self-adjoint and
nonegative, Bk is self-adjoint and non-negative for k = 1, . . . , N and A belongs to the Schatten class Cr (i.e.,
its eigenvalues (αi) satisfy the condition ∑i(αi)

r < ∞) for some r < 1
2 . Another basic fact concerning the

spectrum of an operator A as above is the variational characterization of its positive eigenvalues (λn): indeed,

λn = max
x⊥u1,...,un−1

〈Ax, x〉
〈x, x〉 = min

x∈[u1,...,un ]

〈Ax, x〉
〈x, x〉 (14)

= min
V∈Vn−1

max
x⊥V

〈Ax, x〉
〈x, x〉 = max

V∈Vn
min
x∈V

〈Ax, x〉
〈x, x〉 (15)

where V is a vector subspace of H, and Vn denotes the family of all vector subspaces of dimension n.
Turner generalizes the variational principle as follows. For x ∈ H, x 6= 0, let Z(x) be the

unique non-negative zero of the polynomial λ → 〈G(λ)x, x〉 [6]. Note that, in the case N = 1,
as 〈G(λ)x, x〉 = 〈Ax, x〉 − λ〈x, x〉, we have

Z(x) =
〈Ax, x〉
〈x, x〉 (16)

so that the function Z is the usual Rayleigh quotient of A, of which the eigenvalues are extremal values
as shown by Equation (14). Then, under the stated assumptions on A and Bk, if moreover the
eigenvectors of A− B(λ), corresponding to non-negative eigenvalues, form a basis for H, then the
variational principles in Equations (14) and (15) hold replacing 〈Ax, x〉/〈x, x〉 with Z(x).
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Finally, we have by definition of Z(x) that

〈G(Z(x))x, x〉 = 0 for all x ∈ H, x 6= 0 (17)

Results similar to those of Turner, and practically at the same time, were obtained by K.P. Hadeler
in [16,17]. He considered several-parameter dependent operators of the form

A− (λ1B1 + λ2B2 + . . . λN BN)

with Bj bounded self-adjoint for j = 1, . . . , N, and in connection with the variational property of
their eigenvalues introduced the general concept of Rayleigh functional of a matrix function as follows.
Let α → T(α) be a differentiable mapping of the real interval (a, b) to the set Sn of real symmetric
matrices of order n. Then, a Rayleigh functional of T is a continuous real-valued function p on Rn \ {0}
such that p(x) ∈ (a, b) for all x ∈ Rn \ {0} and

• p(cx) = p(x) if c 6= 0
• 〈T(p(x)x, x〉 = 0
• 〈T′(p(x)x, x〉 > 0.

The last is a definiteness condition that can be replaced by 〈T′(p(x)x, x〉 < 0, and is plainly
satisfied in the basic case T(α) = A− αI, where T′(α) = −I. Thus, looking at Equations (16) and (17),
we see that this is a sensible extension of the definition and properties of the Rayleigh quotient.

The results of Turner and Hadeler indicated above were developed and improved by, among
others, H. Langer. For instance, in [18], studying combinations T(λ) of bounded self-adjoint operators
of the form of Equation (12) considered by Turner, he assumed that, for each nonzero vector x, the
polynomial px(L) ≡ 〈T(λ)x, x〉 has only real roots

λ1(x) ≥ λ2(x) ≥ · · · ≥ λn(x)

Under this assumption he showed that the ranges Λi of the functions λi are intervals, called
spectral zones, whose interiors do not overlap.

A systematization of the spectral theory (that is, of the properties of eigenvalues and eigenvectors)
of polynomial operator pencils, as had been named the families

A(λ) = A0 + λA1 + . . . λn An (18)

where λ ∈ C is a spectral parameter, and Ai, i = 1, . . . , n, are linear operators in a Hilbert space,
was given by A.S. Markus in his book [19]. Among others, he considered in depth the problem
of the factorization of pencils, which in the simplest case consists in representing a quadratic pencil
A(λ) = λ2 I + λB + C in the form

A(λ) = (λI −Y)(λI − Z).

The importance of many results in [19] is due to the fact that they hold for the more general case
of holomorphic (i.e., analytic) operator-valued functions, namely operators A(λ) expressed as the sum
of convergent power series in L(E):

A(λ) =
∞

∑
0

λn An. (19)

For an updated reference reviewing the spectral properties of self-adjoint analytic operator
functions, and in particular the factorization problem, see [10]. On the other hand, for further work on
the variational characterization of eigenvalues as well as for the development of the theory of Rayleigh
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functionals, the interested reader can look for instance into the quite recent papers by Binding, Eschwé
and Langer [20], Hasanov [21], Voss [22], and Schwetlick and Schreiber [23], and the references therein.

Let us now add some more specific indication for the case in which E = Km, so that the function
G appearing in Equation (3) takes its values in the space Km×m of m× m real or complex matrices.
We shall stress the finite-dimensionality of the ambient space E using the letter M rather than G, and
often the letter v rather than x for the vectors of E. A well known reference book for the matter is the
one by Gohberg, Lancaster and Rodman [24], and the very Introduction to this book explains to us
that problems of the form

M(λ)v = 0, λ ∈ C, v ∈ Cm, v 6= 0 (20)

where M(λ) ∈ Cm×m appear naturally when dealing with linear systems of higher order ordinary
differential equations (ODE) with constant coefficients:

dnu
dtn + An−1

dn−1u
dtn−1 + · · ·+ A1

du
dt

+ A0u = 0 (21)

where Ai ∈ Cm×m for i = 0, 1, . . . , n− 1. Indeed, looking for solutions of the form u(t) = eλtv (λ ∈
C, v ∈ Cm) of Equation (21) leads to the equation

eλt{λn + λn−1 An−1 + · · ·+ λA1 + A0}v = 0 (22)

which—as long as v 6= 0, and putting An = I—is equivalent to Equation (20) with

M(λ) =
n

∑
i=0

λi Ai. (23)

Thus, eλ0tv0 is a nontrivial solution of Equation (21) if and only if λ0 is an eigenvalue of Equation (20),
i.e., it is a zero of the characteristic equation

det M(λ) = 0 (24)

and v0 ∈ Ker M(λ0). More generally, the function

u(t) = eλ0t{ tk

k!
v0 + · · ·+

t
1!

vk−1 + vk} (25)

is a solution of Equation (21) if and only if the vectors v0, v1, . . . , vk satisfy the relations

l

∑
j=0

1
j!

dj M
dλj (λ0)vl−j = 0, l = 0, 1, . . . , k. (26)

Such a set of vectors v0, v1, . . . vk is called a Jordan chain of length k + 1 for the matrix function
M(λ), corresponding to the eigenvalue λ0 and starting with the eigenvector v0. The above definitions
extend from matrix polynomials as in Equation (23) to any analytic matrix function M(λ). It is good to
see the explicit form of Equation (26), which is

l = 0 : M(λ0)v0 = 0
l = 1 : M(λ0)v1 +

1
1!

dM
dλ (λ0)v0 = 0

l = 2 : M(λ0)v2 +
1
1!

dM
dλ (λ0)v1 +

1
2!

d2 M
dλ2 (λ0)v0 = 0

. . .
l = k : M(λ0)vk +

1
1!

dM
dλ (λ0)vk−1 + · · ·+ 1

k!
dk M
dλk (λ0)v0 = 0.

(27)
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If n = 1 in Equation (23), we have M(λ) = λA1 + A0; and if moreover A1 = −I, then M(λ) =

A0− λI. In this case, dM
dλ (λ0) = −I, while dj M

dλj (λ0) = 0 for all j > 1, so that the above equalities reduce
to (putting A0 = A) 

(A− λ0 I)v0 = 0
(A− λ0 I)v1 = v0

. . .
(A− λ0 I)vk = vk−1

(28)

and are those defining an ordinary Jordan chain for the matrix A corresponding to λ0 and v0, used to
represent A in its Jordan canonical form and in particular to construct a basis of the generalized eigenspace
Eλ0(A) associated with λ0. We recall that this is defined as

Eλ0(A) = Ker((A− λ0 I)p) (29)

where p is the least integer such that Ker((A− λ0 I)p) = Ker((A− λ0 I)p+1), and that the dimension
dim Eλ0(A) of Eλ0(A) is equal to the algebraic multiplicity of λ0, that is, the multiplicity of the eigenvalue
as a zero of the characteristic polynomial det(A − λI). We say that λ0 is semisimple if p = 1
in Equation (29)—that is, if the algebraic multiplicity coincides with the geometric multiplicity of
λ0, defined as dim Ker(A− λ0 I)—and that λ0 is simple if they are both equal to 1.

These familiar concepts from Linear Algebra, concerning the basic case M(λ) = A0 − λI, need
to be extended to analytic matrix functions M(λ). To this purpose, we quote from [25]; see also ([26],
Chapter 7).

• Let x0 be an eigenvector corresponding to an eigenvalue λ0. The maximal length of a Jordan chain
starting at x0 is called the multiplicity of x0 and denoted by m(x0). An eigenvalue λ0 is said to be
normal if it is an isolated eigenvalue and the multiplicity of each corresponding eigenvector is finite.

• Suppose that λ0 is a normal eigenvalue. Then, a corresponding canonical system of Jordan chains

xk
0, xk

1, . . . , xk
mk−1 (k = 1, . . . , N)

is defined by the following rules:

(1) The vectors x1
0, . . . , xN

0 form a basis of Ker M(λ0) (and so N = dim Ker M(λ0)).
(2) x1

0, x1
1, . . . , x1

m1−1 is a Jordan chain of the maximal length m1 ≡ m(x1
0).

(3) Once that the vectors x1
0, x2

0, . . . , xk−1
0 (1 ≤ k < N) have been chosen, then pick an eigenvector

xk
0 linearly independent from x1

0, x2
0, . . . , xk−1

0 and form a Jordan chain xk
0, xk

1, . . . , xk
mk−1 of the

maximal length mk ≡ m(xk
0).

• A canonical system is not defined uniquely; however, the numbers m1, m2, . . . , mN do not depend
on the choice of Jordan chains and are called partial multiplicities of the eigenvalue λ0. The number
Q(λ0) ≡ m1 + · · ·+ mN is the algebraic multiplicity of the eigenvalue λ0.

The next statement—which is based on results found in [27]—proves that these definitions are a
coherent generalization of the usual ones.

Proposition 1. An eigenvalue λ0 is a zero of det M(λ) of multiplicity Q(λ0).

