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Abstract:



The notion of a neutrosophic quadruple [image: ]-number is considered, and a neutrosophic quadruple [image: ]-algebra, which consists of neutrosophic quadruple [image: ]-numbers, is constructed. Several properties are investigated, and a (positive implicative) ideal in a neutrosophic quadruple [image: ]-algebra and a closed ideal in a neutrosophic quadruple [image: ]-algebra are studied. Given subsets A and B of a [image: ]-algebra, the set [image: ], which consists of neutrosophic quadruple [image: ]-numbers with a condition, is established. Conditions for the set [image: ] to be a (positive implicative) ideal of a neutrosophic quadruple [image: ]-algebra are provided, and conditions for the set [image: ] to be a (closed) ideal of a neutrosophic quadruple [image: ]-algebra are given. An example to show that the set [image: ] is not a positive implicative ideal in a neutrosophic quadruple [image: ]-algebra is provided, and conditions for the set [image: ] to be a positive implicative ideal in a neutrosophic quadruple [image: ]-algebra are then discussed.






Keywords:


neutrosophic quadruple BCK/BCI-number; neutrosophic quadruple BCK/BCI-algebra; neutrosophic quadruple subalgebra; (positive implicative) neutrosophic quadruple ideal




MSC:


06F35; 03G25; 08A72












1. Introduction


The notion of a neutrosophic set was developed by Smarandache [1,2,3] and is a more general platform that extends the notions of classic sets, (intuitionistic) fuzzy sets, and interval valued (intuitionistic) fuzzy sets. Neutrosophic set theory is applied to a different field (see [4,5,6,7,8]). Neutrosophic algebraic structures in [image: ]-algebras are discussed in [9,10,11,12,13,14,15,16]. Neutrosophic quadruple algebraic structures and hyperstructures are discussed in [17,18].



In this paper, we will use neutrosophic quadruple numbers based on a set and construct neutrosophic quadruple [image: ]-algebras. We investigate several properties and consider ideals and positive implicative ideals in neutrosophic quadruple [image: ]-algebra, and closed ideals in neutrosophic quadruple [image: ]-algebra. Given subsets A and B of a neutrosophic quadruple [image: ]-algebra, we consider sets [image: ], which consist of neutrosophic quadruple [image: ]-numbers with a condition. We provide conditions for the set [image: ] to be a (positive implicative) ideal of a neutrosophic quadruple [image: ]-algebra and for the set [image: ] to be a (closed) ideal of a neutrosophic quadruple [image: ]-algebra. We give an example to show that the set [image: ] is not a positive implicative ideal in a neutrosophic quadruple [image: ]-algebra, and we then consider conditions for the set [image: ] to be a positive implicative ideal in a neutrosophic quadruple [image: ]-algebra.




2. Preliminaries


A [image: ]-algebra is an important class of logical algebras introduced by Iséki (see [19,20]).



By a [image: ]-algebra, we mean a set X with a special element 0 and a binary operation ∗ that satisfies the following conditions:

	(I)

	
[image: ][image: ]




	(II)

	
[image: ][image: ]




	(III)

	
[image: ][image: ]




	(IV)

	
[image: ][image: ]









If a [image: ]-algebra X satisfies the identity

	(V)

	
[image: ][image: ]






then X is called a [image: ]-algebra. Any [image: ]-algebra X satisfies the following conditions:


[image: ]



(1)






[image: ]



(2)






[image: ]



(3)






[image: ]



(4)




where [image: ] if and only if [image: ] Any [image: ]-algebra X satisfies the following conditions (see [21]):


[image: ]



(5)






[image: ]



(6)







A [image: ]-algebra X is said to be positive implicative if the following assertion is valid.


[image: ]



(7)







A nonempty subset S of a [image: ]-algebra X is called a subalgebra of X if [image: ] for all [image: ] A subset I of a [image: ]-algebra X is called an ideal of X if it satisfies


[image: ]



(8)






[image: ]



(9)







A subset I of a [image: ]-algebra X is called a closed ideal (see [21]) of X if it is an ideal of X which satisfies


[image: ]



(10)







A subset I of a [image: ]-algebra X is called a positive implicative ideal (see [22]) of X if it satisfies (8) and


[image: ]



(11)







Observe that every positive implicative ideal is an ideal, but the converse is not true (see [22]). Note also that a [image: ]-algebra X is positive implicative if and only if every ideal of X is positive implicative (see [22]).



