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Abstract: Tickysim is a clock tick-based simulator for the inter-chip interconnection network of
the SpiNNaker architecture. Network devices such as arbiters, routers, and packet generators
store, read, and write forward data through fixed-length FIFO buffers. At each clock tick, every
component executes a “read” phase followed by a “write” phase. The structures of any finite graph
which represents numerical quantities are known as topological indices. In this paper, we compute
degree-based topological indices of the Tickysim SpiNNaker Model (TSM) sheet.

Keywords: degree; topological indices; multiple Zagreb indices; Zagreb polynomials; Tickysim
SpiNNaker Model
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1. Introduction

Neural networks are applicable in many solutions for classification, prediction, control, etc.
The variety of purposes is growing but with each new application the expectations are higher. We want
neural networks to be more precise independently of the input data. Efficiency of the processing
in a large manner depends on the training algorithm. Basically this procedure is based on the
random selection of weights in which neurons connections are burdened. During training process we
implement a method which involves modification of the weights to minimize the response error of the
entire structure see details in [1,2].

Convolutional neural network (CNN) is an essential model to achieve high accuracy in various
machine learning applications, such as image recognition and natural language processing. One of
the important issues for CNN acceleration with high energy efficiency and processing performance
is efficient data reuse by exploiting the inherent data locality. Recurrent neural networks (RNNs)
are powerful models of sequential data. They have been successfully used in domains such as
text and speech. However, RNNs are susceptible to overfitting; regularization is important [3].
Motivated by these networks we consider the Tickysim SpiNNaker Model(network) for utilization its
topological properties.
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In this paper all graphs are finite, simple, and undirected. Let V(G) and E(G) be the vertex set
and edge set of a graph G. The vertices u, v ∈ V(G) are adjacent (or neighbors) if u and v are endpoints
of e ∈ E(G) and e is incident with the vertices u and v and e is said to connect u and v. The set of
all neighbors of a vertex u of G denoted by N(u) is called the neighborhood of v. The degree of a
vertex in an undirected simple graph is the number of edges incident with it. The degree of the vertex
u is denoted by ζ(u) and Su is the sum of degrees of all vertices adjacent to the vertex u. In other
words, Su = ∑

v∈N(u)
dv, where N(u) = {v ∈ V(G) : uv ∈ E(G)}. All the concepts of graph theory and

combinatorics are used from the book of Harris et al. [4,5].
The application of molecular structure descriptors is now a standard procedure in the study of

structure–property relations, especially in QSPR/QSAR study. In the past couple of years, the amount
of proposed nuclear descriptors is rapidly increases as a result of the significance of the creation
of these descriptors. They interface the particular physico-substance properties of mixture blends.
A most seasoned, considered, and prominent topological record among all degree-based topological
lists is the Randić index, which was presented by Randić in 1975 [6]. This record was discovered to be
reasonable with the end goal of a medication plan [7]. The numerical elements of the Randić index
incorporates its association with the standardized Laplacian framework [8–10]. The formal definition
of the Randić index of a graph G is given as follows:

R(G) = ∑
uv∈E(G)

1√
ζ(u)× ζ(v)

. (1)

Soon after the discovery of Randić index, the general Randić index was introduced. It is denoted
by Rα(G), and its formula is given as:

Rα(G) = ∑
uv∈E(G)

(ζ(u)× ζ(v))α, (2)

where α is a nonzero real number. Zhou et al. [11] introduced the general sum-connectivity index
χα(G) and defined it as:

χα(G) = ∑
uv∈E(G)

(ζ(u) + ζ(v))α, (3)

where α is a real number. Shirdel et al. introduced a new degree-based Zagreb index named the
“hyper-Zagreb index” which is defined in [12], and is also known as general sum-connectivity index
χ2(G). The first general Zagreb index was studied in [13].

Mα(G) = ∑
u∈V(G)

(ζ(u))α. (4)

Estrada et al. invented the atom-bond connectivity index, abbreviated as the ABC index [14].
ABC index is of much importance due to its correlation with the thermodynamic properties of alkanes
(see [15,16]). The definition of the ABC index is as follows:

ABC(G) = ∑
uv∈E(G)

√
ζ(u)+ζ(v)−2

ζ(u)×ζ(v) . (5)

The fourth version of the ABC index was introduced by Ghorbani and Hosseinzadeh [17], and is
defined as:

ABC4(G) = ∑
uv∈E(G)

√
Su+Sv−2

Su Sv
. (6)
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Another important degree-based topological index is the geometric-arithmetic index (GA index) and
is of much importance due to its application to acyclic, unicyclic, and bicyclic molecular graphs [18].
The formal definition of the GA index is as follows:

GA(G) = ∑
uv∈E(G)

2
√

ζ(u)× ζ(v)
ζ(u) + ζ(v)

. (7)

Recently, the fifth version of GA was introduced by Graovac el al. [19], defined as:

GA5(G) = ∑
uv∈E(G)

2
√

SuSv

Su + Sv
. (8)

In [20], Ghorbani and Azimi defined first multiple Zagreb index PM1(G) and second multiple
Zagreb index PM2(G), defined as:

PM1(G) = ∏
uv∈E(G)

(ζ(u) + ζ(v)), (9)

PM2(G) = ∏
uv∈E(G)

(ζ(u)× ζ(v)). (10)

These multiple Zagreb indices are studied for some chemical structures in [21–25]. The first
Zagreb polynomial M1(G, x) and second Zagreb polynomial M2(G, x) are defined as:

M1(G, x) = ∑
uv∈E(G)

x(ζ(u)+ζ(v)), (11)

M2(G, x) = ∑
uv∈E(G)

x(ζ(u)×ζ(v)). (12)

2. Applications of Topological Indices

To relate with certain physico-concoction properties, the GA index has much preferred prescient
control over the prescient energy of the Randić connectivity index [26]. The first and second Zagreb
indexes were found to be helpful for calculation of the aggregate π-electron energy of the particles
inside particular rough articulations [27]. These are among the graph invariants that were proposed
for estimation of the skeleton of stretching of the carbon atom [28]. The Randić index is a topological
descriptor that has related with a great deal of the synthetic qualities of atoms and has been discovered
parallel to processing the boiling point and Kovats constants of the particles. The particle bond network
(ABC) index gives a decent connection to the security of direct alkanes and also the stretched alkanes
and for processing the strain vitality of cyclo alkanes [29,30].

