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Abstract: A single-valued neutrosophic set is an instance of a neutrosophic set, which provides us an
additional possibility to represent uncertainty, imprecise, incomplete and inconsistent information
existing in real situations. In this research study, we present concepts of energy, Laplacian energy
and signless Laplacian energy in single-valued neutrosophic graphs (SVNGs), describe some of their
properties and develop relationship among them. We also consider practical examples to illustrate
the applicability of the our proposed concepts.
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1. Introduction

Smarandache [1] originally introduced the notion of neutrosophic set (NS) from philosophical
point of view. Wang et al. [2] put forth the notion of a single-valued neutrosophic set (SVNS) from
a scientific or engineering point of view, as a subclass of the NS and an extension of intuitionistic
fuzzy set (IFS) [3], and provide its various properties. The prominent characteristic of SVNS is that
a truth-membership, an indeterminacy-membership and a falsity-membership degree, in [0,1] are
independently assigned to each element in the set. IFSs cannot deal with all types of uncertainty,
such as indeterminate and inconsistent information, existing commonly in real situations. For instance,
if during a voting process there are sixteen voters, seven vote ‘aye’, six vote ‘blackball’ and three are
undecided. According to single-valued neutrosophic notation, it can be represented as 1(0.7,0.3,0.6).
This information is beyond the scope of IFS. That is why, the concept of SVNS is more extensive than
IFS. NS, particularly SVNS has attracted significant interest from researchers in recent years. It has
been widely applied in various fields, including information fusion in which data are combined from
different sensors [4], control theory [5], image processing [6], medical diagnosis [7], decision making [8],
and graph theory [9,10].

A graph is a mathematical object containing points (vertices) and connections (edges). For instance,
the vertices could represent communication centers, with edges depicting communication links.
Graph spectra is one of the most important concepts of graph theory. Gutman [11] introduced the
notion of energy of a graph in chemistry, because of its relevance to the total rr-electron energy of
certain molecules and found upper and lower bounds for the energy of graphs [12]. Later, Gutman
and Zhou [13] defined the Laplacian energy of a graph as the sum of the absolute values of the
differences of average vertex degree of G to the Laplacian eigenvalues of G. Signless Laplacian
energy of a graph was defined in [14]. However, in many real-life applications, there is a variety of
non-deterministic information due to the increase of system complexity. Sometimes, the connection
between two objects cannot be fully determined and to verify the properties of the graph traditional
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methods are useless. Erdos [15] used the probability theory, to deal with this problem. Meanwhile, after
the inception of fuzzy sets by Zadeh [16], the concept of fuzzy graph was put forth by Kaufmann [17]
and Rosenfeld [18] to handle the fuzzy phenomena in graphs. Fuzzy graphs are useful in representing
structures of relationships between objects, where the existence of a concrete object and relationship
between two objects are uncertain or obscure. Anjali and Mathew [19] investigated the energy of a
graph within the framework of fuzzy set theory. Laplacian energy of a fuzzy graph was defined by
Sharbaf and Fayazi [20]. Later on, many generalized fuzzy graphs [21-31] have been introduced in
literature. Among these extensions, the notion of intuitionistic fuzzy graph (IFG) whose vertex set and
edge set specify a degree of membership, a degree of non-membership and a degree of hesitancy was
proposed by Parvathi and Karunambigai [21], and Akram and Davvaz [23]. Praba et al. [32] defined
the energy of IFGs. Basha and Kartheek [33] generalized the concept of the Laplacian energy of fuzzy
graph to the Laplacian energy of an IFG. When description of the objects or their relations or both is
indeterminate and inconsistent, it cannot be handled by fuzzy graphs and IFGs. To overcome this
shortcoming of the IFGs, Akram et al. [24] extended the concept of IFGs to SVNGs and put forward
many new concepts related to SVNGs and its extensions [24-26]. Naz et al. [10] introduced the concept
of single-valued neutrosophic digraphs (SVNDGs). In this research study, we present concepts of
energy, Laplacian energy and signless Laplacian energy in single-valued neutrosophic graphs (SVNGs),
describe some of their properties and develop relationship among them. We also consider practical
examples to illustrate the applicability of the our proposed concepts.

Definition 1. [2] Let Z be a space of points (objects), with a generic element in Z denoted by u. A SVNS X
in Z is characterized by a truth-membership function Tx, an indeterminacy-membership function Ix and a
falsity-membership function Fx. For each point u € X, Tx(u), Ix(u), Fx(u) € [0,1]. Therefore, a SVNS X in
Z can be written as

X = {(u, Tx(u), Ix(u), Fx(u)) | u € Z}.

Definition 2. [24] A SVNG on a non-empty set Z isa pair G = (X, Y), where X is a single-valued neutrosophic
set (SVNS) in Z and Y is a single-valued neutrosophic relation on Z such that

Ty(MU) < min{Tx(M), TX(U)}/

Iy (uv) < max{Ix(u),Ix(v)},
Fy(uv) < max{Fx(u), Fx(v)}

forallu,v € Z. X and 'Y are called the single-valued neutrosophic vertex set and the single-valued neutrosophic
edge set of G, respectively. Here Y is a symmetric single-valued neutrosophic relation on X. If Y is not symmetric
on X, then D = (X, 7) is called SVNDG.

We have used standard definitions and terminologies, in this paper. For more details and
background, the readers are referred to [34—40].

2. Energy of Single-Valued Neutrosophic Graphs

In this section, we define and investigate the energy of a graph within the framework of SVNS
theory and discuss its properties.

Definition 3. The adjacency matrix A(G) of a SVNG G = (X,Y) is defined as a square matrix A(G) = [aj],
aj = (Ty(ujug), Iy (ujuy), Fy (ujuy)), where Ty (ujuy), Iy (ujuy) and Fy(ujuy) represent the strength of
relationship, strength of undecided relationship and strength of non-relationship between u; and uy, respectively.
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The adjacency matrix of a SVNG can be expressed as three matrices, first matrix contains the entries as
truth-membership values, second contains the entries as indeterminacy-membership values and the third
contains the entries as falsity-membership values, i.e,, A(G) = (A(Ty (ujux)), A(Iy (ujux)), A(Fy (ujug)))-

Definition 4. The spectrum of adjacency matrix of a SVNG A(G) is defined as (M, N, O), where M, N and
O are the sets of eigenvalues of A(Ty (ujuy)), A(Iy(ujux)) and A(Fy(ujuy)), respectively.

Example 1. Consider a graph G = (V, E), where V- = {uy, up, u3, uy, us, ug, uy } and E = {uquy, upusz, uziy,
Uiy, U1 Us, Uille, U1y, UsUs, Ugls, Uglly, Uplls, Usile, Ugly, Uguy }. Let G = (X,Y) be a SVNG on V, as shown
in Figure 1, defined by

X uq Uy Uz Uy U5 Ug uz
Tx 06 04 05 06 03 02 02
Ix 05 01 03 04 04 05 04
Fx 07 03 02 09 05 06 08
Y Uiy Usus UzUy Uguq Uius UilUg ujiuy Uzus UzUg usuy UsUs UsUg UgUy Uguy
Ty 0.2 0.3 0.3 0.5 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.2 0.1 0.2
Iy 0.1 0.1 0.2 0.3 0.4 0.3 0.3 0.3 0.3 0.2 0.1 0.1 04 0.3
Fy 0.4 0.3 0.7 0.6 0.6 0.6 0.7 0.4 0.4 0.5 0.4 0.6 0.7 0.7
Figure 1. Single-valued neutrosophic graph.
The adjacency matrix of a SVNG given in Figure 1, is
A(G) =
(0,0,0) (0.2,0.1,0.4) (0,0,0) (0.5,0.3,0.6) (0.2,0.4,0.6) (0.1,0.3,0.6) (0.2,0.3,0.7)
(0.2,0.1,0.4) (0,0,0) (0.3,0.1,0.3) (0,0,0) (0.2,0.1,0.4) (0,0,0) (0,0,0)
(0,0,0) (0.3,0.1,0.3) (0,0,0) (0.3,0.2,0.7) (0.2,0.3,0.4) (0.1,0.3,04) (0.2,0.2,0.5)
(0.5,0.3,0.6) (0,0,0) (0.3,0.2,0.7) (0,0,0) (0,0,0) (0,0,0) (0.2,0.3,0.7)
(0.2,04,0.6) (0.2,0.1,0.4) (0.2,0.3,0.4) (0,0,0) (0,0,0) (0.2,0.1,0.6) (0,0,0)
(0.1,0.3,0.6) (0,0,0) (0.1,0.3,0.4) (0,0,0) (0.2,0.1,0.6) (0,0,0) (0.1,0.4,0.7)
(0.2,0.3,0.7) (0,0,0) (0.2,0.2,0.5) (0.2,0.3,0.7) (0,0,0) (0.1,0.4,0.7) (0,0,0)
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The spectrum of a SVNG G, given in Figure 1 is as follows:

Spec(Ty (ujug)) = {—0.7137, —0.2966, —0.2273,0.0000, 0.0577, 0.2646, 0.9152},
Spec(ly(ujuy)) = {—0.7150, —0.4930, —0.0874, —0.0308,0.0507,0.2012,1.0743},
Spec(Fy (ujuy)) = {—1.2963, —1.1060, —0.5118, —0.0815,0.1507,0.5510, 2.2938}.

Therefore,

Spec(G) = {(—0.7137,—0.7150, —1.2963), (—0.2966, —0.4930, —1.1060), (—0.2273, —0.0874, —0.5118),
(0.0000, —0.0308, —0.0815), (0.0577,0.0507,0.1507), (0.2646,0.2012, 0.5510), (0.9152, 1.0743,2.2938) }.

Definition 5. The enerqy of a SVNG G = (X,Y) is defined as

n

E(G) = (E(Ty (wjug)), E(Iy (wjug)), E(Fy (1)) =< Y 1AL 21 1zl 21 |m|>-
]= 1=

j=1
AJEM QGN 77]€O

Definition 6. Two SVNGs with the same number of vertices and the same energy are called equienergetic.