Based on Proposition 1, the definitions of simple and semisimple eigenvalue carry over to the
case of matrix polynomials and more generally to analytic matrix functions. For instance, one may
check that the matrix function

M2(λ) =

(
λ− 1 + e−λ 0

0 λ + 1

)
(30)
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considered in [8] has λ0 = 0 as a double (i.e., of algebraic multiplicity 2), nonsemisimple (i.e., of
geometric multiplicity 1) eigenvalue, with Jordan chain

H0 =

(
1
0

)
, H1 =

(
α

0

)
(31)

for any α ∈ R. This example also shows that in the nonlinear case, generalized eigenvectors do not need to
be linearly independent. Indeed, in the construction (and notation) recalled above, the generating vectors
x1

0, . . . , xN
0 of the system of Jordan chain are chosen to be linearly independent, but it is not necessarily so

for the vectors in each corresponding chain, generated by the rules given by the system in Equation (27).
An especially important source for the study of NLEVP are the Delay Differential Equations

(DDE), or systems of them. For instance, in [26] is considered the so-called Wright equation

x′(t) = −αx(t− 1)[1 + x(t)] (32)

where α > 0. The objective is to determine the periodic orbits (if any) of Equation (32). To do this, one
must first look at the linearized equation of Equation (32) near x ≡ 0, which is

x′(t) = −αx(t− 1) (33)

Solutions eλt of this exist iff λ satisfies the characteristic equation

λeλ + α = 0 (34)

For α = π/2, this has λ = i π
2 as a simple purely imaginary root, corresponding to the periodic

solution ei π
2 t. Studying the properties of these nonlinear eigenvalues, that is of the roots λ(α) of

Equation (34) as a function of α, and using deep topological and functional-analytic results from [26],
it is possible to demonstrate that Equation (32) has a Hopf bifurcation at α = π/2, and that for every
α > π/2 Equation (32) has a nonconstant periodic solution with period close to 4. Finally, the authors
show that for p > 4, there is a periodic solution of Equation (32) of period p.

One can also consider systems of DDE, for instance

x′(t) =

(
1 0
0 −1

)
x(t) +

(
−1 0
0 0

)
x(t− 1)

whose characteristic matrix is precisely that displayed in Equation (30). The general form of a system of
N delay differential equations, with delays τ1, . . . , τN is

x′(t) = A0x(t) +
N

∑
i=1

Aix(t− τi) (35)

with A0, Ai ∈ CN×N , and the corresponding characteristic matrix is

M(λ) = λI − A0 −
N

∑
i=1

Aie−λτi .

More general forms of Equation (35) are considered in Section 3.

2.2. Problems of Type K: Nonlinear Operators and Bifurcation

Throughout this Section E will be a real Banach space, of finite or infinite dimension. Originally,
bifurcation theory deals with the local study of Equation (1) near a point (λ0, 0) ∈ R× E, and studies
precisely the conditions under which from the given point (λ0, 0) of the line R × {0} ⊂ R × E
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of the trivial solutions of Equation (1), there bifurcates a branch of nontrivial solutions, that is, of
solutions (λ, x) with x 6= 0. Of course, the basic situation that comes to one’s mind is the case
F(λ, x) = Ax− λx, with λ0 an eigenvalue of the linear operator A, the “branch” being here the special
subset {λ0} × (Ker(A− λ0 I) \ {0}) of R× E. The interesting case is when F depends in a less obvious
way from λ and x; an easy example of what we mean is given for instance by the equation

F(λ, x) ≡ ax + bx3 − λx = 0, (λ, x) ∈ R2

in which the parabola λ = a + bx2 bifurcates at the point (a, 0) from the line of the trivial solutions.
For a motivating introduction to the theory, and a discussion of some important physical problems
that fall in this context, an excellent source is the old review paper by Stackgold [28].

The previous “naif” idea of bifurcation needs to be made both more precise and more general,
and this is done by saying that (λ0, 0) is a bifurcation point for Equation (1) if any neighborhood of (λ0, 0)
in R× E contains nontrivial solutions of Equation (1). For this definition to make sense, it is enough
that F be defined in an open set U ⊂ R× E with (λ0, 0) ∈ U, and this is what we assume from now
on. For the next step, we further assume that F is differentiable at the point (λ0, 0), so that F can be
linearized near that point as

F(λ, x) = F(λ0, 0) + DλF(λ0, 0)(λ− λ0) + DxF(λ0, 0)x + R(λ, x) = DxF(λ0, 0)x + R(λ, x) (36)

where the remainder term R satisfies

R(λ, x) = o(‖(λ, x)‖) as (λ, x)→ (λ0, 0).

Some more regularity on F yields immediately a necessary condition for bifurcation:

Theorem 1. Suppose that F is of class C1 in a neighborhood of (λ0, 0). If DxF(λ0, 0) is a homeomorphism of E
onto itself, then (λ0, 0) cannot be a bifurcation point for Equation (1).

Proof. The assumption implies, via the Implicit Function Theorem, that there is a neighborhood I ×V
of (λ0, 0) such that, for any λ ∈ I, there is a unique x = x(λ) ∈ V such that F(λ, x) = 0. As by
assumption F(λ, 0) = 0 for any λ, we must have x(λ) = 0 for λ ∈ I, so that there is no nontrivial
solution to Equation (1) in the neighborhood I ×V of (λ0, 0).

For simplicity, we shall henceforth consider only the special case

F(λ, x) = A(x)− λx (37)

where A(0) = 0 and A is of class C1 near x = 0. Here, DxF(λ0, 0) = A′(0)− λ0 I, and we have a more
explicit form of the remainder term in the linearized form in Equation (36) of F: for we can write
A(x) = A′(0)x + B(x) with B(x) = o(‖x‖) as ‖x‖ → 0, so that Equation (37) yields

F(λ, x) = A′(0)x + B(x)− λx

= (A′(0)− λ0 I)x + B(x)− (λ− λ0)x

and comparing this with Equation (36) we see that R(λ, x) = B(x)− (λ− λ0)x in this special case.
Resuming, the equation we want to study is

A(x)− λx = 0 (38)

with A(0) = 0 and A of class C1 near x = 0, and can be written as

Tx− λ0x + B(x) = (λ− λ0)x (39)
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where T ≡ A′(0) and B(x) = o(‖x‖) as ‖x‖ → 0. The necessary condition for bifurcation implicitly
stated in Theorem 1 can now be rephrased as follows:

(λ0, 0) bifurcation point of A(x)− λx = 0 ⇒ λ0 ∈ σ(A′(0)).

The standard case considered in the literature is when λ0 is in the point spectrum of A′(0), and
we formalize this more precisely under the form of a basic assumption, which is plainly satisfied if
dim E < ∞:

H0. λ0 is an isolated eigenvalue of T ≡ A′(0) and T− λ0 I is a Fredholm operator of index zero.

Let us recall (see, e.g., [14]) that a bounded linear operator L between two Banach spaces E and F is
said to be a Fredholm operator if its nullspace Ker L has finite dimension and its range Im L is closed
and has finite codimension; in this case, the index of L, ind L, is defined as

ind L = dim Ker L− codim Im L.

Thus, if dim E = dim F < ∞, then any linear operator is Fredholm of index zero. From the
Riesz–Schauder theory of such operators (see e.g., [15]), it is known that also the nullspaces Ker Lj

(j > 1) are finitedimensional, and that they stabilize for j sufficiently large; with reference to the case
L = T− λ0 I, this means that there exists a least integer p such that Ker(T− λ0 I)p = Ker(T− λ0 I)p+1,
and moreover one has

E = Ker(T − λ0 I)p ⊕ Im(T − λ0 I)p.

It follows in particular that the algebraic multiplicity of λ0 is finite, where in general this is is
defined—consistently with the definition recalled in Section 2.1 for the case dim E < ∞—as the
dimension of the subspace

∞⋃
j=1

Ker(T − λ0 I)j.

In the following, when speaking of multiplicity of an eigenvalue, we refer to the algebraic
multiplicity. We recall that this coincides with the geometric multiplicity dim Ker(T − λ0 I) when
T is a self-adjoint operator in a Hilbert space.

Remark 1. The assumption H0 alone is not sufficient to guarantee that an eigenvalue of the “linear part" T of
A at 0 is a bifurcation point for A. To see this, consider the example ([29], Chapter 11) given by the system{

x + y3 = λx
y− x3 = λy.

(40)

Here, E = R2 and we have (in our notations) T = I, λ0 = 1 and B(x, y) = (y3,−x3). Multiplying the first
equation by y, the second by x and subtracting the second from the first, we obtain x4 + y4 = 0, showing
that Equation (40) has no nontrivial solution whatsoever. One way of seeing this is that the two-dimensional
eigenspace associated with λ0 is completely destroyed by the addition of the perturbing term B.

Three typical situations are then considered, each of them guaranteeing bifurcation from λ0, and
described by the following assumptions, respectively:

H1. λ0 is a simple eigenvalue of A′(0).

H2. A is compact and λ0 6= 0 is an eigenvalue of odd multiplicity of A′(0).

H3. A is a gradient operator in a Hilbert space and λ0 is an isolated eigenvalue of finite multiplicity of A′(0).
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These assumptions call immediately for some explanation. In fact, it could be noted at once that
both H2 and H3 are a strengthening of H0. However, to proceed with some order, in the remaining
part of this subsection, we shall give a precise statement for each of the three bifurcation results roughly
indicated above, preceded by a comment on the respective assumption, and followed by an indication
of the proof.

Thus, starting with H2, we recall that, if A is compact, then the linear operator A′(0) is a compact,
too [30]. Therefore H0 is redundant in this case, as it is a basic spectral property of any such operator [14].

Theorem 2. If H2 is satisfied, then λ0 is a bifurcation point for Equation (38). Moreover, it is a global
bifurcation point in the following sense: if S denotes the closure in R× E of the set of nontrivial solutions
of Equation (38), then S ∪ {(λ0, 0)} has a connected subset Sλ0 containing {(λ0, 0)}, and which is either
unbounded in R× E or contains a point {(λ1, 0)} with λ1 an eigenvalue of odd multiplicity of T.