We refer the reader to the books [21,22] for further information regarding [image: ]-algebras, and to the site “http://fs.gallup.unm.edu/neutrosophy.htm” for further information regarding neutrosophic set theory.




3. Neutrosophic Quadruple BCK/BCI-Algebras


We consider neutrosophic quadruple numbers based on a set instead of real or complex numbers.



Definition 1.

Let X be a set. A neutrosophic quadruple X-number is an ordered quadruple [image: ] where [image: ] and [image: ][image: ] F have their usual neutrosophic logic meanings.





The set of all neutrosophic quadruple X-numbers is denoted by [image: ], that is,


[image: ]








and it is called the neutrosophic quadruple set based on X. If X is a [image: ]-algebra, a neutrosophic quadruple X-number is called a neutrosophic quadruple [image: ]-number and we say that [image: ] is the neutrosophic quadruple [image: ]-set.



Let X be a [image: ]-algebra. We define a binary operation ⊙ on [image: ] by


[image: ]








for all [image: ][image: ]. Given [image: ], the neutrosophic quadruple [image: ]-number [image: ] is denoted by [image: ], that is,


[image: ]








and the zero neutrosophic quadruple [image: ]-number [image: ] is denoted by [image: ], that is,


[image: ]











We define an order relation “≪” and the equality “=” on [image: ] as follows:


[image: ]








for all [image: ]. It is easy to verify that “≪” is an equivalence relation on [image: ].



Theorem 1.

If X is a [image: ]-algebra, then [image: ] is a [image: ]-algebra.





Proof. 

Let X be a [image: ]-algebra. For any [image: ], we have


[image: ]










[image: ]










[image: ]











Assume that [image: ] and [image: ]. Then


[image: ]








and


[image: ]











It follows that [image: ], [image: ], [image: ] and [image: ]. Hence, [image: ][image: ][image: ], and [image: ], which implies that


[image: ]











Therefore, we know that [image: ] is a [image: ]-algebra. We call it the neutrosophic quadruple [image: ]-algebra. Moreover, if X is a [image: ]-algebra, then we have


[image: ]











Hence, [image: ] is a [image: ]-algebra. We call it the neutrosophic quadruple [image: ]-algebra. ☐





Example 1.

If [image: ], then the neutrosophic quadruple set [image: ] is given as follows:


[image: ]








where[image: ], [image: ], [image: ], [image: ],[image: ], [image: ], [image: ], [image: ],[image: ], [image: ], [image: ], [image: ],[image: ], [image: ], [image: ], and [image: ].



Consider a [image: ]-algebra [image: ] with the binary operation ∗, which is given in Table 1.

Table 1. Cayley table for the binary operation “∗”.





	∗
	0
	a





	0
	0
	0



	a
	a
	0










Then [image: ] is a [image: ]-algebra in which the operation ⊙ is given by Table 2.

Table 2. Cayley table for the binary operation “⊙”.





	⊙
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]





	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]



	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]



	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]



	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]



	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]



	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]



	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]



	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]



	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]



	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]



	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]



	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]



	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]



	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]



	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]



	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]












Theorem 2.

The neutrosophic quadruple set [image: ] based on a positive implicative [image: ]-algebra X is a positive implicative [image: ]-algebra.





Proof. 

Let X be a positive implicative [image: ]-algebra. Then X is a [image: ]-algebra, so [image: ] is a [image: ]-algebra by Theorem 1. Let [image: ], [image: ], [image: ]. Then


[image: ]








for all [image: ] since [image: ] and X is a positive implicative [image: ]-algebra. Hence, [image: ]; therefore, [image: ] based on a positive implicative [image: ]-algebra X is a positive implicative [image: ]-algebra. ☐





Proposition 1.

The neutrosophic quadruple set [image: ] based on a positive implicative [image: ]-algebra X satisfies the following assertions.


[image: ]



(12)






[image: ]



(13)









Proof. 