Theorem 1. Let G = (X,Y) be a SVNG and A(G) be its adjacency matrix. If Ay > Ay > ... > Ay,
0120 > ... >Cfnandm > 12 > ... > 1y are the eigenvalues of A(Ty(ujuy)), A(ly(ujuy)) and
A(Fy(ujuy)), respectively. Then

n n n
1. Y Aj=0, % {j=0and Y 7,=0
=1 j=1

j=1 J
)LJGM QGN 1’]]60
n n n
2, A= 2y (Tv(ww)?, X & = 2 ¥ ((yu))?* and ¥ 77 =
=1 1<j<k<n j=1 1<j<k<n =1
)LJEM QEN 17]€O
2 ¥ (Fy(ujug))?
1<j<k<n

Proof. 1.  Since A(G) is a symmetric matrix whose trace is zero, so its eigenvalues are real with zero sum.

2. By matrix trace properties, we have

j=1
/\]‘EM
where
tr((A(Ty(ujuk)))z) = (0+T2(uup) + ...+ T%(ulun)) + (T2 (uguy) +0+ ... + le,(uzun))
+ A (T2 (uguy) + T2 (upun) + ... +0)
= 2 Y (Ty(uu))*
1<j<k<n
n n
Hence A2 = 2 % (Ty(u]-uk))z. Analogously, we can show that ? =
=1 1<j<k<n =
)\jGM QGN
n
2 ¥ ((uu))?and ¥ n7=2 ¥ (Fy(uu)) O
1<j<k<n j=1 1<j<k<n

17]'60
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Example 2. Consider a SVNG G = (X,Y) on V. = {uq,up,u3, uy, us, ug, uy}, as shown in Figure 1.
Then E(Ty (ujuy)) = 24752, E(Iy(ujuy)) = 2.6524 and E(Fy (ujuy)) = 5.9911.
Therefore, E(G) = (2.4752,2.6524,5.9911). Also we have

Z Aj = —=0.7137 — 0.2966 — 0.2273 + 0.0000 + 0.0577 + 0.2646 + 0.9152 = 0,

7

) A =1.5600 = 2(0.7800) =2 Y (Ty(ujux))?,
j=1 1<j<k<7
)L]'EM

i g =1.9600 = 2(0.9800) =2 Y (Iy(uju))?,

j=1 1<j<k<7
Q‘EN

7

Y., 77 =87600 =2(43800) =2 ) (Fy(ujur))*.
j=1 1<j<k<7
}7]'60

We now give upper and lower bounds on energy of a SVNG G, in terms of the number of vertices
and the sum of squares of truth-membership, indeterminacy-membership and falsity-membership
values of edges.

Theorem 2. Let G = (X,Y) be a SVNG on n vertices with adjacency matrix A(G) = (A(Ty(ujux)),
A(Iy(ujui)), A(Fy(ujuy))). Then

(i) \/2 Y (Ty(uju)2+n(n—1)|T|7 < E(Ty(ujuy)) < \/211 Y (Ty(ujue))?

1<j<k<n 1<j<k<n

1<j<k<n 1<j<k<n

(ii) \/2 Y (e ()2 +n(n—1)|I|7 < E(ly(ujuy)) < \/2n Y (Iy(ujug))?

(iii) \/2 Y (B(wju)2+n(n—1)|F|7 < E(Fy(tjuy)) < \/2” L (Fy(uju))?

1<j<k<n 1<j<k<n
where |T|,|I| and |F| are the determinant of A(Ty (ujux)), A(Iy(ujuy)) and A(Fy(ujuy)), respectively.

Proof. (i) Upper bound:
Apply Cauchy-Schwarz inequality to the n numbers 1,1, ...,1and |A1],|A2|, ..., |Axn], then

YN < V| Y IR 2.1)
=1

j=1

(i%) ZMIZH Y AiM 2.2)

j=1 1<j<k<n
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By comparing the coefficients of A" 2 in the characteristic polynomial

n

[T =) =[A(G) — A,

j=1

we have

Y, Mh=— ) (Tr(wum)) (2.3)

1<j<k<n 1<j<k<n

Substituting (2.3) in (2.2), we obtain

Z AFP=2 Y ( : 24

1<]<k<n
Substituting (2.4) in (2.1), we obtain
Z Al <vn 20) ( = [2n Y (Ty(uju))?
1<]<k<n 1<j<k<n

Therefore,

E(Ty(ujug)) < 21 ) (Ty(ujug))?.

1<j<k<n

(ii) Lower bound:

(E(Ty(ujuy)))* = (iMﬂ) Z|/\|2+2 Yo A
=

1<j<k<n

-2 ¥ (Ty(u]-uk)>2+2”(%AM{lAjAkl}

1<j<k<n

Since AM{[AAr|} > GM{|AA]}, 1< j <k <n,s0,

E(Ty(ujuk)) > /2 Z Ty u]uk 2+Tl(n—1)GM{‘/\ )\kl}
1<j<k<n

also since

_2

2 2
n(n—1) n(n—1) n n 5
cM{m]-Aku:( I wm) (nm = ) :(Hm) 3
=1

1<j<k<n

so,

E(Ty(ujux)) > |2 Z (Ty (ujuy)) 2—l—n(n—1)|T|n
1<j<k<n

Thus,
\/2 T (Ty(ujug))? +n(n—1)|T|7 < E(Ty(uup)) < f” Y (Ty(uug) 2

1<j<k<n 1<j<k<n
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Analogously, we can show that \/2 v (Iy(ujuk))2+n(n—1)|1|% < E(ly(uju)) <
1<j<k<n

f" T (h(uu)? and f Y (Bl +a(n-DE; < E(F(uu)) <

1<j<k<n 1<j<k<n

\/21”1 Z (Fy(ujuk))2. O

1<j<k<n

Example 3. (Illustration to Theorem 2) For the SVNG G, given in Figure 1

E(Ty(ujux)) = 2.4752,lower bound = 1.2490 and upper bound = 3.3045,
therefore, 1.2490 < 2.4752 < 3.3045,

E(Iy(ujuy)) = 2.6524,lower bound = 1.8823 and upper bound = 3.7041,
therefore, 1.8823 < 2.6524 < 3.7041,

E(Fy(ujuy)) = 5.9911, lower bound = 4.5226 and upper bound = 7.8307,
therefore, 4.5226 < 5.9911 < 7.8307.

3. Laplacian Energy of Single-Valued Neutrosophic Graphs
In this section, we define and investigate the Laplacian energy of a graph under single-valued

neutrosophic environment and investigate its properties.

Definition 7. Let G = (X,Y) be a SVNG on n vertices. The degree matrix, D(G) = (D(Ty(ujuy)),
D(Iy(ujux)), D(Fy(ujux))) = [djl, of G is a n x n diagonal matrix defined as:

0 otherwise

de(u;) ifj=k,
djk — { g( ]) ]
Definition 8. The Laplacian matrix ofa SVNG G = (X, Y) is defined as L(G) = (L(Ty (ujux)), L(Iy(ujuy)),
L(Fy(ujux))) = D(G) — A(G), where A(G) is an adjacency matrix and D(G) is a degree matrix of a SVNG G.

Definition 9. The spectrum of Laplacian matrix of a SVNG L(G) is defined as (Mp, Ny, Or), where My, N
and O are the sets of Laplacian eigenvalues of L(Ty (ujuy)), L(Iy(ujuy)) and L(Fy(u;juy)), respectively.

Example 4. Consider a SVNG G = (X,Y) of a graph G = (V,E), where V. = {uy, up, u3, ug, us, ug, 7 }
and E = {uquy, uyiis, Uiy, Upls, Uzily, UsUs, Uglly, Uglls, Uzlly, UzUs }, as shown in Figure 2.

11(0.4, 0.6, 0.3)

0O
u3(0.3,0.5,0.4)

u5(0.5,0.6,0.8) u4(0.7, 0.4, 0.5)

Figure 2. Single-valued neutrosophic graph.
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The adjacency and the Laplacian matrices of the SVNG shown in Figure 2 are as follows:

(0,0,0) (0,0,0) (0,0,0) (0.2,0.3,04)  (0.4,0.5,0.4) (0,0,0) (0,0,0)

(0,0,0) (0,0,0) (0,0,0) (0.1,0.3,0.6)  (0.2,0.4,0.6) (0,0,0) (0,0,0)

(0,0,0) (0,0,0) (0,0,0) (0.2,03,05)  (0.2,0.5,0.6) (0,0,0) (0,0,0)
A(G)=| (02,03,04) (0.1,03,06) (0.2,0.3,05) (0,0,0) (0.4,03,07) (0.4,0.1,03) (0.4,0.2,0.1)
(0.4,05,04) (0.2,04,0.6) (0.2,0506) (0.4,03,0.7) (0,0,0) (0.3,0.5,0.6)  (0.3,0.4,0.7)

(0,0,0) (0,0,0) (0,0,0) (0.4,0.1,03)  (0.3,0.5,0.6) (0,0,0) (0,0,0)

(0,0,0) (0,0,0) (0,0,0) (0.4,0.2,0.1)  (0.3,0.4,0.7) (0,0,0) (0,0,0)

(0.6,0.8,0.8) (0,0,0) (0,0,0) (=02,-03,—04) (—0.4,—05,—0.4) (0,0,0) (0,0,0)
(0,0,0) (03,07,1.2) (0,0,0) (=0.1,-03,-06)  (—02,—04,—0.6) (0,0,0) (0,0,0)
(0,0,0) (0,0,0) (0.4,08,1.1) (=02,-03,-05)  (—02,—0.5,—0.6) (0,0,0) (0,0,0)

LG) = | (-02,-03,-04) (-0.1,-03,—06) (—02,—03,—05) (17,15,2.6) (~04,-03,—07) (—04,—01,-03) (—04,—02,—0.1)
(~04,-05,—04) (—02,—04,—06) (—02,—05,—06) (—04,—03,—0.7) (1.8,2.6,3.6) (=03,-05,—06) (—03,—0.4,—0.7)
(0,0,0) (0,0,0) (0,0,0) (=04,-0.1,-03)  (—03,-05,—0.6) (0.7,06,0.9) (0,0,0)

(0,0,0) (0,0,0) (0,0,0) (—04,-02,-01)  (—03,-04,—0.7) (0,0,0) (0.7,0.6,0.8)

The Laplacian spectrum of a SVNG G, given in Figure 2 is

Laplacian Spec(Ty (u;uy)) = {—0.8857, —0.5652, —0.4422, —0.2754, —0.1857,1.0605, 1.2939},
Laplacian Spec(Iy(u]-uk)) = {—1.0857, —0.4950, —0.4533, —0.3485, —0.2857,0.6952,1.9731},
Laplacian SpeC(Fy(ujuk)) = {—1.5714, —0.8065, —0.7191, —0.5957, —0.4212, 1.4560, 2.6581}.

