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Abstract: In this paper, we use the conformable fractional derivative to discuss some fractional
linear differential equations with constant coefficients. By applying some similar arguments to
the theory of ordinary differential equations, we establish a sufficient condition to guarantee the
reliability of solving constant coefficient fractional differential equations by the conformable Laplace
transform method. Finally, the analytical solution for a class of fractional models associated with the
logistic model, the von Foerster model and the Bertalanffy model is presented graphically for various
fractional orders. The solution of the corresponding classical model is recovered as a particular case.
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1. Introduction

Fractional calculus is a generalization of ordinary calculus, where derivatives and integrals of
arbitrary (non-integer) order are defined. The concept of fractional operators has been introduced
almost simultaneously with the development of the classical ones. The idea of these operators first
appeared in a letter between L’Hopital and Leibniz in which the question of a half-order derivative was
posed [1–3]. Some important contributions to science, engineering, applied mathematics, economics
and biomechanics have been reported in the literature. There are good textbooks for the fractional
calculus [4–10].

Several types of fractional derivatives have been introduced to date, among which the
Riemann–Liouville, Caputo, Hadamard, Caputo–Hadamard, Erdélyi–Kober, Weyl, Marchaud and
Riesz are just a few to name [11]. All of them also satisfy the following important properties: fractional
operators are linear, that is if L is a fractional derivative, then:

L( f + kg) = L( f ) + kL(g)

for any functions f , g ∈ Cn[a, b] and k ∈ R. Unfortunately, all these fractional derivatives have many
unusual properties [12], for example:

1. Not all fractional derivatives obey the familiar product rule for two functions:

L( f g) = f L(g) + gL( f ).
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2. Not all fractional derivatives obey the chain rule:

L( f ◦ g)(t) = L( f )(g(t)) L(g)(t).

These properties lead to some difficulties in the application of fractional derivatives in physics
and engineering. To overcome some of these and other difficulties, Khalil et al. [13] proposed the
so-called conformable fractional derivative of order α, 0 < α < 1, in order to generalize classical
properties of integer-order calculus and proved the conformable fractional Leibniz rule. Furthermore,
the author in [14], generalizing the conformable operators to higher orders, presented for instance the
chain rule, integration by parts and Taylor series expansion. Consequently, the conformable derivative
satisfies almost all the classical properties that the derivative holds. This suggests that one may try
to solve conformable fractional differential equations using the same techniques for solving ordinary
differential equations.

Real-world phenomena often are modeled by the nonlinear fractional differential equations.
Its applications are rapidly increasing in remodeling different dynamical models and an emerging variety
of methods with this definition [15–18]. Adding to this, integral transforms are also ground-breaking
inventions in fractional calculus. In general, most of the fractional differential equations do not have exact
solutions. An effective and convenient method for solving fractional differential equations is needed.
Abdeljawad [14] introduced a method based on the conformable Laplace transform technique; it is suitable
for a large class of initial value problems for fractional differential equations. On the other hand, not every
function has a conformable Laplace transform, because the defining integral can fail to converge. Then,
the interest arose to sort this out and to be able to use them properly.

Integral inequalities are very useful in the study of ordinary differential and integral equations.
For example, the Gronwall inequality and its generalizations play an important role in the discussion of
the existence, uniqueness and qualitative behavior of solutions (see [19,20]). Motivated by applications
of fractional integral inequalities (see [21–23]), we study the reliability of the conformable Laplace
transform method for solving linear fractional differential equations with constant coefficients:

D
(α)
t x(t) + Bx(t) = A(t), ∀t > 0, x(0) = x0, (1)

where D(α)
t is the conformable fractional derivative operator of order α ∈ (0, 1], B ∈ R and A : [0.∞)→ R

is a continuous function, which is called the forcing term or driving term. The advantages of our
conformable fractional results are clear. Indeed, conformable derivatives have many advantages in the
solution procedure of fractional differential equations.

Abdeljawad [14] introduced a method based on the conformable Laplace transform technique;
it is suitable for a large class of initial value problems for conformable fractional differential equations.
In this paper, the reliability of the conformable Laplace transform is investigated and applied in
Bernoulli-type equations, i.e., differential equations that can be linearized.