Let [image: ]. If [image: ], then


[image: ]








so [image: ]. Assume that [image: ]. Using Equation (12) implies that


[image: ]








so [image: ], i.e., [image: ]. ☐





Let X be a [image: ]-algebra. Given [image: ] and subsets A and B of X, consider the sets


[image: ]










[image: ]










[image: ]










[image: ]










[image: ]








and


[image: ]











The set [image: ] is denoted by [image: ].



Proposition 2.

Let X be a [image: ]-algebra. Given [image: ] and subsets A and B of X, we have

	(1)

	
[image: ] and [image: ] are subsets of [image: ].




	(1)

	
If [image: ] then [image: ] is a subset of [image: ].











Proof. 

Straightforward. ☐





Let X be a [image: ]-algebra. Given [image: ] and subalgebras A and B of X, [image: ] and [image: ] may not be subalgebras of [image: ] since


[image: ]








and


[image: ]








for [image: ][image: ][image: ][image: ], [image: ][image: ][image: ][image: ], [image: ][image: ][image: ][image: ], and [image: ][image: ][image: ][image: ].



Theorem 3.

If A and B are subalgebras of a [image: ]-algebra X, then the set [image: ] is a subalgebra of [image: ], which is called a neutrosophic quadruple subalgebra.





Proof. 

Assume that A and B are subalgebras of a [image: ]-algebra X. Let [image: ][image: ][image: ][image: ] and [image: ][image: ][image: ][image: ] be elements of [image: ]. Then [image: ][image: ][image: ][image: ] and [image: ][image: ][image: ][image: ], which implies that [image: ], [image: ], [image: ], and [image: ]. Hence,


[image: ]








so [image: ] is a subalgebra of [image: ]. ☐





Theorem 4.

If A and B are ideals of a [image: ]-algebra X, then the set [image: ] is an ideal of [image: ], which is called a neutrosophic quadruple ideal.





Proof. 

Assume that A and B are ideals of a [image: ]-algebra X. Obviously, [image: ]. Let [image: ][image: ][image: ][image: ] and [image: ][image: ][image: ][image: ] be elements of [image: ] such that [image: ] and [image: ]. Then


[image: ]








so [image: ], [image: ], [image: ] and [image: ]. Since [image: ], we have [image: ] and [image: ]. Since A and B are ideals of X, it follows that [image: ] and [image: ]. Hence, [image: ][image: ][image: ][image: ], so [image: ] is an ideal of [image: ]. ☐





Since every ideal is a subalgebra in a [image: ]-algebra, we have the following corollary.



Corollary 1.

If A and B are ideals of a [image: ]-algebra X, then the set [image: ] is a subalgebra of [image: ].





The following example shows that Corollary 1 is not true in a [image: ]-algebra.



Example 2.

Consider a [image: ]-algebra [image: ]. If we take [image: ] and [image: ], then [image: ] is an ideal of [image: ]. However, it is not a subalgebra of [image: ] since


[image: ]








for [image: ][image: ].





Theorem 5.

If A and B are closed ideals of a [image: ]-algebra X, then the set [image: ] is a closed ideal of [image: ].





Proof. 

If A and B are closed ideals of a [image: ]-algebra X, then the set [image: ] is an ideal of [image: ] by Theorem 4. Let [image: ]. Then


[image: ]








since [image: ] and [image: ]. Therefore, [image: ] is a closed ideal of [image: ]. ☐





Since every closed ideal of a [image: ]-algebra X is a subalgebra of X, we have the following corollary.



Corollary 2.

If A and B are closed ideals of a [image: ]-algebra X, then the set [image: ] is a subalgebra of [image: ].





In the following example, we know that there exist ideals A and B in a [image: ]-algebra X such that [image: ] is not a closed ideal of [image: ].



Example 3.

Consider [image: ]-algebras [image: ] and [image: ]. Then [image: ] is a [image: ]-algebra (see [21]). Let [image: ] and [image: ]. Then A and B are ideals of X, so [image: ] is an ideal of [image: ] by Theorem 4. Let [image: ]. Then


[image: ]











Hence, [image: ] is not a closed ideal of [image: ].





We provide conditions wherethe set [image: ] is a closed ideal of [image: ].