Therefore,

Laplacian Spec(G) = {(—0.8857, —1.0857, —1.5714), (—0.5652, —0.4950, —0.8065), (—0.4422, —0.4533, —0.7191),

{
(—0.2754, —0.3485, —0.5957), (—0.1857, —0.2857, —0.4212), (1.0605, 0.6952, 1.4560),
(1.2939,1.9731,2.6581) }.

Theorem 3. Let G = (X,Y) bea SVNG and let L(G) = (L(Ty(ujuy)), L(Iy(ujuy)), L(Fy(ujuy))) be the
Laplacian matrix of G. If 1 > O > ... > 0p, 91 2> @2 > ... > @uand Y1 > Y > ... > Py are the
eigenvalues of L(Ty (ujuy)), L(Iy(ujuy)) and L(Fy(ujuy)), respectively. Then

1. 3 8 =2 ¥ Ty(uuy), i ¢ =2 Y Iy(uju)and i pi=2 ¥ Fe(uuy)

=1 1<j<k<n =1 1<j<k<n =1 1<j<k<n
#EM @;ENL P;e0L

n n n

2. YO = 2 Y (Ty(uu))?> + L d2,  (u), ¥ ¢* = 2 ¥ (Iy(uju))? +

PR 1§j<k§n( (ujug)) P Ty () (47) L 9 1S],<k§n( (ju))
19]‘€ML quENL
n n n

d? u;) and 2=2 Fy (ujug))? d> uj).
jgl Iy(u/-uk)( j) an jgl ¥; 1§j§k§n( v (i) +j§l Fy(ujuk)( )

PO

Proof. 1.  Since L(G) is a symmetric matrix with non-negative Laplacian eigenvalues, such that

i; 8 = tr(L(G)) = idTy(ltjuk)(uj) =2 Y Ty(uu).
j= j=
M

1<j<k<n
19]'6
n n
Similarly, it is easy to show that, ¥ ¢;=2 Y Iy(uu)and Y ;=2 ¥  Fy(uju).
j=1 1<j<k<n j=1 1<j<k<n
@;ENL l[JjEOL

2. By definition of Laplacian matrix, we have

dTy(u]-uk) (Ml) —Ty(uluz) . —Ty(ulun)

—Ty(ugur) Ay (u2) ... —Ty(uguy)
L(Ty (ujuy)) = el

_TY(unul) _TY(uHUZ) e dTy(u]-uk) (uVl)
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By trace properties of a matrix, we have

tr((L(Ty(Mjuk)))z): )3 19]2

j=1
19]'€ML
where
LTy () P) = (B (1) + TH102) .+ T (w1100))
+(T2 (uguy) + dTy(u woy(2) + o+ T2 (upuy))
oo+ (T2 (upuy) + T2 (unuo) + ...+ dTy(u up) (1n)
n
= 2 Z (Ty(u]uk))z + Z d%—y(ujuk)(uj).
1<j<k<n j=1
Therefore,
n n
Z 19]2: Z (Ty(ujuk))2+Zd%y(ujuk)(u]').
j=1 1<j<k<n j=1
ﬁjEML
Analogously, we can show that
n
3 pr = 2 ¥ (Iy(ujug))?* + Z T ujug y(w) and ¥ ¢ = 2 ¥ (Frlum)) +
] ; y( ; ] ;
j=1 1<j<k<n = j=1 1<j<k<n
(P]GNL l[J]EOL

Z Fy(u]uk)(uj)' -

Definition 10. The Laplacian energy of a SVNG G = (X,Y) is defined as

LE(G) = (LE(Ty(ujuk)), LE(Iy (ujuy)), LE(Fy (u <Z|Q;| Zlé‘]\ ZT]>
where
2 Y Ty(ujuyg) 2y Iy(ujug) 2 Y Fy(ujug)
1<j<k<n 1<j<k<n 1<j<k<n
0 =i~ " 6= " G=¥i- "
Theorem 4. Let G = (X,Y) be a SVNG and let L(G) be the Laplacian matrix of G. If 01 > 0, > ... > 0y,
P1 > @2 = ... > ppand Y1 > Yo > ... > iy, are the eigenvalues of L(Ty(ujuy)), L(Iy( jux))
2 Y Ty(uwuy) 2 r IY(”]”k)
and L(Fy(ujuy)), respectively, and o; = ¢; — Wf,é‘j = ¢ — %,Tj = ¥ —
21<§k< Fy (ujuy)
Sj<k=n
——————_Then
n n n
2. =0)¢=03) 5=0
j=1 j=1 j=1
n
; JZZZMT,Zc:] —ZM[,ZT = 2Mp,
]:
where 5
1¢ 21< Zk< T (4¢)
<j<k<n
Mrp = Z (TY( )>2+§Z dT (u/uk)(u] - n ’
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1 21<'Zk< i)
SJ<K<n
Mi= Y ()l + 5 Y0 | iy gy () = — :

1<j<k<n j=1 n

2 Y Fy(uju)
1<j<k<n

M= ¥ (Rl + 5 3 | ey g ()

1<j<k<n j=1 n

Example 5. Consider a SVNG G = (X,Y) on V. = {uq,uy,us, uy, us, ug, uy}, as shown in Figure 2.
Then LE(Ty (u;uy)) = 4.7086, LE(Iy (ujuy)) = 5.3364, LE(Fy () = 8.2279.
Therefore, LE(G) = (4.7086,5.3364,8.2279). Also we have

7 7 7
2.9=0)¢8=0) 5=0
j=1 j=1 j=1

7
07 = 4.2086 = 2(2.1043) = 2Mr,

j=1

7

5]2 = 6.2086 = 2(3.1043) = 2M,
j=1

T2 = 133543 = 2(6.6771) = 2 M.

M

Tl
I

Theorem 5. Let § = (X,Y) be a SVNG on n vwvertices and let L(G) =
(L(Ty (ujug)), L(Iy (ujuy)), L(Fy(ujuy))) be the Laplacian matrix of G. Then

n 21<‘§k<nTY(ujuk) ’
() LE(Ty(ujur)) < 4|21 ¥ (TY(ujuk))zﬂL”,Zl (dTy(ujuk)(u]') - ]n> ;
]:

1<j<k<n

7

L 21<‘§k<nIY(ujuk) ?
) LE(h (i) < yj2n L (F(ujue))® +n X <d1y<u,-uk)(”j)—’n>
]:

1<j<k<n

2 Y Fy(uw) ) 2

i) LE(Fy(uju)) < |20 % (Fr(uux))? +n 1 (dwjuk)(”j) e
1<j<k<n j=1

Proof. Apply Cauchy-Schwarz inequality to the n numbers 1,1,...,1and |01}, |02], .., |0x|, we have

n n
Y loil < v | Y lojl?
=1 =1

LE(Ty(ujuk)) < ﬁ\/ZMT = \/ZHMT.

2 Y Ty(ujuy) > 2

n .
Since Mr= L (Ty(uju))*+3 & (dTm]-uk)(uj) B
1<j<k<n j=1

2 ¥ TY(”j“k)>2

n A
therefore, LE(Ty (ujur)) < JM L (Ty(uju))>+n ) (dTy(u]-m(uj) T
1<j<k<n j=1
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Analogously, it is easy to show that

L 21<'§k<n IY(ujuk)
LE(Iy(ujug)) < 4|20 ¥ (Iy(ujug))? +n ‘):1 (dly(ujuk)(u]') - ]n>
]:

1<j<k<n
21<'§k<nFY( j”k) ?
andLE(FY(”fuk))S 2n ) (FY(uj”k)) +n2 dFy uuk)(u]) % - O
l§]<k§7l ]_
Theorem 6. Let G = (X,Y) be a SVNG on n wvertices and let L(G) =

(L(Ty (ujug)), L(Iy (ujuy)), L(Fy(ujuy))) be the Laplacian matrix of G. Then

" 2 e YO
() LE(Ty(ujug)) >24| ¥ (Ty(uug))?+3 ¥ (dTy(u-uk)(”j) - ]n> ;

1<j<k<n j=1
o 2 % ) 2
.e <j<k<n
(i) LE(Iy(ujur)) > 25| Y (Iy(uug))*+3 T <dzy(ujuk)(uj) - ) ;
1<j<k<n j=1

w 2]<'§k<nl: (i)
Gif) LE(Fy(ujug) 22y L (Fy(uju) 2 +3 ¥ <dPy<ufuk>(uj>]n> '

Proof.