Proof. The proof relies on the Leray–Schauder degree. Roughly speaking, this is a topological tool to
detect the fixed points of a compact map and can be briefly introduced as follows (see, for instance, [3]
(Part I) for a complete presentation). Suppose we have a continuous compact map C of E into itself, a
bounded open set Ω ⊂ E with 0 ∈ Ω, and suppose that C(x) 6= x for x ∈ ∂Ω. Then, there exists an
integer, denoted d(I − C, Ω, 0) and called the (Leray–Schauder) degree of I − C relative to the set Ω and
to the point 0, having the following properties:

(i) If d(I − C, Ω, 0) 6= 0, then there exists an x ∈ Ω such that x = C(x).
(ii) d(I, Ω, 0) = 1.
(iii) If Ω0 ⊂ Ω and I − C has no zeroes in Ω \Ω0, then d(I − C, Ω, 0) = d(I − C, Ω0, 0).
(iv) Suppose C1, C2 : E→ E are compact maps, and put

H(t, x) = x− [C1(x)− t(C2(x)− C1(x)], t ∈ [0, 1], x ∈ E

If H(t, x) 6= 0 for t ∈ [0, 1] and x ∈ ∂Ω, then

d(I − C1, Ω, 0) = d(I − C2, Ω, 0).

(v) If C is a linear compact map and I − C is injective, then

d(I − C, Ω, 0) = (−1)ν

where ν is the number of eigenvalues >1 of C, each counted with its algebraic multiplicity.

To prove that λ0 is a bifurcation point, it is enough to show that for any sufficiently small r > 0,
there exists a solution (λr, xr) of Equation (38) with λr ∈ [λ0 − r, λ0 + r] and ‖xr‖ = r. Thus, let
Br = {x ∈ E : ‖xr‖ < r} be the open ball centered at x = 0 and with radius r; we consider the degree
of various maps with respect to this neighborhood of 0. Precisely, assume for instance λ0 > 0 and
write A(x)− λx = −λ(x− µA(x)), µ = 1/λ, for λ near λ0. Consider thus the equivalent equation

x− µA(x) = 0 (41)

and let µ vary in an interval [µ, µ] containing as interior point µ0 = 1/λ0 and no other characteristic
values (as are named the reciprocals of the nonzero eigenvalues) of T ≡ A′(0) except µ0. Assume by
way of contradiction that x− µA(x) 6= 0 for ‖x‖ = r and µ ∈ [µ, µ]; then using the Homotopy invariance
Property (iv) with C1 = µA, C2 = µA we would have

d(I − µA, Br, 0) = d(I − µA, Br, 0). (42)
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On the other hand, for small r > 0, using again Property (iv) we have

d(I − µA, Br, 0) = d(I − µT, Br, 0) (43)

because I − µA is homotopic to I − µT on ∂Br; indeed, since the latter operator is a homeomorphism
and since B(x) = o(‖x‖) as ‖x‖ → 0, we have (diminishing r if necessary)

‖x− µ(Tx + tB(x))‖ ≥ ‖x− µTx‖ − ‖µtB(x)‖ ≥ k‖x‖

for some k > 0 and for all (t, x) ∈ [0, 1]× Br. Similarly,

d(I − µA, Br, 0) = d(I − µT, Br, 0). (44)

However, using Property (v), we have

d(I − µT, Br, 0) = (−1)ν, d(I − µT, Br, 0) = (−1)ν (45)

where ν = ν + h, h an odd integer (the algebraic multiplicity of λ0); therefore the two degrees in
Equation (45) are different, contradicting the previous equalities in Equations (42)–(44). This proves
that xr − µr A(xr) = 0 for some xr ∈ ∂Br and some µr ∈ [µ, µ], and therefore that there is bifurcation
from (µ0, 0) for the Equation (41), or equivalently from (λ0, 0) for Equation (38). The proof that under
the stated assumptions the bifurcation has a global character, in the sense described by the statement of
Theorem 2, requires the much deeper topological analysis performed by P.H. Rabinowitz in his famous
paper [31].

We now go on to comment assumption H3, and to briefly discuss the corresponding bifurcation
result. For the next definition, and the statements following it, see for instance [2] or [30].

Definition 1. Let H be a real Hilbert space with scalar product denoted 〈.〉. An operator A : H → H is said to
be a gradient (or potential) operator if there exists a differentiable functional a : H → R such that

〈A(x), y〉 = a′(x)y for all x, y ∈ H. (46)

One then writes A = ∇a; the functional a—the potential of A—is uniquely determined by the
requirement that a(0) = 0, and is explicitly given by the formula

a(x) =
∫ 1

0
〈A(tx), x〉 dt. (47)

A bounded linear operator is a gradient if and only if it is self-adjoint. Moreover, if a gradient
operator A is differentiable at a point x0, then A′(x0) is self-adjoint.

Theorem 3. If H3 is satisfied, then λ0 is a bifurcation point of Equation (38). Moreover, for each r > 0
sufficiently small, Equation (38) has at least two distinct solutions (λr, xr) such that ‖xr‖ = r.

Proof. The proof makes use of the Lyapunov–Schmidt method (see, for instance, ([3], Chapter 2)
or ([29]), Chapter 11) which allows to reduce the infinite-dimensional problem in Equation (38) to a
problem in the finite-dimensional space Ker(T− λ0I). Indeed, consider the equivalent form Equation (39)
of Equation (38), and rewrite it as

Lx + B(x) = δx (48)

where L = T − λ0 I and δ = λ− λ0. Now recalling that T = A′(0), the assumption H3 implies that H
is the orthogonal sum

H = Ker L⊕ Im L. (49)
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Then, letting P, Q denote the orthogonal projections of H onto Ker L and Im L, respectively, we have

x = Px + Qx ≡ v + w (50)

and using this in Equation (48), we obtain the equivalent system

PB(v + w) = δv (51)

Lw + QB(v + w) = δw. (52)

The restriction L|Im L of L to Im L is a homeomorphism of Im L onto itself. A standard application
of the Implicit Function Theorem, together with the condition B(x) = o(‖x‖) as ‖x‖ → 0, then allows
to solve the complementary equation, Equation (52) in the form

w = w(δ, v) (53)

with w(0, 0) = 0, where δ and v belong to suitably small neighborhoods J and V of δ = 0 and v = 0,
respectively in R and in Ker L. Replacing this in Equation (51) first yields

〈PB(v + w(δ, v)), v〉 = δ‖v‖2 (54)

whence, applying once more the Implicit Function Theorem, one can recover δ as a function of v,

δ = δ(v), δ(0) = 0, (55)

for v in a neighborhood V0 ⊂ V of 0 in Ker L. Finally, putting

φ(v) = w(δ(v), v), v ∈ V0 (56)

and replacing this in Equation (51), one is left with the finite-dimensional equation (the bifurcation equation)

F0(v) ≡ PB(v + φ(v)) = δ(v)v. (57)

Any solution v ∈ V0, v 6= 0, of this equation will give rise to a solution (δ, x), x 6= 0,

(δ, x) = (δ(v), v + φ(v))

of the original Equation (48), and the continuity (in fact, C1 regularity) of the maps δ = δ(v), w =

w(δ, v) will ensure that this solution (δ, x) stays into a given small neighborhood of (0, 0) in R× H
provided that v is small enough. Thus, proving bifurcation from λ0 for Equation (38)—or equivalently,
bifurcation from δ = 0 for Equation (48)—reduces to prove that Equation (57) has solutions v 6= 0 of
arbitrarily small norm.

Remark 2. The Lyapunov–Schmidt reduction can be applied more generally, and with minor modifications, in
a Banach space E whenever the basic assumption H0 (i.e., that L = T − λ0 I is Freholm of index zero) holds and
is supplemented by the transversality condition

Ker L ∩ Im L = {0} (58)

which is plainly satisfied when T is self-adjoint, as the two subspaces in Equation (58) are then orthogonal.
Note that Equation (58) is in general equivalent to Ker L = Ker L2, and thus to the fact that the algebraic and
geometric multiplicities of λ0 coincide. H0 and Equation (58) imply the direct decomposition of E into (closed)
subspaces as in Equation (49), and therefore allow for the same reduction on taking for P, Q the (continuous)
projections associated with Equation (49).
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Returning to the proof of Theorem 3, we let now come in the assumption that the whole A, and
therefore also its “nonlinear part” B, is a gradient. Here, we bound ourselves to give the main idea of
the particularly clear demonstration provided by C. Stuart [32]. Thus, let f be such that ∇ f = L + B,
and consider the reduced functional f0 : V0 ⊂ Ker L→ R defined putting

f0(v) ≡ f (v + φ(v)). (59)

Moreover, for small r > 0 put

Mr = {v ∈ V0 : g(v) ≡ ‖v‖2 + ‖φ(v)‖2 = r2}. (60)

Then, Mr is the level set of the C1 functional g, and is compact because it is a closed and bounded
subset of the finite dimensional space Ker L. Thus, f0 attains its minimum and its maximum on Mr,
and if v0 ∈ Mr is such an extremal point we have, by the Lagrange multiplier’s rule,

∇ f0(v0) = λ∇g(v0). (61)

Performing the computations of∇ f0(v0) and∇g(v0) by the definitions in Equations (59) and (60),
and using the fact that w(δ, v) satisfies the complementary equation, Equation (52), one checks that
λ = δ(v0) and that Equation (57) is satisfied.

We finally come to H1. Unlike H2 and H3, in general H1 is independent from H0, and must be
supplemented with it to guarantee bifurcation. Of course, when E is finite dimensional, H0 does not
play any role, and indeed H1 can in this case be viewed as a special case of H2, because any continuous
map is then compact.

Theorem 4. If H0 and H1 are satisfied, then λ0 is a bifurcation point of Equation (38). Moreover, if A is of
class C2 in a neighborhood of x = 0, then near (λ0, 0) the solution set of Equation (38) consists of the trivial
solutions {(λ, 0)} and of a C1 curve

γ(t) = (λ(t), x(t)), t ∈]− δ, δ[

with γ(0) = (λ0, 0) and x(t) 6= 0 for t 6= 0. Finally, if Ker L = [φ], then as t→ 0{
x(t) = tφ + o(|t|)
λ(t) = λ0 + o(1).

(62)

The statement of Theorem 4 means that near (λ0, 0), the solution set of Equation (38) is
topologically equivalent to the “cross”

(]− 1, 1[×{0}) ∪ ({0}×]− 1, 1[).

As to the proof, this goes for a first part along the same lines used to prove the previous Theorem 3,
that is, using the Lyapounov–Schmidt decomposition in the sense indicated in Remark 2. What is
specific here is that, since dim Ker L = 1, one ends with an equation in R; a further nontrivial
application of the Implicit Function Theorem then leads to the result: see, for instance, ([3], Chapter 2).