This paper is organized as follows. In Section 2, some basic properties of conformable fractional
calculus are given. In Section 3, we enunciate and probe the reliability of the conformable Laplace
transform method for solving linear fractional differential equations with constant coefficients.
In Section 4, analytical solutions of the fractional models are obtained. Initial value problems are
considered and a few concluding remarks given in Section 5.

2. Brief on Conformable Fractional Calculus

Let us review the conformable calculus [13,14]. The interest for this new approach was born from
the notion that makes a dependency just on the basic limit definition of the derivative.

Definition 1 ([13]). Let f : [0, ∞)→ R be a function. Then, the conformable fractional derivative of f of order
α, 0 < α ≤ 1, is defined by,
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Tα( f )(t) = lim
ε→0

f (t + εt1−α)− f (t)
ε

, (2)

for all t > 0.

Every real function that is satisfied in Equation (2), and corresponding limit that exists, is called the
α-differentiable function. In addition, if f is α-differentiable in some t ∈ (0, b) and limt→0+ T(α)( f )(t)
exists, then we define:

Tα( f )(0) = lim
t→0+

Tα( f )(t).

The relationship between the conformable derivative and the first derivative can be represented:

Tα f (t) = t1−α f ′(t), f ∈ C1. (3)

Consider the limit α → 1−. In this case, for t > 0, we obtain the classical definition for the
derivative of a function, T1 f (t) = f ′(t). This shows that the conformable derivative is a generalization
of the integer-order derivative. Moreover, the physical interpretation of the conformable derivative is
a modification of the classical derivative in direction and magnitude [15].

Remark 1. Differentiability implies α-differentiability, but the contrary is not true: a non-differentiable function
can be α-differentiable. For a discussion of this issue, see [13].

Notation 1. We can write D(α)
t f (t) for Tα( f )(t) to denote the conformable fractional derivatives of f of order α.

The work in [14] demonstrated that the chain rule is valid for conformable fractional derivatives.

Theorem 1. Let f be differentiable at g(t) and g a α-differentiable function defined in the range of f at
t > 0. Then:

D
(α)
t ( f ◦ g)(t) = f ′(g(t))D(α)

t g(t). (4)

The analogous definition of the integral operator corresponding to the derivative operator is
given by the following definition.

Definition 2 (Conformable fractional integral). Let α ∈ (0, 1] and f : [0, ∞) → R. The conformable
fractional integral of f of order α from zero to t is defined by:

Iα f (t) =
∫ t

0
f (s) dαs :=

∫ t

0
f (s)sα−1ds = I1

(
tα−1 f

)
(t), t ≥ 0,

where the above integral is the usual improper Riemann integral.

Lemma 1. Assume that f is a continuous function on (0, ∞) and 0 < α ≤ 1. Then, for all t > 0, we have
D

(α)
t [Iα f (t)] = f (t).

Definition 3 ([14]). The conformable fractional exponential function is defined for every t ≥ 0 by:

Eα(c, t) = exp
(

c
tα

α

)
, (5)

where c ∈ R and 0 < α ≤ 1.

Resulting from Equation (3):
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D
(α)
t Eα(c, t) = c Eα(c, t), (6)

that is the famous stretched exponential function Eα(−1, t) [24] is an eigenfunction of D
(α)
t with

an eigenvalue of one. Moreover, a conformable fractional exponential function can just be the short-time
limit of a one-parameter Mittag–Leffler function [25–27].

Integral inequalities play an important role in the qualitative analysis of the solutions to differential
and integral equations [20]. A conformable fractional version of the Gronwall theorem follows, which
plays an important role in stability analysis of the conformable fractional systems.

Lemma 2 (Conformable Gronwall inequality [14]). Let r be a continuous, nonnegative function on
0 ≤ t < T (some T ≤ ∞) and a and b be nonnegative constants such that:

r(t) ≤ a + b
∫ t

a
r(s) dαs

on this interval. Then:
r(t) ≤ a Eα(b, t).

Here, we deal with the fractional Laplace transform, which was first defined by Abdeljawad [14].

Definition 4. Let 0 < α ≤ 1 and f : [0, ∞) → R be real valued function. Then, the fractional Laplace
transform of order α starting from zero of f is defined by:

Lα[ f (t)](s) =
∫ ∞

0
Eα(−s, t) f (t) dαt. (7)

The Laplace transform for the conformable fractional-order derivative is described as follows:

Lα[D
(α)
t f (t)] = sLα[ f (t)]− f (0). (8)

The relation between the usual and the fractional Laplace transforms is given below.