2
n
(ZI@I) Z|Q;\2+2 Y. lojoxl > 4Mr
=1

1<j<k<n

LE(Ty (ujur)) > 2/ M

SinceMT: Z (Ty(ufuk)) + Z (dTyuuk)(u]) %

1<j<k<n

2 Y Ty(uju) > 2

n .
therefore, LE(Ty (ujuy)) > 2 Y (Ty(ujuk))z + % Y (dTy(ujuk)(“j) — #
1<j<k<n =1

Similarly, it is easy to show that

2 v Iy(ujuy)
1<j<k<n
LE(Iy(ujux)) > 2 Y (y(uju)?+3 ¥ (dly(ujuk)<uj)__] = >

1<j<k<n j=1

and LE(Fy(ujui)) > 2 Y (By(ujug))®+ 3 Z (dFyuuk)(u]) ]n> . 0O
1<j<k<n

Theorem 7. Let § = (X,Y) be a SVNG on n vwvertices and let L(G) =
(L(Ty (ujug)), L(Iy (ujuy)), L(Fy(ujuy))) be the Laplacian matrix of G. Then

21<Zk< Ty (ujug) 2
() LE(Ty(ujup)) <lorl+ [(n=1) (2 ¥ (Ty(ujux))*+ Z (dn o) (M])—K"n> —ail;

1<j<k<n

n 2 <‘E<11Y<”j”k)
(i) LE(Iy(ujug)) < |G1| + | (n—1) (2 Y (Iy(ujug))? + ‘21 (dzy(ujuk)(uj) - ) - é‘%);
]:

1<j<k<n

1<j<k<n j=1

21<'§k<nFY(ujuk) ’
Gii) LE(Fy(ujux)) < |ml+ |(n=1) 2 ¥ (Fr(um))*+ ¥ (dpy(ujuw(uj)]n) -1 |-
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Proof. Using Cauchy-Schwarz inequality, we get

n n
Y lojl < | n ) lojl?
j=1 j=1
n n
Y lojl < | (n=1))_ loj|?
=2 =2

LE(Ty (1)) — 01| < 1/ (n = 1) (2Mr — ¢3)

LE(Ty (uji)) < lo1] +/(n — 1) (@M — )

n 21<,2k< Ty (ujuy) 2
Since My = ¥ (Ty(ujug))*+ 5 ¥ (dTY(u»uk)(”j) - ’<"n> , therefore
1<j<k<n j=1 /

1<j<k<n j=1

2 Z Ty (ujuy) 2
LE(Ty(ujux)) < leal+ | (n—1) (2 Y (Ty(ujup))? + & (dTy(u]uk)(uj) - 1“%) Q%) (3.1)

Similarly, we can show that LE(Iy (ujuy)) < |¢1]

1<j<k<n

n 2 Zk Iy (ujuy) 2
1<j<k<n
+ |n=1)(2 X (Iy(uu))?+ ‘21 (dzy(ujuk)(uj) - ) -
=

and LE(Fy (ujuy)) < |7

1<j<k<n

n 21<_)<:%(< Fy (uju) 2
+ (” - 1) 2 X (FY(ujuk))z + 121 (dFy(ujllk)(uf) - ]n> - le .
=

Theorem 8. If the SVNG G = (X,Y) is regular, then

1<j<k<n

() LE(Ty(ujuy)) < [o1] + \J (n—1) (2 Y (Ty(ujug))? = Q%>?

1<j<k<n

(i) LE(Iy(ujug)) < [&1| + \J (n—1) (2 Y (Iy(ujug))? - C%>;

(iii) LE(Fy(ujuk)) < ‘Tll + $ (1’1 — 1) <2 Y (FY(”juk))2 — Tl2> .
1<j<k<n
Proof. Let G be a regular SVNG, then

2 Y Ty(ujug)

1<j<k<n

dTy(L{juk) (u]) = (32)

n

Substituting (3.2) in (3.1), we get LE(Ty (ujux)) < |o1| + \J (n—1) (2 Y (Ty(uug))? — Q%)

1<j<k<n
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1<j<k<n

Similarly, it is easy to show that LE(Iy(uju)) < [¢1] + \l (n—1) (2 Y Iy (uju))? — g%)

1<j<k<n

and LE(Fy(ujuy)) < || + J (n—1) (2 Y (Fy(ujug))? — r12> O
Theorem 9. Let G = (X,Y) be a SVNG on n vertices with Laplacian matrix L(G) = (L(Ty (ujuy)),
L(Iy(ujuk)),L(Fy(ujuk))>. Then

4l Y Ty(ujug)
1<j<k<n

LE(Ty (ujuy)) = max 25)(Ty (ujux)) — p )
4 v Iy(uj)

LE(Iy(ujug)) = max 28 (Iy (ujux)) — l§]<k§2 ’
41 ) Fy(ujuk)

LE(Fy(ujux)) = 1Igfagxn 25, (Fy (ujuy)) — 1§]<k§:l )

I I I
where S(Ty (ujuy)) = ‘21 8;, S (Iy (ujuy)) = '21 @j and Sy (Fy (ujuy)) = Zl Pj.
j= j= j=

4. Signless Laplacian Energy of Single-Valued Neutrosophic Graphs
Definition 11. The signless Laplacian matrix of a SYNG G = (X, Y) is defined as L* (G) = (L™ (Ty (ujuy)),

Lt (Iy(ujug)), LT (Fy(uju))) = D(G) + A(G), where D(G) and A(G) are the degree matrix and the
adjacency matrix, respectively, of a SVNG G.

Definition 12. The spectrum of signless Laplacian matrix of a SVNG L (G) is defined as (M +, Ny +,0p+),
where M+, N+ and Oy + are the sets of signless Laplacian eigenvalues of L™ (Ty (ujuy)), L™ (Iy (ujuy)) and
L* (Fy(ujuy)), respectively.

Example 6. Consider a SVNG G = (X,Y) of a graph G = (V,E), where V. = {u1,uy, us, g, Us, Ug, Uy}
and E = {uquy, upuz, usily, ugls, Usily, Ugly, Uelly, Usils, U1 Uy, Uply, Usiy }, as shown in Figure 3.

u5(0.3,0.5,0.4)

u6(0.1,0.3,0.5)

Figure 3. Single-valued neutrosophic graph.

The adjacency and the signless Laplacian matrices of the SVNG, shown in Figure 3 are as follows:
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(0,0,0)  (0.1,03,0.6)  (0,0,0) (0,0,0) (0,0,0)  (0.1,0.2,0.3) (0.2,0.1,0.2)
(0.1,03,06)  (0,0,0)  (0.3,02,05)  (0,0,0) (0,0,0) (0,0,0)  (0.4,0.3,0.5)
(0,0,0)  (0.3,02,05)  (0,0,00  (04,0.1,03) (0.3,02,05)  (0,0,0)  (0.3,0.2,0.4)
A(G) = (0,0,0) (0,0,0)  (04,01,03)  (0,0,0)  (0.2,04,03)  (0,0,0) (0,0,0)
(0,0,0) (0,0,0)  (0.3,0.2,05) (0.2,04,03)  (0,0,0) (0,0,0)  (0.3,0.1,0.2)
(0.1,0.2,03)  (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)  (0.1,0.3,0.4)
(0.2,0.1,02) (0.4,03,05) (0.3,02,04)  (0,0,0)  (03,0.1,02) (0.1,03,04)  (0,0,0)
(04,06,1.1) (0.1,0.3,06)  (0,0,0) (0,0,0) (0,0,0)  (0.1,02,03) (0.2,0.1,0.2)
(0.1,03,0.6) (0.8,0.8,1.6) (0.3,02,05)  (0,0,0) (0,0,0) (0,0,0)  (0.4,0.3,0.5)
(0,0,0)  (03,02,05) (1.3,07,17) (0.4,0.1,03) (03,02,05)  (0,0,0)  (0.3,0.2,0.4)
LT(G) = (0,0,0) (0,0,0)  (04,0.1,03) (0.6,05,0.6) (0.2,04,03)  (0,0,0) (0,0,0)
(0,0,0) (0,0,0)  (0.3,02,05) (0.2,04,03) (0.8,0.7,1.0)  (0,0,0)  (0.3,0.1,0.2)
(0.1,02,03)  (0,0,0) (0,0,0) (0,0,0) (0,0,0)  (02,05,0.7) (0.1,0.3,0.4)

(02,0.1,02) (0.4,0.3,05) (03,02,04)  (0,0,0)  (0.3,01,02) (0.1,0.3,04) (1.3,1.0,1.7)

The signless Laplacian spectrum of a SVNG G, given in Figure 3 is

Signless Laplacian Spec(Ty (u;uy)) = {—0.6176, —0.4406, —0.3647, —0.3184,0.0300, 0.4324, 1.2792},
Signless Laplacian Spec(ly(ujuk)) = {—0.5270, —0.4824, —0.2533, —0.0297, 0.0686, 0.3889, 0.8349},
Signless Laplacian Spec(Fy(u]-uk)) = {-0.8718, —0.7690, —0.5311, —0.2577,0.1719,0.5803, 1.6774}.

Therefore,

Signless Laplacian Spec(G) = {(—0.6176, —0.5270, —0.8718), (—0.4406, —0.4824, —0.7690), (—0.3647,
—0.2533, —0.5311), (—0.3184, —0.0297, —0.2577), (0.0300, 0.0686, 0.1719),
(0.4324, 0.3889, 0.5803), (1.2792,0.8349, 1.6774) }.