Theorem 6.

Let A and B be ideals of a [image: ]-algebra X and let


[image: ]











Assume that, if [image: ], then [image: ]. Then [image: ] is a closed ideal of [image: ].





Proof. 

If A and B are ideals of X, then [image: ] is an ideal of [image: ] by Theorem 4. Let [image: ]. For any [image: ], denote [image: ]. Then [image: ] and


[image: ]











Hence,


[image: ]








so [image: ], since [image: ], and [image: ] is an ideal of [image: ]. Since [image: ], it follows that [image: ] such that [image: ], that is, [image: ], and thus


[image: ]








i.e., [image: ]. Since [image: ], it follows that [image: ]. Therefore, [image: ] is a closed ideal of [image: ]. ☐





Theorem 7.

Given two elements a and b in a [image: ]-algebra X, let


[image: ]



(14)







Then [image: ] is a closed ideal of [image: ].





Proof. 

Since [image: ] and [image: ], we have [image: ]. Thus, [image: ]. If [image: ] and [image: ], then


[image: ]



(15)







Let [image: ] be such that [image: ] and [image: ]. Then


[image: ]








and


[image: ]








that is, [image: ] and [image: ]. On the other hand,


[image: ]








and


[image: ]











Thus, [image: ] and [image: ], i.e., [image: ] and [image: ]. Hence, [image: ] and [image: ] are ideals of X, and [image: ] is therefore an ideal of [image: ] by Theorem 4. Let [image: ]. Then [image: ], and [image: ]. It follows from Equation (15) that [image: ], [image: ], [image: ], and [image: ]. Hence,


[image: ]











Therefore, [image: ] is a closed ideal of [image: ]. ☐





Proposition 3.

Let A and B be ideals of a [image: ]-algebra X. Then


[image: ]



(16)









Proof. 

Note that [image: ] and [image: ] are ideals of [image: ]. Assume that [image: ]. Let


[image: ]











Since [image: ] and [image: ], it follows that [image: ]. Obviously, [image: ]. Hence, [image: ].



Conversely, suppose that [image: ] for all [image: ] and [image: ]. If [image: ], then [image: ] and [image: ], which is implied from the hypothesis that [image: ]. Hence [image: ]. ☐





Theorem 8.

Let A and B be subsets of a [image: ]-algebra X such that


[image: ]



(17)




where [image: ]. Then the set [image: ] is an ideal of [image: ].





Proof. 

If [image: ], then [image: ] since [image: ]. Hence, [image: ] by Equation (17), so it is clear that [image: ]. Let [image: ][image: ][image: ][image: ] and [image: ][image: ][image: ][image: ] be elements of [image: ] such that [image: ] and [image: ]. Then


[image: ]








so [image: ], [image: ], [image: ], and [image: ]. Using (II), we have [image: ], [image: ], [image: ], and [image: ]. This implies that [image: ][image: ][image: ][image: ]. Therefore, [image: ] is an ideal of [image: ]. ☐





Corollary 3.

Let A and B be subsets of a [image: ]-algebra X such that


[image: ]



(18)







Then the set [image: ] is an ideal of [image: ].





Theorem 9.

Let A and B be nonempty subsets of a [image: ]-algebra X such that


[image: ]



(19)







Then the set [image: ] is an ideal of [image: ].





Proof. 

Assume that the condition expressed by Equation (19) is valid for nonempty subsets A and B of X. Since [image: ] for any [image: ], we have [image: ] by Equation (19). Hence, it is clear that [image: ]. Let [image: ][image: ][image: ][image: ] and [image: ][image: ][image: ][image: ] be elements of [image: ] such that [image: ] and [image: ]. Then


[image: ]








so [image: ], [image: ], [image: ], and [image: ]. Note that [image: ] for [image: ]. It follows from Equation (19) that [image: ] and [image: ]. Hence,


[image: ]








therefore, [image: ] is an ideal of [image: ]. ☐





Theorem 10.

If A and B are positive implicative ideals of a [image: ]-algebra X, then the set [image: ] is a positive implicative ideal of [image: ], which is called a positive implicative neutrosophic quadruple ideal.





Proof. 