Theorem 2 ([14]). Let f : [0, ∞)→ R be a function such that Lα{ f (t)}(s) = Fα(s) exists. Then:

Fα(s) = L[ f ((αt)1/α)](s), (9)

where L[g(t)](s) =
∫ ∞

0 e−stg(t)dt.

It is easy to show that:

Theorem 3. If [[28]] Fα(s) = L[ f (t)] exists for s > 0, then:

1. If c is a constant, then:
L[c] =

c
s

. (10)

2. Let q be a constant:

Lα[tq](s) = αq/α Γ(1 + q
α )

s1+q/α
(11)

3. If c, q are arbitrary constants:

Lα[tqEα(c, t)](s) = αq/α Γ(1 + q
α )

(s− c)1+q/α
(12)
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Remark 2. One can easily see the proof by using the definition of the conformable Laplace transform and
Theorem 2.

Theorem 4 ([16]). Let f , g : [0, ∞] → R be real valued functions and 0 < α ≤ 1. Then,
if Fα(s) = Lα[ f (tα)](s) and Gα(s) = Lα[g(t)](s) both exist for s ≥ 0, then:

Lα[( f ∗ g)(t)](s) :=
∫ t

0
f (tα − sα)g(s) dαs = Fα(s)Gα(s). (13)

Definition 5. A function f is said to be conformable exponentially bounded if it satisfies an inequality of the
form | f (t)| ≤ M Eα(c, t), where M, c are positive real constants and 0 < α ≤ 1, for all sufficiently large t.

A function f is piecewise continuous on the interval [0, ∞) if is continuous on every finite interval
[0, β), except possibly at a finite number of points in [0, β) at which f has a jump discontinuity.

3. Validity of the Conformable Laplace Transform for Linear Fractional-Order Equations

In this section, we discuss what is necessary to apply the conformable Laplace transform for
solving Equation (6).

Theorem 5. Let f be piecewise continuous on [0, ∞) and conformable exponentially bounded.
If Lα[ f (t)](s) = Fα(s), then lims→∞ Lα[ f (t)](s) = 0.

Proof. Since f is conformable exponentially bounded, there exists t0, M1, c, such that | f (t)| ≤ M1 Eα(c, t),
for t ≥ t0. Furthermore, f is piecewise continuous on [0, t0] and hence bounded there, say | f (t)| ≤ M2,
for t ∈ [0, t0]. This means that, a constant M can be chosen sufficiently large so that | f (t)| ≤ M E(c, t),
for t ≥ 0. Therefore, ∣∣∣∣ ∫ τ

0
Eα(−s, t) f (t) dαt

∣∣∣∣ ≤ ∫ τ

0

∣∣Eα(−s, t) f (t)
∣∣ dαt

≤ M
∫ τ

0
Eα(−s + c, t) dαt

=
M

s− c
− Eα(−s + c, τ)

s− c

Letting τ → ∞, we see that:∫ ∞

0

∣∣Eα(−s, t) f (t)
∣∣ dαt ≤ M

s− c
, s > c. (14)

The proof is complete.

As a consequence, for example, s3, cos s, es

s are not conformable Laplace transforms of any function
f and 0 < α ≤ 1.

Theorem 6. Assume that the Equation (1) has a unique continuous solutions x(t); if A(t) is continuous on
[0, ∞) and conformable exponentially bounded, then x(t) and its derivative D

(α)
t x(t) are both conformable

exponentially bounded, and thus, their conformable Laplace transforms exist.