2.3. A Very Special Nonlinear Problem: The p-Laplace Equation

Let Ω be a bounded open set in Rn, let p > 1, and let E be the Sobolev space W1,p
0 (Ω), equipped

with the norm
‖v‖

W1,p
0

= (
∫

Ω
|∇v|p dx)

1
p . (63)
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That this is actually a norm in W1,p
0 (Ω), equivalent to the standard one of W1,p(Ω), is a

consequence of Poincaré’s inequality (see e.g., [14]), stating that∫
Ω
|v|p dx ≤ C

∫
Ω
|∇v|p dx (64)

for some C > 0 and for all v ∈W1,p
0 (Ω). Let E′ = W−1,p′(Ω) be the dual space of E. A (weak) solution

of the p-Laplace Equation (5) is a function u ∈ E such that

Ap(u) = λBp(u) (65)

where λ = µ−1 (it will soon be clear that µ = 0 is not an eigenvalue of Equation (5)) and Ap, Bp : E→ E′

are defined by duality via the equations

〈Ap(u), v〉 =
∫

Ω
|u|p−2uv dx, 〈Bp(u), v〉 =

∫
Ω
|∇u|p−2∇u∇v dx (66)

where u, v ∈ E and 〈, 〉 denotes the duality pairing between E and E′.
The proof of the existence of countably many eigenvalues and eigenfunctions of Equation (65)

relies on the Lusternik–Schnirelmann (LS) theory of critical points for an even functional on a symmetric
manifold. Complete presentations of this theory, in both finite and infinite dimensional spaces, can
be found, among others, in [3,4,29,33,34]. Theorem 5 below is essentially a simplified version of
Theorem A in [35], save that with respect to [35] we have for expository convenience interchanged the
roles of the operators A and B. Thus, let E be a real, infinite dimensional, uniformly convex Banach
space with dual E′, and consider the problem

A(u) = λB(u) (67)

where A, B : E→ E′ are continuous gradient operators with potentials a, b, respectively: A = ∇a, B =

∇b. Definition 1 of gradient operator extends of course to mappings of E into E′ replacing the scalar
product with the duality pairing.

Suppose that b(u) > 0 for u 6= 0; then, the eigenvectors of Equation (67) satisfying a normalization
condition b(u) = r (r > 0), are precisely the constrained critical points of a on the level set

Mr = {u ∈ E : b(u) = r}.

The additional key assumptions that we make on A and B are as follows:

• A, B are odd (that is, A(−u) = −A(u) for u ∈ E, and similarly for B).
• A is non-negative (that is, 〈A(u), u〉 ≥ 0 for u ∈ E) and strongly sequentially continuous (that is,

if (un) ⊂ E converges weakly to u0 ∈ E, then A(un) converges strongly to A(u0) in E′).
• B is strongly monotone in the following sense: there exist constants k > 0 and p > 1 such that,

for all u, v ∈ E,
〈B(u)− B(v), u− v〉 ≥ k‖u− v‖p. (68)

By the above assumptions on B, Mr is symmetric (that is, u ∈ Mr ⇒ −u ∈ Mr) and sphere-like,
in the sense that each ray through the origin hits Mr in exactly one point. If K ⊂ Mr is compact and
symmetric, then the genus of K, denoted γ(K), is defined as

γ(K) = inf{n ∈ N : there exists a continuous odd map of K into Rn \ {0}}.

If V is a subspace of E with dim V = n, then γ(Mr ∩V) = n. For n ∈ N put

Kn(r) = {K ⊂ Mr : Kcompact and symmetric, γ(K) ≥ n}. (69)
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Theorem 5. Let A, B : E→ E′ be as above. Suppose moreover that a(u) 6= 0 implies A(u) 6= 0. For n ∈ N
and r > 0, put

Cn(r) ≡ sup
Kn(r)

inf
K

a(u) (70)

where Kn(r) is as in Equation (69). Then

sup
Mr

a(u) = C1(r) ≥ · · · ≥ Cn(r) ≥ Cn+1(r) ≥ · · · ≥ 0. (71)

Moreover, Cn(r)→ 0 as n→ ∞, and if Cn(r) > 0 then Cn(r) is attained and is critical value of a on Mr:
thus, there exist un(r) ∈ Mr and λn(r) ∈ R such that

Cn(r) = a(un(r)) (72)

and
A(un(r)) = λn(r)B(un(r)). (73)

Here are a few indications for the Proof of Theorem 5:
(i) The sequence (Cn(r)) is non-decreasing because, for any n ∈ N, we have Kn(r) ⊃ Kn+1(r) as

shown by Equation (69). (ii) In addition, C1(r) = supMr
a(u) because K1(r) contains all sets of the

form {x} ∪ {−x}, x ∈ Mr. (iii) The proof that Cn(r) → 0 as n → ∞, together with a lot of related
information, can be found for instance in [34]. (iv) Finally, the assumption that A(u) 6= 0 whenever
a(u) 6= 0, together with the stated continuity properties of A and B, ensures that a satisfies the crucial
Palais–Smale (PS) condition on Mr at any level C > 0, needed to prove the final (and most important)
assertion of the Theorem via the standard deformation methods of Critical Point Theory; see for this
any of the above cited references.

Of special importance—with reference to the the p-Laplace equation—is the case in which A and B
have the additional property of being positively homogeneous of the same degree p− 1 > 0, meaning
that A(tu) = tp−1A(u) for u ∈ E and t > 0, and similarly for B. In this case, we have from Equation (47)

a(u) =
〈A(u), u〉

p
, b(u) =

〈B(u), u〉
p

(74)

so that a(u) 6= 0 implies A(u) 6= 0. Moreover, the use of Equation (74) in Equations (72) and (73)
yields at once the relation Cn(r) = λn(r)r. In fact, here, λn(r) is independent of r > 0: to see this, it is
convenient to re-parameterize the level sets on putting for R > 0

MR = {u ∈ E : b(u) =
Rp

p
} = {u ∈ E : 〈B(u), u〉 = Rp}.

As a and b are p-homogeneous, it follows that MR = RM1, that each K ∈ Kn(R) is the image of the
corresponding set in Kn(1) under the map u → Ru, and that Cn(R) = RpCn(1). By these remarks,
we thus have the equalities

λn(R)
Rp

p
= Cn(R) = RpCn(1)

showing as expected that λn(R) is independent of R, and precisely that

λn(R) = pCn(1) = sup
Kn

inf
K
〈A(u), u〉 ≡ λn (75)

where Kn ≡ Kn(1). From Theorem 5, we then get immediately the following statements about λn:

• supM1
〈A(u), u〉 = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ . . . ;

• λn → 0 as n→ ∞; and
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• if λn > 0, then there exists un ∈ M1 (that is, 〈B(un), un〉 = 1) such that Aun = λnB(un); in
particular, λn = 〈A(un), un〉.

Remark 3. The situation just described contains as a more special case that of two linear operators A and
B, in which the above formulae hold with p = 2. Suppose in particular that A acts in a real Hilbert space
H and B = I; then M1 = {u ∈ H : ‖u‖ = 1} is the unit sphere in H, while A is a compact, self-adjoint,
non-negative linear operator (strong sequential continuity and compactness are equivalent properties for a linear
operator acting in a reflexive Banach space, see e.g., [15]). Then, Equation (75) and the statements following this
formula yield a good part of the familiar spectral properties of such operators: indeed it is not hard to see that the
LS variational characterization in Equation (75) of λn reduces in this case to the classical Courant’s minimax
principle expressed by Equation (15), so that the sequence in Equation (75) of the LS eigenvalues of A coincides
with the decreasing sequence of all the eigenvalues of A, each counted with its multiplicity.

Returning finally to the p-Laplacian, it is now a matter of applying the above information to
the operators Ap, Bp defined in Equation (66). One can check (see [36,37], for instance) that they
satisfy all the requirements for the application of Theorem 5. Moreover, they are evidently positively
homogeneous of degree p− 1, and finally Ap is (strictly) positive, for

〈Ap(v), v〉 =
∫

Ω
|v|p dx > 0 for v ∈ E, v 6= 0.

This implies that each of the numbers λn defined in Equation (75) for the pair Ap, Bp is strictly
positive, whence it follows—using the last statement of Theorem 5—that the eigenvalue problem in
Equation (65) for the p-Laplacian possesses an infinite sequence of eigenvalues λn > 0, each given by

λn = sup
Kn

inf
K

∫
Ω
|v|p (n = 1, 2, . . . )

where
Kn = {K ⊂ {v ∈W1,p

0 :
∫

Ω
|∇v|p = 1}, Kcompact and symmetric, γ(K) ≥ n}.

Setting µn = λn
−1, this finally proves the properties of Equation (5) stated in the Introduction,

and in particular Equation (6).

Remark 4. For the very special properties owned by the first eigenvalue µ1 in the sequence in Equation (6) and
by the associated eigenfunctions, see for instance [37]. Anyway, it follows by our discussion that λ1 = µ−1

1 is
the best constant in Poincaré’s inequality, Equation (64):

λ1 = sup
v∈W1,p

0 ,v 6=0

∫
Ω |v|

p∫
Ω |∇v|p

.

To conclude this section, let us remark that the study and research in problems related to the
p−Laplacian has grown enormously in the last decades, and even remaining in the strict context of a
“spectral theory” for Equation (5), one should at least mention the following relevant points: (i) the
problem of the asymptotic distribution of the LS eigenvalues (along the classical Weyl’s law for the
Laplacian); (ii) the question of the existence of other eigenvalues outside the LS sequence; and (iii) the
Fredholm alternative for perturbed non-homogeneous versions of Equation (5). For information on
these issues, we refer the reader to [37–39] and to the recent and very clear review paper [36]. Related
material can be found in [40].
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3. Nonlinear Perturbation of an Isolated Eigenvalue

As a way to introduce and motivate the more specific content of this section, let me start recalling
a famous and beautiful result of F. Rellich in perturbation theory of linear eigenvalue problems:

Theorem 6. ([41], Theorem 1). Let A(ε) be a family of Hermitian n× n matrices depending analytically on
the real parameter ε for ε near 0. Let λ0 be an eigenvalue of multiplicity m > 1 of A = A(0). Then, for ε near
0, A(ε) possesses m eigenvalues

λ1(ε), . . . , λm(ε)

and corresponding orthonormal eigenvectors u1(ε), . . . , um(ε); that is, for all sufficiently small ε, we have

A(ε)ui(ε) = λi(ε)ui(ε) (i = 1, . . . , m). (76)

Moreover, λi(0) = λ0 for all i = 1, . . . , m and the functions λi and ui depend analytically on ε near ε = 0.