Theorem 10. Let G = (X,Y) be a SVNG and let LT (G) be the signless Laplacian matrix of G.
o >0, >...>285, of > o > ... > @f and ¢ > 95 > ... > ¢ are the eigenvalues of
LH(Ty(ujug)), Lt (Iy(ujuy)) and LT (Fy(ujuy)), respectively. Then

1. 3 o = 2 ¥ Ty(wu), 3 ¢ = 2 Y I(wu) and 5 y =
j=1 1<j<k<n ] 1 1<j<k<n ] 1
19+GML+ §0] ENL+ l[J] EOL+
2 Y Fy(uju)
1<j<k<n
n n
2 L @P=2 ¥ (Tyuw)? +2 B () L (@2 =2 T ((wu)?+
i=1 1<j<k<n v (i j=1 1<j<k<n
19+GML+ ¢+€NL+
d N2 =2 F
g Iy (uju )( u;) an 121 (%) 1§j§k§n( Y(“ )) +§ Fy( M]uk)( uj).
l/’ €0+

Proof. Proof follows at once from proof of Theorem 3. [

Definition 13. The signless Laplacian energy of a SVNG G = (X, Y) is defined as

LE*(G) = (LE* (Ty(ujui)), LE* (Iy (ujur)), LE* (Fy (ujuy))) = <Z|Q]+| Z|§+| Z|T+>

where

21 Zk Ty (ujuy) 21 Zk Ly (ujuy) 21 Zk Fy (ujuy)
+ _ gt _ 1Si<ksn + _ ot _ _1Sj<ksn + gt _ _Si<ksn
o =9 " & =9 " T "



Axioms 2018, 7, 50 15 of 30

Theorem 11. Let G = (X,Y) be a SVNG and let L™ (G) be the signless Laplacian matrix of G. If 9] >

8 > .= 08 of > 9f > ... > @f and ¢ > v > ... > ¢ are the eigenvalues of
2y Ty(uu)
L*(Ty(uju)), Lt (Iy(ujug)) and Lt (Fy(ujuy)), respectively, and Q;r = 19;' — %,g’f =
2y Iy(ujug) 2 Y Fy(ujug)
(,0]«+ — —1S]<k9;l ,Tj+ :1/;].+ — —1S]<k§’; . Then

n n n
Lo =015 =0}, 5 =0
j=1 j=1 j=1

j=1 = j=1
where
1 21<'Zk< TY(u]uk)
j<k<n
M'I-t = (TY(u]uk))Z + E Z dTy(ujuk)( ]) - n 4
1<j<k<n j=1
1¢& 21<‘§k< Br{ujit)
SJ<K=n
M?’ = Z (IY(M]uk))z + E Z dly(u]‘uk)(uj) - n 4
1<j<k<n =1
14 21<'Zk< FY(u]uk)
j<k<n
M;_ = (FY(u]uk))z + E Z dFy(Mlek) (u]) -
1<j<k<n j=1 n

Example 7. Consider a SVNG G = (X,Y) on V. = {uq,uy, us, uy, us, ug, uy}, as shown in Figure 3.
Then LE* (Ty (ujur)) = 3.4830, LE* (Iy (ujuy)) = 2.5848, LE* (Fy(ujuy)) = 4.8593.
Therefore, LET(G) = (3.4830,2.5848,4.8593). Also we have

7 7 7
Yo =0y —0 Y ~o
=1 j=1 j=1
7 7
Y (o) =2.6343 = 2(1.3171) = 2M{, ) (&)* = 14286 = 2(0.7143) = 2M,
j=1 =1
7
Y (7')? = 4.8800 = 2(2.4400) = 2M}.
j=1
Theorem 12. Let G = (X,Y) be a SVNG on n vertices with signless Laplacian matrix LT(G) =

(L (Ty (ujug)), LT (Iy (ujuy)), L™ (Fy (ujui))). Then

4l Y Ty(ujuy)
1<j<k<n

LE+(Ty(ujuk)) = max ZST(Ty(u]'Mk)) —

1<I<n n

4l Y Iy(ujuy)

+ . + 1<j<k<n
LET (Iy (uju)) = max § 25" (I (jti)) = .
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4] 1<‘Zk< Fy(u]'uk)
J<k<n
LE+(FY(u]-uk)) = 112[3;” ZS;F(Fy(u]-uk)) — " ,
l l l
where S (Ty (1)) = X 8, S} Iy () = X of and Sf (Fy () = X 9

5. Relation among Energy, Laplacian Energy and Signless Laplacian Energy of SVNGs
This section discusses the relationship among energy, Laplacian energy and signless Laplacian

energy of SVNGs.

Theorem 13. Let G be a SVNG on n vertices and let A(G), L(G) and L*(G) be the adjacency, the Laplacian
and the signless Laplacian matrices of G, respectively. Then |LE*(G) — LE(G)| < 2E(G).

Proof. Clearly,

21<‘Ek< Ty (ujug) 21<Zk< Ty (ujug)
<Sj<ksn <SJ<k<n
L (Ty (ujuy)) = ——— = D(Ty (ujur)) + A(Ty (wjuy)) — ———— (5.1)
21<,Zk< Ty (ujuk) 21<'Zk< Ty (ujug)
<K<n <Kk<n
L(Ty (ujuy)) = —— = D(Ty (ujug)) = A(Ty () = —— (5.2)
From Equations (5.1) and (5.2), we get
21<.Zk< Ty(ll]'uk) 21<'Zk< TY(ujuk)
<k<n <ksn
L (Ty (ujuy)) = ——— - | Ly ) - —— = 2A(Ty (wjuy)
Then,
21<4Zk< Ty (ujug) 21<,Zk< Ty (ujuy)
<k<n <k<n
L(Ty (juy)) = ——— = | L*(Ty () - —— — 2A(Ty (ujuy))
Also
21<.Zk< Ty (uju) 21<,Zk< Ty (ujug)
<k<n <ksn
L (Ty (wjug)) = —— = 2A(Ty (1)) + | L(Ty (ujug)) — ———
By well known property of energy of a graph,
2 Y Ty(ujux) 2y Ty(ujug)
LE(Ty(ujur)) = E<L(TY(”j”k))_ — ><E<L+(Ty(ujuk))— " )
(5.3)
+E(—2A(Ty (ujux)))
= LE"(Ty(ujuy)) + 2E(Ty (ujuy))
21<'Z;(< TY(u/uk) 21<'Z;<< TY(ujuk)
LE*(Ty(ujug)) = E<L+(TY(”j”k))_ T )§E<L(TY(ujuk))— T )
(5.4)
+EQA(Ty (ujux)))

LE(Ty(M]‘uk)) + 2E(

Ty (ujug))
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Combining (5.3) and (5.4), we get |LE*(Ty(ujug)) — LE(Ty(ujuy))|
Analogously, we can show that |LET(Iy(ujug)) — LE(Iy(ujug))| <
‘LEJ’_(Fy(Mjuk)) — LE(Fy(M]Mk))‘ S 2E(Fy(ujuk)). Hence |LE+(Q) — LE(Q)l S

Theorem 14. If the SVNG G is regular. Then E(G) = LE(G) = LE™(G).

2E

< ZE(Ty(Mju
2E(Iy(bl]

(g). O

ug))

17 of 30

k)

and

Theorem 15. Let G = (X,Y) be a SVNG on n vertices and let L(G) and L*(G) be the Laplacian and the

signless Laplacian matrices of G, respectively. Then

21<‘§k< Ty (u54e)
LE*(Ty (ujux)) + LE(Ty (ujug)) > max § 2E(Ty (ujux)), 25y |dry(upuy) () — ———5—| ¢/
2o Ea, Y U)
LE+(Iy(I/l]‘Mk)) + LE(Iy(u]-uk)) > max {ZE(Iy(ujuk)),227_l dly(”j”k)(uj) _ 1S = )
2 Z Fy(lljuk
1<j<k<n

LE* (Fy(ujuy)) + LE(Fy (ujux)) > max {2E(FY(”]‘”I<))/ZZ}1_1 Ay () () —

n

} .

Theorem 16. Let G = (X,Y) be a SVNG on n vertices and let L(G) and L*(G) be the Laplacian and the

signless Laplacian matrices of G, respectively. Then

4r Y Ty(uju)
LE*(Ty (1)) + LE(Ty () = 4E(Ty (ujug)) = — =~

4r Z Iy(lljuk)
1<j<k<
LE* (Iy (uju)) + LE(Fy (ujug)) 2 4E(Fy (ujng)) = ————

4r Y Be(ujuy)

LE* (Fy () + LE(Fy (1)) > 4E(Fy (jug) = — =~
where 1 is the number of non-zero eigenvalues of SVNG G.
Theorem 17. Let G = (X,Y) be a SVNG on n wvertices and let L(G)

(L(Ty (ujug)), L(Iy (ujuy)), L(Fy (ujuy))) be the Laplacian matrix of G. Then

1<j<k<
LE(Ty (ujuy)) < E(Ty (ujuy)) + Shbbs

2 Y Ty(uju)

-

dTy(Mij) (uf) - n

j=1

1<j<k<n

2 Y Iy(ujug)

LE(IY( k) < E(Iy(u uk + Z dIY(“juk)(uj) o n

1<j<k<n

2 Y Fy(ujug)

-

LE(Fy (ujur)) < E(Fy (ujug)) + ) |dpy (uuy) (47) — .

1

]

Theorem 18. Let G = (X,Y) bea SVNG on n vertices and let L™ (G) = (L™ (Ty (ujuy)), L™ (Iy (ujuy)),

L* (Fy(ujuy))) be the signless Laplacian matrix of G. Then

1<j<k<n

2 ¥y TY(”]”k)

n
LE™(Ty (ujux)) < E(Ty(ujuy)) Z A1y, () (1) —
fasct

n

1<j<k<n
LE* (Iy (ujug)) < E(Iy(ujug)) + 2 A1y (ujuy) (1) —
=

n

2 Y Iy(ujm)
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2 ) FY(”]”k)

L 1<j<k<n

LE+(FY(ujuk)) < E FY Z Fyr( u]uk
]:

n

Theorem 19. Let G be a connected SVNG on n vertices and let L (G) = (L™ (Ty (ujuy)),
L (Iy (ujuy)), LT (Fy (ujug))) be the signless Laplacian matrix of G. Then

2
LE*(Ty(u]-uk)) < E(Ty(ujlzlk)) + n Zd%y(u/uk) (l/l]) —4 ( Z Ty(u]-uk)) ,

j=1 1<j<k<n

2
LE™ (Iy(uju)) < E(Iy(ujug)) + | n Zdi(u,-uk)(”f) —4 ( Y IY(ujuk)> ,

1<j<k<n

2
LE+(Fy(ujuk)) < E(Fy(u]-uk)) + n Zldlzfy(ujuk)(uj) —4 ( Z Fy(ujuk)) .

1<j<k<n

6. Application of Energy of SVNGs in Group Decision-Making

Group decision-making is a commonly used tool in human activities, which determines the
optimal alternative from a given finite set of alternatives using the evaluation information given by a
group of decision makers or experts. With the rapid development of society, group decision-making
plays an increasingly important role when dealing with the decision-making problems. Recently, many
scholars have investigated the approaches for group decision-making based on different kinds of
decision information. However, in order to reflect the relationships among the alternatives, we
need to make pairwise comparisons for all the alternatives in the process of decision- making.
Preference relation is a powerful quantitative decision technique that support experts in expressing
their preferences over the given alternatives. For a set of alternatives Z = {z1,22,.--, zn}, the experts
compare each pair of alternatives and construct preference relations, respectively. If every element in
the preference relations is a single-valued neutrosophic number, then the concept of the single-valued
neutrosophic preference relation (SVNPR) can be put forth as follows:

Definition 14. A SVNPR on the set Z = {z1,z3,...,24} is represented by a matrix R = (ij)nxn,
where 1. = (zjzx, T(zjzx), 1(zjzk), F(zjzk)) for all j,k = 1,2,...,n. For convenience, let iy = (Tj, Ly, Fix)
where Tjy indicates the degree to which the object z; is preferred to the object zy, Fj denotes the degree to which
the object z; is not preferred to the object zy, and Iy is interpreted as an indeterminacy-membership degree,
with the conditions:

T]k/I]k/ Ji3 S [0 1] ]k = Fk]r ij = Tk]/ I]k+1k] = 1 T = I = F —05 forull],k— 1 2

A group decision-making problem concerning the ’Alliance partner selection of a software
company’ is solved to illustrate the applicability of the proposed concepts of energy of SVNGs in
realistic scenario.