Proof. Since A(t) is conformable exponentially bounded, we have that there exist positive constants
M, σ and enough large T such that |A(t)| ≤ MEα(σ, t) for all t ≥ T. Furthermore, every solution of
Equation (1) is also a solution of the Volterra integral equation given below and vice versa.

x(t) = x0 +
∫ t

0
(−Bx(s) + A(s)) dαs, t ≥ 0. (15)
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For t ≥ T, Equation (15) can be rewritten as:

x(t) = x0 +
∫ T

0
sα−1[−Bx(s) + A(s)] ds +

∫ t

T
sα−1[−Bx(s) + A(s)] ds. (16)

By the continuity of x(t), then −Bx(t) + A(t) is bounded on [0, T], i.e., there exists a constant
K > 0 such that || − Bx(t) + A(t)|| ≤ K. We have:

||x(t)|| ≤ ||x0||+ K
∫ T

0
sα−1 ds + |B|

∫ t

T
sα−1||x(s)|| ds +

∫ t

T
sα−1||A(s)|| ds. (17)

Multiply this inequality by Eα(−σ, t) and note that Eα(−σ, t) ≤ Eα(−σ, T) and ||A(t)|| ≤
MEα(σ, t) (t ≥ T) to obtain:

||x(t)||e−σ tα
α ≤ ||x0||Eα(−σ, t) + KEα(−σ, t)

∫ T

0
sα−1 ds + |B|Eα(−σ, t)

∫ t

T
sα−1||x(s)|| ds

+Eα(−σ, t)
∫ t

T
sα−1||A(s)|| ds.

≤ ||x0||Eα(−σ, T) +
KTα

α
Eα(−σ, T) + |B|

∫ t

T
sα−1||x(s)||Eα(−σ, s) ds

+Eα(−σ, t)
∫ t

T
sα−1||A(s)|| ds.

≤ ||x0||Eα(−σ, T) +
KTα

α
Eα(−σ, T) + |B|

∫ t

0
sα−1||x(s)||Eα(−σ, s) ds

+M
∫ t

0
sα−1eσ sα−tα

α ds.

≤ ||x0||Eα(−σ, T) +
KTα

α
E(−σ, T) + |B|

∫ t

0
sα−1||x(s)||Eα(−σ, s) ds

+M
∫ t

0
e−σu du.

≤ ||x0||Eα(−σ, T) +
KTα

α
Eα(−σ, T) + |B|

∫ t

0
sα−1||x(s)||Eα(−σ, s) ds

+M
∫ ∞

0
e−σu du.

≤ ||x0||Eα(−σ, T) +
KTα

α
Eα(−σ, T) +

M
σ

+ |B|
∫ t

0
sα−1||x(s)||Eα(−σ, s) ds, t ≥ T.

Denote:

a = ||x0||Eα(−σ, T) +
KTαEα(−σ, T)

α
+

M
σ

, b = |B|, r(t) = ||x(t)||Eα(−σ, t),

we get:

r(t) ≤ a + b
∫ t

0
sα−1r(s)ds, t > T. (18)

By Lemma 2,
r(t) ≤ a Eα(b, t),

then:
||x(t)|| ≤ a Eα(b + σ, t), t ≥ T. (19)

From Equation (1), we obtain:

||D(α)
t x(t)|| ≤ |B| ||x(t)||+ ||A(t)||

≤ a|B| Eα(b + σ, t) + MEα(σ, t), t ≥ T.
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This concludes the proof of Theorem 6.

4. Illustrative Examples

In this section, we present three examples, which indicate how our theorem can be applied to
concrete problems. For instance, the logistic model, the Bertalanffy model and the von Foerster model
are suitable to describe continuous growth models. The latter model is the one-parameter deformations
for the exponential function widely used in the context of non-extensive statisticalmechanics [29].

We consider the scalar fractional differential nonlinear equation of the form:

D
(α)
t x(t) + B x(t) = A(t)[x(t)]q, x(0) = x0 ≥ 0, t > 0, (20)

with order α ∈ (0, 1). We remark that Pospíšil [17] had given necessary and sufficient conditions for
the existence and uniqueness of the solution of Equation (20).

Remark 3. Considering the limit when α → 1− in Equation (20), it becomes a Bernoulli-type
differential equation.

If q 6= 0, 1, we make the change of variables:

z(t) = [x(t)]1−q. (21)

Consequently, from Theorem 1, we have the linear fractional differential equations of order α:

D
(α)
t z(t) = (1− q)[z(t)]−qDα

t u(t). (22)

The linearized fractional conformable form of Equation (20) is:

D
(α)
t z(t) + (1− q)B z(t) = (1− q)A(t), (23)

whose exact closed form solution (see [16]) can be found efficiently by Theorem 6.