As is well known, the “ideal" situation described by Theorem 6 for the splitting of the multiple
eigenvalue does not hold in general. In Rellich’s words, “...our question about the eigenvalues reduces
to asking whether or not the zeroes of a polynomial [in the case, the characteristic polynomial of a
matrix whose elements depend analytically on a parameter ε] are themselves regular analytic functions
of ε for small ε. In general the answer is no; a counterexample is λ2 + ε. What is true is that if λ = λ(0)
is a zero for ε = 0, then the zero λ(ε) can be written as a convergent (for small ε) power series in ε

1
h

(Puiseux series) where h is the multiplicity of λ = λ(0).” The example indicated by Rellich can be
displayed as

A(ε) ≡
(

0 1
−ε 0

)
=

(
0 1
0 0

)
+ ε

(
0 0
−1 0

)
≡ A + εB (77)

and shows the unperturbed eigenvalue λ0 = 0 of A, of multiplicity h = 2, splitting into the two simple
eigenvalues λ(ε) = ±(−ε)

1
2 of A(ε). In general, if λ0 has multiplicity h, the perturbed eigenvalue(s)

λ(ε) will admit an expansion such as

λ(ε) = λ0 + ε
1
h λ1 + ε

2
h λ2 + · · ·+ ελh + · · · = λ0 +

∞

∑
i=1

ε
i
m λi (78)

For the special case that A(ε) is Hermitian, using the reality of λ(ε) Rellich showed in [41]
that only integral powers of ε can have non-zero coefficients in the expansion of Equation (78), thus
proving the analytic dependence on ε of the perturbed eigenvalues as stated in Theorem 6. Rellich’s
work was a main starting point for the very vast literature concerning the systematic analysis of the
perturbation of eigenvalues of linear operators, both in finite and infinite dimensional spaces; see
Kato’s book [7] and the references therein. Our aim in this section is to indicate some partial results
about similar questions for nonlinear eigenvalue problems, both of type G and of type K, recently
appearing in [8,9], respectively.

3.1. A Perturbation Problem of Type G

In the paper [8], the authors study the splitting of a multiple eigenvalue of the nonlinear eigenvalue
problem, depending on the real parameter ε,

M(λ; ε)v = 0, λ ∈ C, v ∈ Cn, v 6= 0. (79)

Here, M(λ; ε) is an n× n complex matrix having an eigenvalue λ0 for ε = 0 (i.e., detM(λ0; 0) = 0).
As in the linear case, a perturbation theory for the eigenvalue λ0 consists in the study of the eigenvalues
of Equation (79)—and of the corresponding eigenvectors—in the vicinity of λ0, and will focus precisely
on the behaviour of such eigenvalues/eigenvectors as functions λ(ε), v(ε) of the parameter ε for ε
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near 0; one assumes to know the solutions of Equation (79) for ε = 0, i.e., to know the nullspace of
M(λ0; 0). In the linear case, we have

M(λ; ε) = A(ε)− λI

for some assigned function A of ε into Cn×n, and Rellich’s theorem can be rephrased on saying that if
this function is analytic and with Hermitian values, and if

dim Ker(A(0)− λ0 I) = m

then there exist m pairs of analytic functions λi(ε), ui(ε) such that λi(0) = λ0, ui(0) ∈ Ker(A(0)− λ0 I),
each pair satisfying identically Equation (76) for ε near 0.

For the study of Equation (79), it is assumed that M(λ; ε) depends regularly on λ and ε in the
following sense: there exists an open set Ω ⊂ C containing λ0, and an open interval I ⊂ R containing
zero, such that for all ε ∈ I the entries of M are analytic functions of λ in Ω, and for all λ ∈ Ω the
entries of M are smooth functions of ε in I. In the first part of [8], the authors develop previous work
on the subject and consider the case in which the geometric multiplicity of λ0 (that is, the dimension
of the nullspace of M(λ0, 0)) is one, while its algebraic multiplicity (that is, the multiplicity of λ as a
root of the characteristic equation detM(λ; 0) = 0) is m > 1. Thus, λ0 in a multiple, nonsemisimple
eigenvalue of M for ε = 0. The following notations are used in the sequel:

Mε ≡
∂M
∂ε

(λ0, 0); Mλ ≡
∂M
∂λ

(λ0, 0); Mλλ ≡
∂2M
∂λ2 (λ0, 0); . . . Mλm ≡ ∂m M

∂λm (λ0, 0).

Theorem 7. [8]. Let λ0 be an eigenvalue of Equation (79) for ε = 0, with algebraic multiplicity equal to m
and geometric multiplicity one, with Jordan chain (H0, ..., Hm−1). Let U0 be the corresponding left eigenvector.
Assume that the condition U∗0 Mε H0 6= 0 holds. Then, around ε = 0, the eigenvalues in the vicinity of λ0 can
be expanded as the branches of the Puiseux series in Equation (78), where

λm
1 = −

U∗0 MεH0

U∗0 (
1
1! Mλ Hm−1 +

1
2! MλλHm−2 + · · ·+ 1

m! Mλm H0)
. (80)

Remark 5. In the classical terminology of Numerical Analysis (see e.g., ([42], p. 137), a (column) vector
U ∈ Cn = Cn×1 is a left eigenvector of a matrix M if U∗M = 0, where U∗ denotes the transpose of the
conjugate. “Starring both sides”, this is equivalent to M∗U = 0, that is U is a (“right”) eigenvector of the
adjoint matrix M∗. With the same notations, for the scalar product in Cn we have

〈x, y〉 =
n

∑
i=1

xiyi = y∗x

(the last product being the matrix product between y∗ ∈ C1×n and x ∈ Cn×1), and therefore Equation (80) reads

λm
1 = −〈MεH0, U0〉

〈Z, U0〉

with Z = ( 1
1! Mλ Hm−1 +

1
2! MλλHm−2 + · · ·+ 1

m! Mλm H0).

To some extent, the proof of Theorem 7 relies on previous work by Lancaster et al. [25,43] on the
perturbation of analytic matrix functions. To indicate the main idea followed to obtain Equation (80),
consider that by definition the perturbed λ(ε), v(ε) have to satisfy for all ε the condition

M(λ(ε), ε)v(ε) = 0. (81)
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Now use the Taylor expansion of M(λ, ε) around (λ0, 0),

M(λ, ε) = M(λ0, 0) + Mεε +
1
1!

Mλ(λ− λ0) +
1
2!

Mλλ(λ− λ0)
2 + . . .

and replace λ with the expansion of Equation (78) for λ(ε). Using a similar expansion for v(ε),

v(ε) = V0 +
∞

∑
i=1

ε
i
m Vi

starting with an eigenvector V0 associated with λ0, and putting all this in Equation (81) yields (equalling
to zero the coefficients of the increasing powers of ε

1
m ) m + 1 recursive equations that contain the

elements of a Jordan chain built upon the unknown vectors V1, . . . , Vm. Solving these equations with
the help of a technical lemma (Lemma 2.1 in [8]) that relates all possible Jordan chains corresponding to
the same eigenvalue, one returns to the original chain (H0, ..., Hm−1) and finally obtains Equation (80).

Example 1. [8]. Consider the perturbed matrix

M2(λ, ε) =

(
λ− 1 + e−λ + ε 0

0 λ + 1 + ε

)
(82)

that for ε = 0 reduces to Equation (30). For the unperturbed eigenvalue λ0 = 0, in addition to the Jordan chain in
Equation (31), one has

U0 =

(
1
0

)
, Mε = I, Mλ =

(
0 0
0 1

)
, Mλλ =

(
1 0
0 0

)
. (83)

Substituting these values in Equation (80), one obtains

λ1 =
√
−2.

In the second part of [8], the authors consider general linear functional differential equations of
the form

x′(t) =
∫ 0

−τmax
dµ(θ)x(t + θ), x(t) ∈ Cn (84)

where µ : [−τmax, 0] → Cn×n is a function of bounded variation such that µ(0) = 0. We refer to
Chapter 7 of [26] for a thorough discussion of this kind of problems. Note that Equation (84) contains
as special cases both equations with discrete delay and equations with continuous delay: indeed,
Equation (84) takes the form of Equation (35) if one lets

0 = τ0 < τ1 < · · · < τk ≤ τmax

and defines µ : [−τmax, 0]→ Cn×n as follows:
µ(0) = 0
µ(θ) = −∑k

i=0,−τi>θ Ai, θ ∈ (−τmax, 0)
µ(−τmax) = −∑k

i=0 Ai.
(85)

On the other hand, taking in Equation (84) µ(θ) = −
∫ 0

θ A(s) ds for θ ∈ [−τmax, 0], with A a
continuous function from [−τmax, 0] to Cn×n, yields the system with distributed delay

x′(t) =
∫ 0

−τmax
A(θ)x(t + θ)dθ.
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The relation of Equation (84) with Equation (79) is as follows: looking for solutions x(t) =

eλtv (v ∈ Cn) of Equation (84) yields the equation

λv =
∫ 0

−τmax
dµ(θ)eλθv ≡ N(λ)v (86)

that is a non-parametric form of Equation (79) with M(λ) = λI − N(λ). The authors then consider the
infinite-dimensional vector space X = Cn × L2([−τmax, 0],Cn) and a suitably defined linear operator
A acting in X and having the property that Equation (84) can be rewritten as the abstract ordinary
differential equation z′(t) = Az(t) in X. Moreover, λ0 is an eigenvalue of the nonlinear eigenvalue
problem in Equation (86) if and only if it is an eigenvalue of the linear operator A, and in Theorem 3.1
of [8] it is shown how to build an (ordinary) Jordan chain for A corresponding to λ0 starting from a
Jordan chain for λ0 as an eigenvalue of the NLEVP in Equation (86), and vice versa; for this matter,
see also ([26], Chapter 7, Theorem 4.2). Further exploiting this functional-analytic point of view, the
authors are then able to deal with parameter-dependent forms of Equation (84)—that is, with functions
µ = µ(θ, ε)—and to reformulate the sensitivity formula in Equation (80) for the eigenvalues λε of the
perturbed matrix N(λ; ε), corresponding to µ = µ(θ, ε) as in Equation (86), in terms of eigenvectors
and generalized eigenvectors of the linear operator A(ε) acting in X. This produces a more readable
formula, given in Theorem 3.2 of [8], for the coefficient λ1 of the leading term in the expansion in
Equation (78).