Alliance Partner Selection of a Software Company

Eastsoft is one of the top five software companies in China [41]. It offers a rich portfolio of
businesses, including product engineering solutions, industry solutions, and related software products
and platform and services. It is dedicated to becoming a globally leading IT solutions and services
provider through continuous improvement of organization and process, competence development
of leadership and employees, and alliance and open innovation. To improve the operation and
competitiveness capability in the global market, Eastsoft plans to establish a strategic alliance with
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a transnational corporation. After numerous consultations, five transnational corporations would
like to establish a strategic alliance with Eastsoft; they are HP a1, PHILIPS a5, EMC a3, SAP a4 and
LK as. To select the desirable strategic alliance partner, three experts ¢; (i = 1,2,3) are invited
to participate in the decision analysis, who come from the engineering management department,
the human resources department, and the finance department of Eastsoft, respectively. Based on their
experiences, the experts compare each pair of alternatives and give individual judgments using the
following SVNPRs R; = (r ())5X5 (i=1,2,3):

The SVNDGs D; correspondmg to SVNPRs R; (i = 1,2,3) given in Tables 1-3, are shown in Figure 4.

Table 1. SVNPR of the expert from the engineering management department.

Ry ax as as a as

4, (05,05,05) (04,06,03) (02,04,06) (0.7,06,03) (0.3,0.1,0.6)
1 (03,04,04) (05,0505 (07,0308 (04,0.1,04) (0.1,03,0.5)
a3 (0.6,06,02) (08,07,07) (050505 (03,0604) (0.2,03,04)
ay (O.3, 0.4, 0.7) (O.4, 0.9, 0.4) <0.4, 04, 0.3) (0.5, 0.5, O.5> <0.3, 0.1, O‘3>
as  (0.6,09,0.3) (0.5,0.7,0.1) (0.4,0.7,0.2) (0.3,0.9,0.3) (0.5,0.5,0.5)

Table 2. SVNPR of the expert from the human resources department.

R2 al ar as ag as

a1 (05,05,05) (0503,01) (01,0705 (0.3,09,05) (0.2,0.70.8)
a, (0.1,0.7,05) (0.5,05,05) (05,0.1,0.6) (0.6,0.7,0.1) (0.4,0.6,0.8)
a3 (05,03,01) (0.6,09,05) (05,05,05) (09,02,03) (0.1,0.4,0.1)
a;  (05,0.1,03) (0.1,03,06) (0.3,08,09) (0.505,05) (0.8,0.4,0.2)
a5 (0.8,03,02) (0.8,04,04) (0.1,06,0.1) (0.2,0.6,0.8) (0.5,0.5,0.5)

Table 3. SVNPR of the expert from the finance department.

R3 ai an as ag as

a;  (05,05,05) (09,0807 (0.1,07,02) (0.4,03,0.1) (0.6,0.3,0.6)
a, (0.7,02,09) (05,05,05) (04,03,06) (0.6,0.3,04) (0.7,0.2,0.9)
a3 (0.2,0.3,01) (0.6,0.7,04) (05,0505) (0.1,0.2,04) (0.6,0.2,0.8)
a;  (0.1,0.7,04) (04,0.7,06) (0.4,08,0.1) (0.505,05) (0.6,0.7,0.3)
a5 (0.6,0.7,0.6) (0.9,0.8,0.7) (0.8,08,06) (0.3,03,0.6) (0.50.5,0.5)

The energy of a SVNDG is the sum of absolute values of the real part of eigenvalues of D.
The energy of each SVNDG D;(i = 1,2, 3) is calculated as:

E(D;) = (3.2419,3.5861,3.2419), E(D,) = (3.2790,3.9089, 3.2790), E(D3) = (4.1587,3.5618,4.1587).
Then the weight of each expert can be determined as:

E((Dr)i) _E((Dn):) _E((Dp)) i=1,2,...

w; = ((wr);, (wr)i, (We)i) = | , ,

LE(@n) EE@) £ E(@n)

w1 = (0.3219,0.3561,0.3219), w, = (0.3133,0.3735,0.3133), w3 = (0.3501, 0.2998',0.3501>.
Utilize the aggregation operator to fuse all the individual SVNPRs R; = (r](;() )5x5 (i =1,2,3) into

the collective SVNPR R = (rjx)5x5 as shown in Table 4. Here we apply the single-valued neutrosophic
weighted averaging (SVNWA) operator [42] to fuse the individual SVNPR.

SVNWA(rY), 1,y = <1_f[(1_T]<k>>wilfl<1j<,§)>w,-, s (F]g;))w,>

i=1 i=1 i=1
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Table 4. The collective SVNPR of all the above individual SVNPRs.
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R al as as ag as

a1 (0.5000,0.5000,0.5000) (0.6951,0.4973,0.2912)  (0.1321,0.5675,0.3887)  (0.4924,0.5587,0.2439)  (0.3968,0.2687,0.6615)
ap  (0.4341,0.3898,0.5775)  (0.5000,0.5000,0.5000)  (0.5432,0.1921,0.6632)  (0.5381,0.2687,0.2626)  (0.4596,0.3322,0.7190)
a3 (0.4458,0.3706,0.1293)  (0.6757,0.7609,0.5206)  (0.5000,0.5000,0.5000)  (0.5823,0.2821,0.3705)  (0.3466,0.2855,0.3347)
ay  (0.3085,0.2744,0.4436)  (0.3136,0.5520,0.5306)  (0.3656,0.6209,0.2933)  (0.5000,0.5000,0.5000) ~ (0.6093,0.2811,0.2689)
a5 (0.6737,0.5520,0.3428)  (0.7842,0.5850,0.3156)  (0.5328,0.6807,0.2421)  (0.2663,0.5547,0.5292)  (0.5000, 0.5000, 0.5000)

06,09,

(0.4,06.0-3)

06,07 0.4

(0.5,0.3,0-1)

Figure 4. Single-valued neutrosophic digraphs.

Draw a directed network corresponding to a collective SVNPR above, as shown in Figure 5.
Then, under the condition Ty > 05 (j,k =1, 2, 3, 4, 5), a partial diagram is drawn, as shown in

Figure 6.

; 12
(0.6951,0.4975,0.29 )

0.4341, 0.3898,0.5

Figure 5. Directed network of the fused SVNPR.
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(0.6951, 0.4973, 0.2912)

(92920 °2892°0 “18€S'Q

Figure 6. Partial directed network of the fused SVNPR.

Calculate the out-degrees out-d(a;) (j = 1, 2, 3, 4, 5) of all criteria in a partial directed network
as follows:

out-d(a;) = (0.6951,0.4973,0.2912), out-d (a,) = (1.0813,0.4608,0.9258), out-d(a3) = (1.2580,1.0430,0.8911),

out-d(ay) = (0.6093,0.2811,0.2689), out-d(as) = (1.9907,1.8177,0.9005).

According to membership degrees of out-d(a;) (j = 1, 2, 3, 4, 5), we get the ranking of the
factors a; (j=1,2,3,4,5) as:
as > az = ap > ai > day.

Thus, the best choice is LK as.
Now, elements of the Laplacian matrices of the SVNDGs L(D;) = Rl (i = 1,2,3) shown in
Figure 4, are provided in Tables 5-7.

Table 5. Elements of the Laplacian matrix of the SVNDG D;.

R{“ aq ar as ay as

M (1.6,1.7,1.8) (-04,-0.6,-0.3) (-02,-04,-06) (-0.7,—0.6,—0.3) (—0. 3 —0.1, —0.6)
a, (—03,-0.4,-04) (15,1.1,2.1) (-0.7,-0.3,-0.8) (-04,-01,-04) (-0.1,—0.3,—0.5)
az  (—06,-06,-0.2) (—0.8,—0.7,—-0.7) (19,2.2,1.7) (-0.3,-0.6,—0.4) (—0. 2 —0.3,-04)
agy (—03,-04,-07) (-04,-09,—-04) (-04,-0.4,-0.3) (1.4,1.8,1.7) (—0.3,-0.1,-0.3)
as (—06,-09,-03) (-05,-0.7,—0.1) (-04,-0.7,—-0.2) (-0.3,—-0.9,—0.3) (1.8,3.2,—0.9)

Table 6. Elements of the Laplacian matrix of the SVNDG D,.