Assume that A and B are positive implicative ideals of a [image: ]-algebra X. Obviously, [image: ]. Let [image: ][image: ][image: ][image: ], [image: ][image: ][image: ][image: ], and [image: ][image: ][image: ][image: ] be elements of [image: ] such that [image: ] and [image: ]. Then


[image: ]








and


[image: ]








so [image: ], [image: ], [image: ], [image: ], [image: ], [image: ], [image: ], and [image: ]. Since A and B are positive implicative ideals of X, it follows that [image: ] and [image: ]. Hence,


[image: ]








so [image: ] is a positive implicative ideal of [image: ]. ☐





Theorem 11.

Let A and B be ideals of a [image: ]-algebra X such that


[image: ]



(20)







Then [image: ] is a positive implicative ideal of [image: ].





Proof. 

Since A and B are ideals of X, it follows from Theorem 4 that [image: ] is an ideal of [image: ]. Let [image: ][image: ][image: ][image: ], [image: ][image: ][image: ][image: ], and [image: ][image: ][image: ][image: ] be elements of [image: ] such that [image: ] and [image: ]. Then


[image: ]








and


[image: ]








so [image: ], [image: ], [image: ], [image: ], [image: ], [image: ], [image: ], and [image: ]. It follows from Equation (20) that [image: ], [image: ], [image: ], and [image: ]. Since A and B are ideals of X, we get [image: ], [image: ], [image: ], and [image: ]. Hence,


[image: ]











Therefore, [image: ] is a positive implicative ideal of [image: ]. ☐





Corollary 4.

Let A and B be ideals of a [image: ]-algebra X such that


[image: ]



(21)







Then [image: ] is a positive implicative ideal of [image: ].





Proof. 

If the condition expressed in Equation (21) is valid, then the condition expressed in Equation (20) is true. Hence, [image: ] is a positive implicative ideal of [image: ] by Theorem 11. ☐





Theorem 12.

Let A and B be subsets of a [image: ]-algebra X such that [image: ] and


[image: ]



(22)




for all [image: ]. Then [image: ] is a positive implicative ideal of [image: ].





Proof. 

Since [image: ], it is clear that [image: ]. We first show that


[image: ]



(23)







Let [image: ] be such that [image: ] (or B) and [image: ] (or B). Then


[image: ]








by Equation (1), which, based on Equations (1) and (22), implies that [image: ] (or B). Let [image: ][image: ][image: ][image: ], [image: ][image: ][image: ][image: ], and [image: ][image: ][image: ][image: ] be elements of [image: ] such that [image: ] and [image: ]. Then


[image: ]








and


[image: ]








so [image: ], [image: ], [image: ], [image: ], [image: ], [image: ], [image: ], and [image: ]. Note that


[image: ]








for [image: ]. Since [image: ] for [image: ] and [image: ] for [image: ], it follows from Equation (23) that [image: ] for [image: ], and [image: ] for [image: ]. Moreover, since [image: ] for [image: ], and [image: ] for [image: ], we have [image: ], [image: ], [image: ], and [image: ] by Equation (22). Hence,


[image: ]











Therefore, [image: ] is a positive implicative ideal of [image: ]. ☐





Theorem 13.

Let A and B be subsets of a [image: ]-algebra X such that [image: ] is a positive implicative ideal of [image: ]. Then the set


[image: ]



(24)




is an ideal of [image: ] for any [image: ].





Proof. 

Obviously, [image: ]. Let [image: ], [image: ] be such that [image: ] and [image: ]. Then [image: ] and [image: ]. Since [image: ] is a positive implicative ideal of [image: ], it follows from Equation (11) that [image: ] and therefore that [image: ]. Hence, [image: ] is an ideal of [image: ]. ☐





Combining Theorems 12 and 13, we have the following corollary.



Corollary 5.

If A and B are subsets of a [image: ]-algebra X satisfying [image: ] and the condition expressed in Equation (22), then the set [image: ] in Equation (24) is an ideal of [image: ] for all [image: ].





Theorem 14.

For any subsets A and B of a [image: ]-algebra X, if the set [image: ] in Equation (24) is an ideal of [image: ] for all [image: ], then [image: ] is a positive implicative ideal of [image: ].