The concluding section of [8] shows applications of the theory to some numerical examples,
that deal in particular with a planar time-delay system containing an uncertain delay τ + ε and with a
model problem for spectral abscissa optimization.

3.2. A Perturbation Problem of Type K

In [9] we have considered the following parameter-dependent version of Equation (39),

Tx + εB(x) = λx, x ∈ S (87)

where—as in Section 2.2—T is a self-adjoint bounded linear operator acting in a real Hilbert space H
and having λ0 ∈ R as an isolated eigenvalue of finite multiplicity. In Equation (87), S stands for the unit
sphere in H, so that S∩Ker(T− λ0 I) is the unit sphere in some Rn. As to the nonlinear term B, we shall
soon give precise assumptions, but roughly speaking can say that the ε term appearing before it in
Equation (87) replaces the condition B(x) = o(‖x‖) as ‖x‖ → 0 previously considered for bifurcation
in Equation (39). Indeed, rather than looking for solutions of small norm as in Equation (39), we now
look for normalized eigenvectors of the perturbed eigenvalue problem Tx + εB(x) = λx. Here, is our
result for Equation (87):

Theorem 8. Let T be a self-adjoint bounded linear operator acting in a real Hilbert space H, and having λ0 as
an isolated eigenvalue of finite multiplicity. Suppose that B is a C1 map of H into itself, and suppose moreover
that at least one of the following conditions is satisfied: either

(a) the dimension of the nullspace N ≡ Ker(T − λ0 I) is odd; or
(b) B is a gradient operator.

Then, there exist ε0 > 0, δ0 > 0 such that for any ε ∈ [−ε0, ε0], there exist λε ∈ [λ0− δ0, λ0 + δ0] and xε ∈ S
such that

Txε + εB(xε) = λεxε. (88)

If moreover B is bounded on S, then λε → λ0 as ε→ 0. Finally, if we suppose in addition that B(0) = 0 and
that B is Lipschitz continuous in the unit ball U = {x ∈ H : ‖x‖ ≤ 1} of H, i.e., that there exist k > 0 such that

‖B(x)− B(y)‖ ≤ k‖x− y‖ (89)
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for x, y ∈ U, then putting

C = inf
0<‖v‖≤1,v∈N

〈B(v), v〉
‖v‖2 , D = sup

0<‖v‖≤1,v∈N

〈B(v), v〉
‖v‖2 (90)

the following asymptotic estimate for λε hold as ε→ 0+ :

λ0 + εC + O(ε2) ≤ λε ≤ λ0 + εD + O(ε2). (91)

The same estimate, with reversed inequalities, holds for ε→ 0−.

Remark 6. The bounds in Equation (91) are sharp in the sense that there exist perturbing operators B satisfying
all the assumptions of the Theorem, and perturbed eigenvalues λ+(ε), λ−(ε) of T + εB that satisfy at least one
of the inequalities in Equation (91) with the equality sign. To see this, just consider a linear operator B0 acting
in the finite-dimensional subspace N, and then extend it to all of H on putting B(x) = B0(v) for all x ∈ H,
with v the orthogonal projection of x onto N. If B0 : N → N is taken to be self-adjoint, then it has n eigenvalues
(counting multiplicities) µ1

0 ≤ .... ≤ µn
0 with normalized eigenvectors v1, . . . , vn, say; that is, B0vi = µi

0vi and
‖vi‖ = 1. Then, putting for each i = 1, . . . , n

λε = λ0 + εµi
0, xε = vi

we have n families of eigenvalues/eigenvectors satisfying Equation (87) for all ε ∈ R. We have µi
0 = 〈B0vi, vi〉 =

〈Bvi, vi〉 for each i, and the variational characterization of the eigenvalues of B0 gives in particular

µ1
0 = inf

0<‖v‖≤1,v∈N

〈B(v), v〉
‖v‖2 = C

and similarly µn
0 = D. Therefore taking λ−(ε) = λ0 + εµ1

0 (respectively, λ+(ε) = λ0 + εµn
0 ), the left-hand

side (respectively, the right-hand side) of Equation (91) is satisfied with equality sign and O(ε2) = 0.

The first part of Theorem 8 is proved following the track indicated in Section 2.2, that is performing
the Lyapounov–Schmidt reduction of Equation (87). One non-trivial difference is that here a global
version of the Implicit Function Theorem is employed in order to obtain a mapping

(δ, ε, v)→ w(δ, ε, v)

defined in an open neighborhood Y1 = I1 × J1 ×V1 ⊂ R×R× N of {0} × {0} × S by the rule that the
ε-dependent complementary equation (see Equation (52)) can be solved uniquely with respect to w for
each given (δ, ε, v) ∈ Y1. Moreover, w(0, 0, v) = 0 for any v ∈ S, and the mapping (δ, ε, v)→ w(δ, ε, v)
of Y1 into W is of class C1. Next, expressing δ as a C1 function δ(ε, v) of (ε, v) in a possibly smaller
neighborhood J ×V ⊂ J1 ×V1, and putting for convenience

φ(ε, v) ≡ w(δ(ε, v), ε, v), (ε, v) ∈ J ×V

we arrive at the ε-dependent form of the bifurcation Equation (57), namely

εPB(v + φ(ε, v)) = δ(ε, v)v (92)

that is here accompanied by the norm constraint

‖v + φ(ε, v)‖2 = ‖v‖2 + ‖φ(ε, v)‖2 = 1. (93)
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A solution (λ, x) of the original problem in Equation (87) will then be given by the formulae

λ = λ0 + δ(ε, v), x = v + φ(ε, v). (94)

In any of the two Cases (a) and (b) listed in Theorem 8, using as needed either of the methods
(topological or variational) recalled in general in Section 2.2, we find for each ε small a solution
vε of Equations (92) and (93). Therefore, making an appropriate choice of δ0, ε0 for the intervals
I0 ≡ [−δ0, δ0], J0 ≡ [−ε0, ε0] and putting

δε = δ(ε, vε) and wε = φε(vε) = w(δε, ε, vε) (95)

the first part of Theorem 8, asserting the existence of at least one solutions (λε, xε) ∈ I0 × S of
Equation (87) for each ε ∈ J0, is proved with λε = λ0 + δε and xε = vε + wε.

Some words are now in order to explain the estimates in Equation (91). One first shows that the
component wε of xε (as defined in Equation (95)) satisfies wε → 0 as ε→ 0, uniformly with respect to
vε, and consequently with respect to xε. This in turn implies that λε → λ0 as ε→ 0, uniformly with
respect to xε. Indeed, using Equation (92), we have

εPB(vε + wε) = δεvε

for all ε, whence taking the scalar product with vε of both members, we obtain

ε〈B(vε + wε), vε〉 = δε‖vε‖2. (96)

Therefore,

δε = ε
〈B(xε), vε〉
‖vε‖2 . (97)

Moreover, as xε = vε + wε ∈ S and wε → 0 as indicated above, then necessarily ‖vε‖ → 1 as
ε→ 0. Therefore, since

|〈B(xε), vε〉|
‖vε‖2 ≤ ‖B(xε)‖

‖vε‖
it follows, by the boundedness assumption on B, that the term multiplying ε in Equation (97) remains
bounded as ε→ 0, implying that δε = O(ε) as ε→ 0, uniformly with respect to xε.

We can now prove the asymptotic formula in Equation (91) on λε if B satisfies Equation (89).
In this respect, the utility of Equation (89) is twofold. First, it permits to improve significantly the
information on wε as it yields by means of straightforward computations the estimate

‖w(δ, ε, v)‖ ≤ C1|ε|‖v‖ (98)

holding for some constant C1 > 0 and all (δ, ε, v) ∈ [−δ0, δ0] × [−ε0, ε0] × (U ∩ N). Moreover,
Equation (89) implies via the Schwarz’ inequality that, for any v and w such that v, v + w ∈ U, one has

|〈B(v + w), v〉 − 〈B(v), v〉| ≤ k‖v‖‖w‖.

Writing this for w(δ, ε, v) and using Equation (98), we then get the inequality

|〈B(v + w(δ, ε, v)), v〉 − 〈B(v), v〉| ≤ C2|ε|‖v‖2 (99)

with C2 = kC1, valid for all the (possible) solutions (δ, x = v + w(δ, ε, v)) of Equation (87)
having sufficiently small ε. Using in turn this estimate in Equation (96) for the actual solutions
(δε, xε = vε + wε) we see that as ε→ 0

δε‖vε‖2 = ε〈B(vε + wε), vε〉 = ε〈B(vε), vε〉+ ‖vε‖2O(ε2). (100)
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This implies that

δε = ε
〈B(vε), vε〉
‖vε‖2 + O(ε2) (101)

as ε→ 0, and thus for ε > 0 yields immediately the estimate of Equation (91) in view of the definition
in Equation (90) of C and D.

Example 2. Theorem 8 can be used to evaluate the convergence rate as ε → 0 of the eigenvalues µε of the
nonlinear elliptic problem {

−∆u = µ(u + ε f (x, u)) in Ω
u = 0 on ∂Ω

(102)

near an eigenvalue µ0 of the unperturbed linear problem −∆u = µu in Ω, u = 0 on ∂Ω. Here, Ω is a
bounded domain in RN(N ≥ 1) with boundary ∂Ω, and ∆ = ∑N

i=1
∂2

∂xi
2 is the familiar Laplace operator acting

on sufficiently smooth real functions u defined in Ω. Under appropriate hypotheses on f , and assuming in
particular that

mt2 ≤ f (x, t)t ≤ Mt2 (x ∈ Ω, t ∈ R) (103)

for some real constants 0 ≤ m ≤ M, one proves that as ε→ 0+

µ0 − εµ0M + O(ε2) ≤ µε ≤ µ0 − εµ0m + O(ε2). (104)

These inequalities can be used for actual computation, once an efficient approximation of the linear
eigenvalue µ0 is available and the bounds in Equation (103) for f are known with accuracy. For instance, if

f (x, t) = f (t) =
t

1 + t2 , just put in Equation (104)

m = inf
t 6=0

f (t)t
t2 = 0, M = sup

t 6=0

f (t)t
t2 = 1. (105)

4. Concluding Remarks, Open Problems and Applicability

To summarize and motivate again the content of this paper, let me define it as an attempt to identify
and logically re-connect (or at least give a common frame to) two important and presently distinct
research areas in Mathematical Analysis and its applications that appear in the current literature under
the same name of Nonlinear Eigenvalue Problems. As better explained in the Introduction, problems in
these two areas are described (in abstract operator form) by the two equations

G(λ)x = 0 (106)

(“problems of type G”) and
A(x)− λC(x) = 0 (107)

(“problems of type K”). Some basic facts and solution methods about each of the two equations are
reported in Section 2. Section 3 is devoted to discuss two specific problems, one for each type, with the
scope of giving samples of very recent research in either field.