R% a1 ar as ag as

1 (1.1,2.6,1.9) (—05,-03,-0.1) (—0.1,-0.7,—05) (—0.3,-0.9,-05) (—0.2,—0.7,—0.8)
a  (=0.1,-0.7,-0.5) (1.6,2.1,2.0) (-0.5,-0.1,-0.6) (—0.6,-0.7,—0.1)  (—0. 4 ~0.6,—0.8)
a3 (—05,-03,-0.1) (—0.6,—0.9,—0.5) (2.1,1.8,1.0) (—09,-0.2,-03) (—0.1,—0.4,—0.1)
a; (—05,-0.1,-03) (—0.1,-03,—-0.6) (—0.3,—0.8,—0.9) (1.7,1.6,2.0) (~0. 8 —0.4,-0.2)
a5 (—08,-03,-02) (—0.8,—04,—04) (-0.1,-0.6,—0.1) (—0.2,—0.6,—0.8) (19,1.9,1.5)
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Table 7. Elements of the Laplacian matrix of the SVNDG Ds.
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a1

az

as

ag

a
az
as
as
as

(2.0,2.1,1.6)
(=0.7,—-0.2,—0.9)
(=02,-0.3,-0.1)
(=0.1,-0.7,—0.4)
(—0.6,—0.7, —0.6)

(—0.9,-0.8,—0.7)
(2.4,1.0,2.8)
(—0.6,—0.7, —0.4)
(—0.4,—0.7,—0.6)
(—0.9,-0.8,—0.7)

(=0.1,-0.7,—0.2)
(—0.4,—0.3,—0.6)
(15,1.4,1.7)
(—0.4,—0.8,—0.1)
(—0.8,—0.8, —0.6)

(—0.4,—0.3,—0.1)
(—0.6,—0.3, —0.4)
(=0.1,-0.2,—0.4)
(15,2.9,1.4)
(—0.3,—0.3, —0.6)

(2.6,2.6,2.5)

w; = ((wr)i, (wr)i, (Wr);i) =

The Laplacian energy of each SVNDG is calculated as:

Then the weight of each expert can be determined as:

LE(Pp)) LE((D)) _LE((Df))
L LE((Pr)) L LE((D)) L LE((Dr))

LE(D1) = (3.2800,4.0000, 3.8893), LE(D,) = (3.3600,4.0000, 3.8798), LE(D3) = (4.6806,4.5858,4.9687).

i=1,2,...,m,

w; = (0.2937,0.3581,0.3482), w, = (0.2989,0.3559,0.3452), w3 = (0.3288,0.3221,0.3490), based on
which, using the SVNWA operator the fused SVNPR is determined, as shown in Table 8.

Table 8. The collective SVNPR of all the above individual SVNPRs.

R al as as ag as

a1 (0.5000,0.5000,0.5000)  (0.6719,0.5050,0.2622)  (0.1234,0.5656,0.3757)  (0.4664,0.5443,0.2317)  (0.3767,0.2620,0.6484)
ap,  (0.4126,0.3778,0.5515)  (0.5000,0.5000,0.5000)  (0.5175,0.1943,0.6490)  (0.5158,0.2620,0.2384)  (0.4398,0.3226,0.7011)
a3 (0.4229,0.3682,0.1155)  (0.6493,0.7557,0.5050)  (0.5000,0.5000,0.5000)  (0.5629,0.2797,0.3484)  (0.3285,0.2792,0.3037)
ay  (0.2929,0.2829,0.4233)  (0.2949,0.5593,0.5098)  (0.3460,0.6191,0.2839)  (0.5000,0.5000,0.5000)  (0.5881,0.2821,0.2478)
as  (0.6506,0.5593,0.3157)  (0.7635,0.5911,0.2886)  (0.5087,0.6829,0.2158)  (0.2508,0.5448,0.5094)  (0.5000,0.5000, 0.5000)

In the directed network corresponding to a collective SVNPR above, we select those single-valued
neutrosophic numbers whose membership degrees T]-k >05(j,k=1, 2, 3, 4, 5), and resulting partial

diagram is shown in Figure 7.

(0.6719, 0.5050, 0.2622)

e
&
_
o
*
o
S
o
=
o
]
%
=
=

Figure 7. Partial directed network of the fused SVNPR.
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Calculate the out-degrees out-d(a;) (j = 1, 2, 3, 4, 5) of all criteria in a partial directed network
as follows:
out-d(a;) = (0.6719,0.5050,0.2622), out-d(a) = (1.0333,0.4563, 0.8874), out-d (a3) = (1.2122,1.0354, 0.8534),
out-d(as) = (0.5881,0.2821,0.2478), out-d(as) = (1.9228,1.8333,0.8201).
According to membership degrees of out-d(a;) (j = 1, 2, 3, 4, 5), we get the ranking of the
factors a; (j=1,2,3,4,5) as:
as > az = ap > ai > day.

Thus, the best choice is LK as.
Now, elements of the signless Laplacian matrices of the SVNDGs LT (D;) = RiL+ (i=1,2,3)
shown in Figure 4, are given in Tables 9-11.

Table 9. Elements of the signless Laplacian matrix of the SVNDG D;.

RF aq ar as ag as
a (1.6,1.7,1.8) (0.4,0.6,0.3) (0.2,0.4,0.6) (0.7,0.6,0.3) (0.3,0.1,0.6)
ap (0.3,04,04) (15,1.1,2.1) (0.7,0.3,0.8) (0.4,0.1,04) (0.1,0.3,0.5)
as (0.6,0.6,0.2) (0.8,0.7,0.7) (1.9,2.2,1.7) (0.3,0.6,04) (0.2,0.3,0.4)
ay (0.3,04,0.7) (0.4,09,04) (0.4,04,03) (14,1817) (0.3,0.1,0.3)
as (0.6,09,0.3) (0.5,0.7,0.1) (0.4,0.7,02) (0.3,0.9,0.3) (1.8,3.2,0.9)

Table 10. Elements of the signless Laplacian matrix of the SVNDG D,.

R? aq ar as ag as
a (1.1,2.6,19) (0.5,0.3,0.1) (0.1,0.7,0.5) (0.3,0.9,0.5) (0.2,0.7,0.8)
ap (0.1,0.7,05) (1.6,2.1,2.0) (0.5,0.1,0.6) (0.6,0.7,0.1) (0.4,0.6,0.8)
as (0.5,0.3,0.1) (0.6,09,05) (2.1,1.8,1.0) (0.9,0.2,0.3) (0.1,0.4,0.1)
ay (0.5,0.1,0.3) (0.1,0.3,0.6) (0.3,0.8,0.9) (1.7,1.6,2.0) (0.8,0.4,0.2)
as (0.8,0.3,0.2) (0.8,0.4,0.4) (0.1,0.6,0.1) (0.2,0.6,0.8) (1.9,1.9,1.5)

Table 11. Elements of the signless Laplacian matrix of the SVNDG Ds.

R§+ ay ar as ag as
ap  (20,21,1.6) (09,08,0.7) (0.1,0.7,0.2) (0.4,0.3,0.1) (0.6,0.3,0.6)
a  (0.7,02,09) (24,1.0,2.8) (04,03,0.6) (0.6,03,04) (0.7,0.2,0.9)
az  (02,03,01) (0.6,07,04) (1514,1.7) (0.1,02,04) (0.6,0.2,0.8)
ag  (0.1,07,04) (04,07,06) (04,08,0.1) (1.529,14) (0.6,0.7,0.3)
a5 (0.6,0.7,06) (09,0.8,07) (0.8,0806) (03,03,0.6) (2.6,2.6,25)

The signless Laplacian energy of each SVNDG is calculated as:
LET(D;) = (3.3244,4.7474,3.5570), LE* (D) = (3.3826,4.0000,3.4427), LE* (D3) = (4.5859,4.4103,4.7228).
Then the weight of each expert is

w; = ((wr)i, (wr)i, (Wp);) = LE*((Dr),) ’ LE*((Dy);))  LE*((Dr);)

m m 7 Tm ’ i=1,2,...,m,
£ LB £ LES(@n) £ LE(Dr))

wy = (0.2859,0.4082,0.3059), w, = (0.3125,0.3695,0.3180), w3 = (0.3343,0.3215,0.3443), based on
which fuse all the individual SVNPRs R; = (r](]lc) )5x5 (i = 1,2,3) into the collective SVNPR R = (rjx)5xs5,
by using the SVNWA operator, as shown in Table 12.
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Table 12. The collective SVNPR of all the above individual SVNPRs.

as

ag

24 of 30

as
(0.3800, 0.2325, 0.6682

ap

az

(0.4655,0.5302,0.2512

(0.4469,0.3019, 0.7267

am
az
az
ay
as

0.5000, 0.5000, 0.5000
0.4157,0.3594, 0.5845

0.6777,0.4843,0.2943
0.5000, 0.5000, 0.5000

0.2951,0.5474,0.5387

0.1236,0.5377,0.3942)
0.5189,0.1774, 0.6659)

0.3484,0.5897,0.3028)
0.5118,0.6663, 0.2465)

)
(0.5223,0.2325,0.2650)
(0.5755,0.2670, 0.3758)
(0.5000, 0.5000, 0.5000)
(0.2524,0.5386, 0.5406)

)
)
(0.3317,0.2599, 0.3364)
(0.5980, 0.2483, 0.2740)
(0.5000, 0.5000, 0.5000)

( )

( )
(0.6510,0.7414,0.5247) (05000, 0.5000,0.5000)
( )

( ) A

0.2980, 0.2620, 0.4460

( )
( )
(0.4249,0.3533,0.1330)
( )
{ ) (0.7703,0.5736,0.3268

0.6574,0.5474,0.3479

In the directed network corresponding to a collective SVNPR above, we select those single-valued

neutrosophic numbers whose membership degrees T]-k >05(j,k=1, 2, 3, 4, 5), and resulting partial

diagram is shown in Figure 8.

(0.6777, 0.4843, 0.2943)
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0.5118,0.6663,0.2465)

Figure 8. Partial directed network of the fused SVNPR.

Calculate the out-degrees out-d(a;) (j = 1, 2, 3, 4, 5) of all criteria in a partial directed network

as follows:
out-d(a;) = (0.6777,0.4843,0.2943), out-d (a5) = (1.0412,0.4099,0.9309), out-d(a3) = (1.2265,1.0084,0.9005),

out-d(as) = (0.5980,0.2483,0.2740), out-d (a5) = (1.9395,1.7873,0.9212).
According to membership degrees of out—d(a]-) (j =1, 2, 3, 4, 5), we get the ranking of the

factors a; (j=1,2,3,4,5) as:
as > az = ap > aip > day.

Thus, the best choice is LK as.