Example 1. Regard the given conformable differential equation of the logistic type (see [30]) below:

D
(α)
t x(t) = x(t)[1− Eα(−1, t) x(t)], x0 = 1/2. (24)

Using the change of variable z(t) = [x(t)]−1, we have:

D
(α)
t z(t) = Eα(−1, t)− z(t). (25)

Applying the conformable Laplace transform to both sides of Equation (25):

Lα[D
(α)
t z(t)] = Lα[Eα(−1, t)− z(t)], (26)

sZα(s)− 2 =
1

s + 1
− Zα(s),

Zα(s) =
1

(s + 1)2 +
2

s + 1
. (27)

Applying the inverse conformable Laplace transform to Equation (27) and with the help of convolution
operations, we obtain (see Figure 1):

x(t) =
Eα(−1, t)

tα

α
+ 2

(28)
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Figure 1. The solution of Equation (24) considering several values of α.

Example 2 (von Foerster model). Equation (6) can however be viewed as a special case of a more
general equation:

D
(α)
t x(t) = xq(t), 0 < α ≤ 1, (29)

with the initial condition x(0) = 1. The exact solution of Equation (29) is given by

x(t) = expq(t) = [1 + (1− q)t]1/(1−q)
+ , (30)

when α = 1. Substituting Equation (21) into Equation (29), we find:

D
(α)
t z(t) = 1− q, (31)

subject to the initial condition z(0) = 1. After an algebraic manipulation:

z(t) = 1 + (1− q)
tα

α
. (32)

So we get the solution as (see Figure 2)

x(t) =
[

1 + (1− q)
tα

α

] 1
1−q

+
= expq

(
tα

α

)
, (33)

with [y]+ = max {y, 0}.

Obviously, one has:

lim
q→1

x(t) = lim
q→1

expq

(
tα

α

)
= Eα(1, t). (34)
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Figure 2. The physical behavior of x(t) with q = 0.5 and for different values of α.

Remark 4. In the context of nonextensive thermostatistics, the Equation (30) is the so called q-exponential
function. It has become common to call the corresponding statistics ‘q-statistics’ [31]. In this work we show
a generalization of the q-exponential function.

Example 3. Consider the following fractional Bertalanffy-logistic differential equation:

D
(α)
t x(t) = [x(t)]2/3 − x(t), 0 < α < 1, (35)

subject to the initial condition x(0) = x0. For α = 1, Equation (35) is the standard Bertalanffy-logistic equation:

x′(t) = [x(t)]2/3 − x(t), x(0) = x0.

The exact solution to this problem is:

x(t) =
[

1 + (x
1
3
0 − 1)e−

t
3

]3
. (36)

The von Bertalanffy equation is a logistic model widely applied to describe the growth of different types of
populations [32–34].

By using Equation (21) in Equation (35), we find:

D
(α)
t z(t) =

1
3
(1− z(t)), z0 = x

1
3
0 , 0 < α < 1. (37)

Applying the conformable Laplace transform to both sides of Equation (37):

Zα(s) =
1
s
− 1

s + 1
3
+ z0. (38)

Finally, applying the inverse Laplace transform, we have (see Figure 3):

x(t) =
[

1 + (x
1
3
0 − 1)e−

tα
3α

]3
. (39)
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This can be seen when α→ 1 in Equation (39); we get the classical solution given by Equation (36)
(see Figure 3).

t
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0.5
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α = 0.80

α = 0.70

α = 0.50

Figure 3. The solution of Equation (35) considering x0 = 0 and several values of α.

5. Concluding Remarks

The exact solutions of fractional differential equations play a crucial role in mathematical physics.
Similarly to integer-order derivatives, by the conformable Gronwall inequality, the solutions of
fractional-order equations are shown to be conformable exponentially bounded. Therefore, the validity
of the Laplace transform of fractional-order equations is justified, but it requires an observation of the
term forcing, so not every differential fractional equation with a constant coefficient can be solved
by the method of conformable Laplace transform. We apply the conformable Laplace transform
to linearized fractional-order Bernoulli equations. Analytical solutions of these models for various
fractional orders and the solution of the corresponding classical equation were recovered as a particular
case. We observe, in the various graphs studied, that the different values of the fractional-order of the
derivative allow very different behaviors of the solution, especially in the time of convergence to the
equilibrium state, which makes the model convenient to model, among others, growth phenomena.
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