While for the problem discussed in Section 3.1 there are already concrete numerical examples [8],
these are still missing for the problem presented in Section 3.2 [9]. The main aim of this final section is
to partially fill this gap by further commenting (in Section 4.1) on the formula

λ0 + εC + O(ε2) ≤ λε ≤ λ0 + εD + O(ε2) (108)

proved in Theorem 8 and by finally providing, at least in a special case, a recipe ready for use in
numerical simulation (Section 4.2).
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4.1. Open Problems

The basic idea standing behind the formula in Equation (108) is that if the (algebraic and geometric)
multiplicity m(λ0) of the unperturbed eigenvalue λ0 of the linear operator T in Equation (87) is
equal to m, then upon perturbation by a small term εB there are potentially m eigenvalue functions
λ1(ε), . . . , λm(ε) of T + εB satisfying Equation (108). This is what actually happens for a linear operator
B (essentially under the further assumption that T and B are self-adjoint) as described by Rellich’s
Theorem 6. Our idea is that something of this persists also for nonlinear operators that have good
similarity with the linear ones: the class of Lipschitz continuous maps considered in Theorem 8 is
apparently quite close to that of bounded linear maps, and in fact contains properly the latter. Indeed,
the conclusions of Theorem 8 point in in this direction. However, many problems remain open and we
describe here three of them (in increasing order of interest and difficulty):

• Verify on specific examples of nonlinear ODE/PDE/Equations in Rn—by means of explicit
computation or by means of a numerical analysis—the existence of at least one “eigenvalue
branch” λ(ε) satisfying the bounds in Equation (108) as predicted by the theory.

• Verify by the same means that the bounds in Equation (108) are optimal by producing examples
of nonlinear problems (in the same fields as above) where at least one eigenvalue function exists
that satisfies the RHS (LHS) bound in Equation (108) with equality sign.

• Exhibit examples of “nonlinear splitting of the multiple eigenvalue”, that is, of nonlinear problems
in which starting from an unperturbed eigenvalue λ0 of multiplicity ≥ 2 there exist two different
families λ+(ε), λ−(ε) respecting Equation (108), and possibly each satisfying the RHS (LHS)
bound of it with equality sign.

Here, is a very simple example that highlights the above issues, and the last in particular. For the
linear case, these questions were answered by Remark 6.

Example 3. Consider the system {
x + εx3 = λx
y + εy3 = λy.

(109)

In the notations of Equation (87) and of Theorem 8, we have here H = R2, T = I, λ0 = 1 and
B(x, y) = (x3, y3). Solving Equation (109) with the constraint x2 + y2 = 1 gives the solutions{

(x, y) = (0,±1), (x, y) = (±1, 0), λ = 1 + ε

(x, y) = (± 1√
2

,± 1√
2
), λ = 1 + ε/2. (110)

Therefore, λ0 = 1 splits into the two eigenvalue functions (each carrying four distinct eigenvectors)

λ+(ε) = 1 + ε, λ−(ε) = 1 + ε/2.

This is in full agreement with Equation (108), for

D = sup
0<‖v‖≤1,v∈N

〈B(v), v〉
‖v‖2 = sup

0<x2+y2≤1

x4 + y4

x2 + y2 = 1 (111)

and similarly, replacing “sup" with “inf", we find that C = 1/2.

4.2. Applicability

As indicated in Example 2, the bounds in Equation (108) proved in Theorem 8 for the operator
Equation (87) can be used for concrete nonlinear elliptic problems in a bounded domain Ω ⊂
RN(N ≥ 1) such as Equation (102), or more generalized forms of it in which −∆ is replaced by
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a uniformly elliptic second order operator in divergence form. In particular for N = 1 this applies to
the Sturm–Liouville problem{

−(p(x)u′)′ + q(x)u = µ(u + ε f (x, u)) in ]a, b[
u(a) = u(b) = 0

(112)

where p ∈ C1([a, b]), p > 0 and q ∈ C([a, b]). The first remark on the applicability of Theorem 8 to
such kind of problems, in one or more space variables, is that one must not worry of the multiplicity of
the unperturbed eigenvalue because—as recalled for instance in [9]—the operator B corresponding to
the nonlinear term f is a gradient operator, so that the assumption b) of Theorem 8 is satisfied. In [9] it
is previously recalled that these problems can be cast in the operator form of Equation (87) on taking
as Hilbert space the Sobolev space H1

0(Ω) ≡W1,2
0 (Ω), equipped with the scalar product

〈u, v〉 =
∫

Ω
∇u(x)∇v(x) dx (113)

and that the operator B mentioned above is defined via the duality relation

〈B(u), v〉 =
∫

Ω
f (x, u(x))v(x) dx. (114)

The representation in Equation (114) of B is the key formula to be used to gain information on
the constants C, D appearing in Equation (108), for these are defined by the formulae in Equation (90)
that involve precisely the nonlinear Rayleigh quotient of B. Indeed, using Equation (114) and the fact
(see e.g., [9]) that for v ∈ N we have

‖v‖2 =
∫

Ω
∇v2(x) dx = µ0

∫
Ω

v2(x) dx (115)

where µ0 is the unperturbed eigenvalue and N the corresponding eigenspace, yields the following
quite readable expression for D:

D = sup
0<‖v‖≤1,v∈N

〈B(v), v〉
‖v‖2 = sup

0<‖v‖≤1,v∈N

∫
Ω f (x, v(x))v(x) dx

µ0
∫

Ω v2(x) dx
(116)

Thus, essentially, in the applications of the theory to elliptic PDE or ODE, estimating the Rayleigh
quotient of B reduces to estimating the ratio appearing in the RHS of Equation (116). In turn, this can
be easily obtained by pointwise bounds on f : for clearly if f satisfies Equation (103), then it follows
that for every v ∈ H (and in fact for every v ∈ L2(Ω))

m ≤
∫

Ω f (x, v(x))v(x) dx∫
Ω v2(x) dx

≤ M.

We conclude by Equation (116) and the dual formula for C that

m
µ0
≤ C, D ≤ M

µ0
. (117)

Using the inequalities in Equations (117) and (108) and putting λε = 1/µε yield bounds on
the perturbed eigenvalues µε of Equation (102). Considering for instance the right-hand side of in
Equation (108), we obtain

1
µε
≤ 1

µ0
+

εM
µ0

+ O(ε2) =
1

µ0
(1 + εM + O(ε2)) (118)
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and doing the same with the lower bound thus yields

µ0

1 + εm + O(ε2)
≥ µε ≥

µ0

1 + εM + O(ε2)
. (119)

Remark 7. Note that Equation (119) contains—as due—the equality

µε =
µ0

1 + εa

which plainly holds for the eigenvalues of Equation (102) in the linear case f (x, s) = as, a =const.

Finally, using in Equation (119) the asymptotic relation (1 + x)−1 = 1− x + O(x2) for x → 0,
we obtain as ε→ 0+ the formula in Equation (104), which as remarked is ready for use in numerical
experiments once µ0, m and M are known. For instance, taking f (x, s) = f (s) = s

1+s2 and using the
bounds m = 0, M = 1 (see Equation (105)) yields, for ε→ 0+,

µ0 − εµ0 + O(ε2) ≤ µε ≤ µ0 + O(ε2). (120)

The case of the simple eigenvalue. More information can be gained in the case that dim N = 1,
so that N = {tφ, t ∈ R} for some φ that we normalize taking ‖φ‖ = 1. Then, the Rayleigh quotient of
B simplifies as

〈B(v), v〉
‖v‖2 =

〈B(tφ), tφ〉
t2‖φ‖2 =

1
t
〈B(tφ), φ〉 ≡ h(t), 0 < |t| ≤ 1. (121)

Note that h is bounded since B is sublinear (that is, ‖B(u)‖ ≤ k‖u‖ for all u ∈ H) as follows from
Equation (89) and the condition B(0) = 0. It follows by Equations (114) and (121) that

h(t) =
1
t

∫
Ω

f (x, tφ(x))φ(x) dx. (122)

Considering as above the example f (x, s) = f (s) = s
1+s2 , we obtain

h(t) =
∫

Ω

φ2(x)
1 + t2φ2(x)

dx

showing that h can be extended continuously to t = 0 and that it is an even function of t in [−1, 1].
Therefore, using also Equation (115) and the condition ‖φ‖ = 1, we get

D = sup
−1≤t≤1

h(t) = sup
0≤t≤1

h(t) =
∫

Ω
φ2(x) dx =

1
µ0

(123)

while

C = inf
−1≤t≤1

h(t) = inf
0≤t≤1

h(t) =
∫

Ω

φ2(x)
1 + φ2(x)

dx ≡ K. (124)

These computations show that in the present case:

• The upper bound M
µ0

= 1
µ0

given by Equation (117) for D is optimal.
• The lower bound 0 given by Equation (117) for C can be improved to C = K > 0.

Proceeding in the same way as before (see Equations (118) and (119)) and using as before the
asymptotic expansion for 1

1+x as x → 0, we see that, as ε→ 0+, Equation (120) can be replaced by the
more precise formula

µ0 − εµ0 + O(ε2) ≤ µε ≤ µ0 − εµ2
0K + O(ε2). (125)
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The practical use of Equation (125) for numerical purposes requires explicit knowledge of the
eigenvalue µ0 and of the corresponding eigenfunction φ. Typical cases in which these data are
available are:

• N = 2, Ω a rectangle or a circle, and µ0 the first eigenvalue of the Dirichlet Laplacian in Ω (see e.g., [44].
• N = 1, Ω =]a, b[ and µ0 = µn any eigenvalue of the Sturm–Liouville problem in Equation (112)

with simple forms of the coefficients p and q. For instance, if ]a, b[=]0, π[, p ≡ 1 and q ≡ 0 we have

µn = n2, φn(x) =
1
n

√
2
π

sin nx (0 ≤ x ≤ π).