7. Real Time Example
In this section, the proposed concepts of energy, Laplacian energy and signless Laplacian
We have taken the Website

energy of a SVNG are explained through a real time example.
http:/ /www.pantechsolutions.net modeled as a SVNG by considering the navigation of the customer.
We have taken the four links: 1. microcontroller-boards, 2. log-in html, 3. and 4. project kits for our
calculation. A SVNG of this site for four different time periods is considered. The energy, Laplacian
energy and signless Laplacian energy of a SVNG is calculated for each of these periods. The energy,
Laplacian energy and signless Laplacian energy are represented in terms of bar graphs. In the website
http:/ /www.pantechsolutions.net (accessed on 8 May 2012). the above 4 links are considered for the
period 16 January 2018 to 15 February 2018 and for this graph, as shown in Figure 9, we have


http://www.pantechsolutions.net
http://www.pantechsolutions.net
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Spec(Ty (ujuy)) = {—0.3442, —0.1000,0.0066,0.4376},

Spec(Iy (ujuy)) = {—0.6630, —0.2742,0.0774,0.8598},

Spec(Fy (ujuy)) = {~0.6703, —0.3296,0.0299,0.9701},

E(Ty(u]-uk)) = (0.8884, E(Iy(ujuk)) = 1.8744, E(Fy(ujuk)) = 1.9999.
Therefore, E(G1) = (0.8884,1.8744,1.9999).

Laplasian Spec(Ty (ujux)) = {0,0.2492,0.5244,0.8264},

Laplacian Spec(Iy (ujuy)) = {0,0.6975,1.1757,1.5269},

Laplacian Spec(Fy (ujuy)) = {0,0.7605,1.4139,1.6256},

LE(Ty (ujuy)) = 11016, LE(Iy (ju5)) = 2.0051, LE(Fy (1)) = 2.2790.
Therefore, LE(G;) = (1.1016,2.0051,2.2790).

Signless Laplacian Spec(Ty (u;uy)) = {—0.3183, —0.1339, —0.0555,0.5076 },
Signless Laplacian Spec(Iy (ujuy)) = {—0.6764, —0.2500, 0.0385,0.8879},
Signless Laplacian Spec(Fy (ujuy)) = {—0.7056, —0.2572, —0.0582,1.0211},
LE* (Ty (ujug)) = 1.0153, LE* (Iy (ujuy)) = 1.8529, LE* (Fy (ujur)) = 2.0421.
Therefore, LET(G;) = (1.0153,1.8529,2.0421).

(u1,0.2,0.3,0.1)

(u3,0.3,0.1,0.2) (0.1,0.2,0.3) (u2,0.4,0.1,0.3)

Figure 9. Single-valued neutrosophic graph G;.

For the period 16 February 2018 to 15 March 2018 (see Figure 10), we have

Spec(Ty (ujuy)) = {—0.4245,—0.1714,0.0215,0.5744},

Spec(Iy (ujuy)) = {—0.7909, —0.5799,0.0536,1.3173},

Spec(Fy (ujuy)) = {—0.5037, —0.3400,0.0007, 0.8430},

E(Ty(ujuk)) = 1.1919, E(Iy(ujuk)) = 2.7418, E(Fy(ujuk)) = 1.6874.
Therefore, E(G,) = (1.1919,2.7418, 1.6874).

Laplacian Spec(Ty (u;ux)) = {0,0.4200,0.6908,1.0892},

Laplacian Spec(Iy (ujuy)) = {0,0.8716,1.7656,2.3629},

Laplacian Spec(Fy (ujuy)) = {0,0.5672,1.1546,1.4783},

LE(Ty(u]-uk)) = 1.36, LE(Iy(u]'Mk)) = 3.2569, LE(Fy(M]Mk)) = 2.0657.
Therefore, LE(G,) = (1.36,3.2569,2.0657).

Signless Laplacian Spec(Ty (u;uy)) = {—0.4023, —0.1931, —0.0585,0.6538},
Signless Laplacian Spec(Iy (ujuy)) = {—0.7962, —0.5500, —0.1538, 1.5000},
Signless Laplacian Spec(Fy (ujuy)) = {—0.5321, —0.2209, —0.2000, 0.9530},
LE*(Ty (ujuy)) = 1.3076, LE* (Iy (ju5)) = 2.9999, LE* (Fy (u;u1y.)) = 1.9059.
Therefore, LE* (G,) = (1.3076,2.9999,1.9059).
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(u1,0.6,0.3,0.2)

(us,0.4,0.2,0.1) (0.2,0.7,0.4) (u2,0.3,0.1,0.3)

Figure 10. Single-valued neutrosophic graph G».

For the period 16 March 2018 to 15 April 2018 (see Figure 11), we have

Spec(Ty (ujug)) = {—0.6287, —0.3884,0.0004, 1.0168},
Spec(Iy(ujuy)) = {—1.0779, —0.5696,0.0698,1.5776},

Spec(Fy (ujuy)) = {~0.8184, —0.4650,0.0051,1.2783},

E(Ty(u]-uk)) = 2.0343, E(Iy(ujuk)) = 3.2949, E(Fy(ujuk)) = 2.5668.
Therefore, E(G3) = (2.0343,3.2949,2.5668).

Laplacian Spec(Ty (ujux)) = {0,0.2604,1.4221,1.7175},

Laplacian Spec(Iy (ujuy)) = {0,1.2472,2.3360,2.6168},

Laplacian Spec(Fy (ujuy)) = {0,0.8182,1.6721,2.3097},

LE(Ty(Mjuk)) = 28792, LE(Iy(ujuk)) = 3.7056,LE(Fy(M]‘Mk)) = 3.1636.
Therefore, LE(G3) = (2.8792,3.7056,3.1636).

Signless Laplacian Spec(Ty (u;ux)) = {—0.6816, —0.3513, —0.2007,1.2336 },
Signless Laplacian Spec(Iy (ujuy)) = {—1.1436, —0.4542, —0.0553, 1.6531},
Signless Laplacian Spec(Fy (ujuy)) = {—0.8066, —0.4000, —0.2632,1.4698},
LE*(Ty (ujug)) = 2.4671, LE™ (Iy (ujuy)) = 3.3062, LE* (Fy (ujuy)) = 2.9395.
Therefore, LE*(G3) = (2.4671,3.3062,2.9395).

(u1,0.6,0.1,0.2)

<u3, 087 047 O].> <047 057 06> <u2) 077 037 01>

Figure 11. Single-valued neutrosophic graph Gs.

Finally, for the period 16 April 2018 to 15 May 2018 (see Figure 12), we have
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Spec(Ty (ujux)) = {—0.5716,—0.0973,0.0027,0.6662},

Spec(Iy (ujuy)) = {—1.0878,—0.5755,0.0435,1.6198},

Spec(Fy (ujuy)) = {~0.7686, —0.3985,0.0990,1.0680},

E(Ty(u]-uk)) = 1.3378,E(Iy(u]-uk)) = 3.3265,E(Fy(ujuk)) = 2.3342.
Therefore, E(G,) = (1.3378,3.3265,2.3342).

Laplacian Spec(Ty (ujux)) = {0,0.5637,0.7641,1.2721},

Laplacian Spec(Iy (ujuy)) = {0,1.1660,2.0643,2.9697 },

Laplacian Spec(Fy (ujuy)) = {0,0.8207,1.5544,1.8249},

LE(Ty(M]uk)) = 1.4725, LE(Iy(Mjuk)) = 3868, LE(Fy(ujuk)) = 2.5586.
Therefore, LE(Gy) = (1.4725,3.8680,2.5586).

Signless Laplacian Spec(Ty (u;uy)) = {—0.5588, —0.1017, —0.0500,0.7105},
Signless Laplacian Spec(Iy (ujuy)) = {—1.0582, —0.5617, —0.2105, 1.8304},
Signless Laplacian Spec(Fy (ujuy)) = {—0.7996, —0.3562,0.0413,1.1145},
LE*(Ty (ujug)) = 14211, LE* (Iy (ujug)) = 3.6608, LE* (Fy (ujur)) = 2.3116.
Therefore, LE*(Gy) = (1.4211,3.6608,2.3116).

(u1,0.4,0.5,0.3)

(us,0.5,0.2,0.1) (0.1,0.7,0.3) (uz2,0.6,0.3,0.2)

Figure 12. Single-valued neutrosophic graph G,.
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Figure 13. Energy of single-valued neutrosophic graphs.
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Figure 14. Laplacian energy of single-valued neutrosophic graphs.
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Figure 15. Signless Laplacian energy of single-valued neutrosophic graphs.

The bar graphs, shown in Figures 13-15, represent the energy, Laplacian energy and signless
Laplacian energy of four links for the above four periods corresponding to the truth-membership,
indeterminacy-membership and falsity-membership values. From the above bar graphs, the energy,
Laplacian energy and signless Laplacian energy of truth-membership for the period March to April
is high as compared to other periods, the energy, Laplacian energy and signless Laplacian energy of
indeterminacy-membership for the period April to May is high and, the energy, Laplacian energy and
signless Laplacian energy of falsity-membership for the period March to April is high.

8. Conclusions

A single-valued neutrosophic model is used in computer technology, networking, communication,
when the concept of indeterminacy is present. In this paper, we have introduced certain novel concepts,
including energy, Laplacian energy and signless Laplacian energy of SVNGs. We have derived the
lower and upper bounds for the energy and Laplacian energy of a SVNG. We have obtained the
relations among energy, Laplacian energy and signless Laplacian energy of a SVNG. Among the
properties of energy, Laplacian energy and signless Laplacian energy of a SVNG, there is a great deal of
analogy, but also some significant differences. Finally, application in group decision-making based on
SVNPRs is presented to illustrate the applicability of the proposed concepts of SVNGs. These concepts
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are also illustrated with real time example. We are planing to extend our research work to (1) Energy
of bipolar neutrosophic graphs; (2) Simplified interval-valued Pythagorean fuzzy graphs; (3) Hesitant
Pythagorean fuzzy graphs; Energy of neutrosophic hypergraphs.

Author Contributions: S.N., M.A. and ES. conceived and designed the experiments; M.A. and ES. analyzed the
data; S.N. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.
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