Proof. 

Since [image: ], we have [image: ]. Let [image: ][image: ][image: ] be such that [image: ] and [image: ]. Then [image: ] and [image: ]. Since [image: ] is an ideal of [image: ], it follows that [image: ]. Hence, [image: ]. Therefore, [image: ] is a positive implicative ideal of [image: ]. ☐





Theorem 15.

For any ideals A and B of a [image: ]-algebra X and for any [image: ], if the set [image: ] in Equation (24) is an ideal of [image: ], then [image: ] is a positive implicative [image: ]-algebra.





Proof. 

Let [image: ] be any ideal of [image: ]. For any [image: ][image: ][image: ], assume that [image: ] and [image: ]. Then [image: ] and [image: ]. Since [image: ] is an ideal of [image: ], it follows that [image: ]. Hence, [image: ], which shows that [image: ] is a positive implicative ideal of [image: ]. Therefore, [image: ] is a positive implicative [image: ]-algebra. ☐





In general, the set [image: ] is an ideal of any neutrosophic quadruple [image: ]-algebra [image: ], but it is not a positive implicative ideal of [image: ] as seen in the following example.



Example 4.

Consider a [image: ]-algebra [image: ] with the binary operation ∗, which is given in Table 3.

Table 3. Cayley table for the binary operation “∗”.





	∗
	0
	1
	2





	0
	0
	0
	0



	1
	1
	0
	0



	2
	2
	1
	0










Then the neutrosophic quadruple [image: ]-algebra [image: ] has 81 elements. If we take [image: ] and [image: ] in [image: ], then


[image: ]








and [image: ]. However,


[image: ]











Hence, [image: ] is not a positive implicative ideal of [image: ].





We now provide conditions for the set [image: ] to be a positive implicative ideal in the neutrosophic quadruple [image: ]-algebra.



Theorem 16.

Let [image: ] be a neutrosophic quadruple [image: ]-algebra. If the set


[image: ]



(25)




is an ideal of [image: ] for all [image: ], then [image: ] is a positive implicative ideal of [image: ].





Proof. 

We first show that


[image: ]



(26)







Assume that [image: ] for all [image: ]. Then [image: ], so [image: ]. Since [image: ] and [image: ] is an ideal of [image: ], we have [image: ]. Thus, [image: ], that is, [image: ]. Let [image: ]. Then


[image: ]








which implies, based on Equations (3) and (26), that


[image: ]








that is, [image: ]. Since [image: ], it follows that


[image: ]



(27)







If we put [image: ] in Equation (27), then


[image: ]











On the other hand,


[image: ]








so [image: ], that is,


[image: ]











Hence,


[image: ]



(28)







If we use [image: ] instead of [image: ] in Equation (28), then


[image: ]








which, by taking [image: ], implies that


[image: ]











It follows that


[image: ]








so,


[image: ]











Since [image: ], it follows that


[image: ]



(29)







Based on Equation (29), it follows that


[image: ]








that is, [image: ]. Note that


[image: ]








which shows that [image: ]. Hence, [image: ]. Therefore, [image: ] is a positive implicative, so [image: ] is a positive implicative ideal of [image: ]. ☐






4. Conclusions


We have considered a neutrosophic quadruple [image: ]-number on a set and established neutrosophic quadruple [image: ]-algebras, which consist of neutrosophic quadruple [image: ]-numbers. We have investigated several properties and considered ideal theory in a neutrosophic quadruple [image: ]-algebra and a closed ideal in a neutrosophic quadruple [image: ]-algebra. Using subsets A and B of a neutrosophic quadruple [image: ]-algebra, we have considered sets [image: ], which consist of neutrosophic quadruple [image: ]-numbers with a condition. We have provided conditions for the set [image: ] to be a (positive implicative) ideal of a neutrosophic quadruple [image: ]-algebra, and the set [image: ] to be a (closed) ideal of a neutrosophic quadruple [image: ]-algebra. We have provided an example to show that the set [image: ] is not a positive implicative ideal in a neutrosophic quadruple [image: ]-algebra, and we have considered conditions for the set [image: ] to be a positive implicative ideal in a neutrosophic quadruple [image: ]-algebra.
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