As to the expression of φn, recall that we have normed H1
0(a, b) via the formula in Equation (113),

which in this case reduces to (u, v) =
∫ π

0
u′(x)v′(x) dx.

Acknowledgments: The author wishes to thank the Referees for their valuable suggestions that have helped to
improve the quality of the present paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Betcke, T.; Higham, N.J.; Mehrmann, V.; Schroder, C.; Tisseur, F. NLEVP: A collection of nonlinear eigenvalue
problems. ACM Trans. Math. Softw. 2013, 39, 28. [CrossRef]

2. Berger, M.S. Nonlinearity and Functional Analysis; Academic Press: Cambridge, MA, USA, 1977.
3. Ambrosetti, A.; Malchiodi, A. Nonlinear Analysis and Semilinear Elliptic Problems; Cambridge University Press:

Cambridge, UK, 2007.
4. Palais, R.S. Critical point theory and the minimax principle. In Proceedings of the Symposia in Pure

Mathematics, Berkeley, CA, USA, 1–26 July 1968; American Mathematics Society: Providence, RI, USA, 1970;
Volume XV, pp. 185–212.

5. Chabrowski, J. On nonlinear eigenvalue problems. Forum Math. 1992, 4, 359–375. [CrossRef]
6. Turner, R.E.L. A class of nonlinear eigenvalue problems. J. Funct. Anal. 1968, 2, 297–322. [CrossRef]
7. Kato, T. Perturbation Theory for Linear Operators, 2nd ed.; Springer: Berlin, Germany; New York, NY, USA, 1976.
8. Michiels, W.; Boussaada, I.; Niculescu, S.I. An explicit formula for the splitting of multiple eigenvalues for

nonlinear eigenvalue problems and connections with the linearization for the delay eigenvalue problem.
SIAM J. Matrix Anal. Appl. 2017, 38, 599–620. [CrossRef]

9. Chiappinelli, R. Approximation and convergence rate of nonlinear eigenvalues: Lipschitz perturbations of a
bounded self-adjoint operator. J. Math. Anal. Appl. 2017, 455, 1720–1732. [CrossRef]

10. Langer, H.; Markus, A.; Matsaev, V. Linearization, factorization, and the spectral compression of a self-adjoint
analytic operator function under the condition (VM). In A Panorama of Modern Operator Theory and Related
Topics; Birkhauser/Springer Basel AG: Basel, Switzerland, 2012; pp. 445–463.

11. Appell, J.; De Pascale, E.; Vignoli, A. Nonlinear Spectral Theory; de Gruyter: Berlin, Germany, 2004.
12. Chiappinelli, R. Surjectivity of coercive gradient operators in Hilbert space and Nonlinear Spectral Theory.

Ann. Funct. Anal. 2018, 9, in press.
13. Guttel, S.; Tisseur, F. The nonlinear eigenvalue problem. Acta Numer. 2017, 26, 1–94. [CrossRef]
14. Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations; Springer: Berlin/Heidelberg,

Germany, 2011.
15. Taylor, A.; Lay, D. Introduction to Functional Analysis; Wiley: Hoboken, NJ, USA, 1980.
16. Hadeler, K.P. Mehrparametrige und nichtlineare Eigenwertaufgaben. Arch. Ration. Mech. Anal. 1967, 27,

306–328. [CrossRef]
17. Hadeler, K.P. Variationsprinzipien bei nichtlinearen Eigenwertaufgaben. Arch. Ration. Mech. Anal. 1968, 30,

297–307. [CrossRef]

http://dx.doi.org/10.1145/2427023.2427024
http://dx.doi.org/10.1515/form.1992.4.359
http://dx.doi.org/10.1016/0022-1236(68)90009-8
http://dx.doi.org/10.1137/16M107774X
http://dx.doi.org/10.1016/j.jmaa.2017.06.070
http://dx.doi.org/10.1017/S0962492917000034
http://dx.doi.org/10.1007/BF00281717
http://dx.doi.org/10.1007/BF00281537


Axioms 2018, 7, 39 29 of 30

18. Langer, H. Uber eine Klasse polynomialer Scharen selbstadjungierter Operatoren im Hilbertraum.
J. Funct. Anal. 1973, 12, 13–29. [CrossRef]

19. Markus, A.S. Introduction to the Spectral Theory of Polynomial Operator Pencils; Translations of Mathematical
Monographs, 71; American Mathematical Society: Providence, RI, USA, 1988.

20. Binding, P.; Eschwé, D.; Langer, H. Variational principles for real eigenvalues of self-adjoint operator pencils.
Integral Equ. Oper. Theory 2000, 38, 190–206. [CrossRef]

21. Hasanov, M. An approximation method in the variational theory of the spectrum of operator pencils.
Acta Appl. Math. 2002, 71, 117–126. [CrossRef]

22. Voss, H. A minmax principle for nonlinear eigenproblems depending continuously on the eigenparameter.
Numer. Linear Algebra Appl. 2009, 16, 899–913. [CrossRef]

23. Schwetlick, H.; Schreiber, K. Nonlinear Rayleigh functionals. Linear Algebra Appl. 2012, 436, 3991–4016.
[CrossRef]

24. Gohberg, I.; Lancaster, P.; Rodman, L. Matrix Polynomials; Academic Press, Inc. [Harcourt Brace Jovanovich,
Publishers]: New York, NY, USA; London, UK, 1982.

25. Hryniv, R.; Lancaster, P. On the perturbation of analytic matrix functions. Integral Equ. Oper. Theory 1999, 34,
325–338. [CrossRef]

26. Hale, J.K.; Verduyn Lunel, S.M. Introduction to Functional Differential Equations; Applied Mathematical
Sciences, 99; Springer: New York, NY, USA, 1993.

27. Gohberg, I.; Lancaster, P.; Rodman, L. Invariant Subspaces of Matrices With Applications; A Wiley-Interscience
Publication; John Wiley and Sons, Inc.: New York, NY, USA, 1986.

28. Stackgold, I. Branching of solutions of non-linear equations. SIAM Rev. 1971, 13, 289–332. [CrossRef]
29. Rabinowitz, P.H. Minimax Methods in Critical Point Theory With Applications to Differential Equations; CBMS Regional

Conference Series Mathematics; American Mathematics Society: Providence, RI, USA, 1986; Volume 65.
30. Krasnoselskii, M.A. Topological Methods in the Theory of Nonlinear Integral Equations; Pergamon Press: Oxford,

UK, 1964.
31. Rabinowitz, P.H. Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 1971, 7, 487–513.

[CrossRef]
32. Stuart, C.A. An introduction to bifurcation theory based on differential calculus. In Nonlinear Analysis

and Mechanics: Heriot-Watt Symposium; Research Notes in Mathematics; Pitman: Totowa, NJ, USA 1979;
Volume IV, pp. 76–135.

33. Mawhin, J.; Willem, M. Critical Point Theory and Hamiltonian Systems; Applied Mathematical Sciences, 74;
Springer: New York, NY, USA, 1989.

34. Zeidler, E. Nonlinear Functional Analysis and Its Applications. III. Variational Methods and Optimization; Springer:
New York, NY, USA, 1985.

35. Amann, H. Liusternik-Schnirelman theory and non-linear eigenvalue problems. Math. Ann. 1972, 199, 55–72.
[CrossRef]

36. Fernandez Bonder, J.; Pinasco, J.P.; Salort, A.M. Quasilinear eigenvalues. Rev. Union Mat. Argent. 2015, 56,
1–25.

37. Lindqvist, P. A nonlinear eigenvalue problem. In Topics in Mathematical Analysis; World Scientific Publishing:
Hackensack, NJ, USA, 2008; pp. 175–203.

38. Drábek, P. On the variational eigenvalues which are not of Ljusternik-Schnirelmann type. Abstr. Appl. Anal.
2012, 434631. [CrossRef]

39. Drábek, P.; Robinson, S.B. Resonance problems for the p-Laplacian. J. Funct. Anal. 1999, 169, 189–200.
[CrossRef]

40. Appell, J.; Drábek, P.; Chiappinelli, R. (Eds.) Mini-Workshop: Nonlinear Spectral and Eigenvalue Theory
with Applications to the p-Laplace Operator; Abstracts from the Mini-Workshop held 15–21 February 2004;
Oberwolfach Report; Mathematisches Forschungsinstitut Oberwolfach: Oberwolfach, Germany, 2004;
pp. 407–437.

41. Rellich, F. Perturbation Theory of Eigenvalue Problems; Gordon and Breach Science Publishers: New York, NY,
USA; London, UK; Paris, France,1969.

42. Isaacson, E.; Keller, H.B. Analysis of Numerical Methods; John Wiley and Sons, Inc.: New York, NY, USA;
London, UK; Sydney, Australia, 1966.

http://dx.doi.org/10.1016/0022-1236(73)90087-6
http://dx.doi.org/10.1007/BF01200123
http://dx.doi.org/10.1023/A:1014545418177
http://dx.doi.org/10.1002/nla.670
http://dx.doi.org/10.1016/j.laa.2010.06.048
http://dx.doi.org/10.1007/BF01300582
http://dx.doi.org/10.1137/1013063
http://dx.doi.org/10.1016/0022-1236(71)90030-9
http://dx.doi.org/10.1007/BF01419576
http://dx.doi.org/10.1155/2012/434631
http://dx.doi.org/10.1006/jfan.1999.3501


Axioms 2018, 7, 39 30 of 30

43. Lancaster, P.; Markus, A.S.; Zhou, F. Perturbation theory for analytic matrix functions: The semisimple case.
SIAM J. Matrix Anal. Appl. 2003, 25, 606–626. [CrossRef]

44. Courant, R.; Hilbert, D. Methods of Mathematical Physics; Wiley: Hoboken, NJ, USA, 1953; Volume I.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1137/S0895479803423792
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Two Types of NLEVP
	Problems of Type G: (Linear) Operator- and Matrix-Valued Functions
	 Problems of Type K: Nonlinear Operators and Bifurcation
	A Very Special Nonlinear Problem: The p-Laplace Equation

	Nonlinear Perturbation of an Isolated Eigenvalue
	A Perturbation Problem of Type G
	A Perturbation Problem of Type K

	Concluding Remarks, Open Problems and Applicability
	Open Problems
	Applicability

	References