In the past two decades, analysts contemplated certain substance diagrams and arrangement
s and processed their particular indices. W. Gao and M. R. Farahani figured degree-based indices
of synthetic structures by utilizing an edge-separated technique [31]. Gao et al. [32] contemplated
concoction structures in medications and some medication structures, and processed the overlooked
topological indices. Some different utilizations of the atomic descriptors of sub-atomic diagrams and
systems are given in the reference list and the references [33]. These applications and writing survey
inspired us to investigate some new substance diagrams and process their topological indices [34–37].

3. Materials and Methods

At the highest level of abstraction, inter-chip architectures are basically mathematical graphs
where each device is considered as vertex and the topology used between these devices reflects
the edges and in total nature of graph. One of the network topologies used in this model is
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12 × 12 hexagonal torus. In this topology, each node is connected to six incident nodes. We also
consider the finite Tickysim SpiNNaker Model sheet which is obtained by hexagonal torus. For more
details, see [38].

The Second of the network topology consists of a set of a hexagonal segments of a hexagonal
mesh of nodes. Each node in the simulation represents a SpiNNaker chip that contains a router, packet
generator, packet consumer, and a tree of two-input round-robin arbiters which arbitrates between the
inputs to the router. The router always consists of a four-stage pipeline. If a packet cannot be forwarded
to its requested output after 50 cycles at the head of the router, it is dropped. The packet generator
generates packets for each node of the system. If the output buffer is full, the packet generator waits
until a space becomes available. The packet consumer receives incoming packets immediately, but
the packet consumer will wait 10 cycles before accepting another packet. The arbiter tree is based on
SpiNNaker’s NoC aspects. In each cycle, the arbiter selects a waiting packet on one of its inputs and
forwards it to its output if there is space in the output buffer.

The graph TSM of a Tickysim SpiNNaker Model sheet is shown in Figure 1. The number of
vertices in the Tickysim SpiNNaker Model sheet are mn, and the vertex partition of the graph TSM
sheet based on the degree of vertices is shown in Table 1.

Figure 1. Graph of the Tickysim SpiNNaker Model sheet for m = n = 12.

Table 1. The vertex partition of the graph TSM sheet based on the degree of vertices.

Degree of Vertex Number of Vertices

2 2
3 2
4 2m + 2n− 8
6 mn− 2m− 2n + 4

Total mn

4. Main Results

Theorem 1. Let TSM be a Tickysim SpiNNaker Model sheet, then

1. Mα(TSM) = 2α+1 + 2× 3α + (m + n− 4)22α+1 + (mn− 2m− 2n + 4)6α,
2. Rα(TSM) = 23α+2 + 22α+2× 3α + 2α+1× 32α + 23α+1(m+ n− 5)(2α + 2.3α) + 62α(3mn− 8m− 8n+

21),
3. χα(TSM) = 4× 6α + 4× 7α + 2× 32α + (m + n− 5)23α+1 + 4(m + n− 5)(10)α + (3mn− 8m−

8n + 21)(12)α,
where α is a real number.

Proof. The number of edges of the TSM sheet graph is 3mn− 2m− 2m + 1. The edge partition based
on the degree of the end vertices of each edge are shown in Table 2. Since the formula of the general
Randić index is

Rα(TSM) = ∑
uv∈E(TSM)

(ζ(u)ζ(v))α,
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it implies that

Rα(TSM) = e2,4 (2× 4)α + e3,4 (3× 4)α + e3,6 (3× 6)α

+ e4,4 (4× 4)α + e4,6 (4× 6)α + e6,6 (6× 6)α

= (4)(8)α + (4)(12)α + (2)(18)α + (2m + 2n− 10)(16)α

+ (4m + 4n− 20)(24)α + (3mn− 8m− 8n + 21)(36)α

= 23α+2 + 22α+2 × 3α + 2α+1 × 32α

+ 23α+1(m + n− 5)(2α + 2× 3α) + 62α(3mn− 8m− 8n + 21),

and the formula of the general sum-connectivity index is

χα(TSM) = ∑
uv∈E(TSM)

(ζ(u) + ζ(v))α,

which implies that

χα(TSM) = e2,4 (2 + 4)α + e3,4 (3 + 4)α + e3,6 (3 + 6)α

+ e4,4 (4 + 4)α + e4,6 (4 + 6)α + e6,6 (6 + 6)α

= (4)(6)α + (4)(7)α + (2)(9)α + (2m + 2n− 10)(8)α

+ (4m + 4n− 20)(10)α + (3mn− 8m− 8n + 21)(12)α

= 4× 6α + 4× 7α + 2× 32α + (m + n− 5)23α+1

+ 4(m + n− 5)(10)α + (3mn− 8m− 8n + 21)(12)α.

This completes the proof.

Table 2. The edge partition of a graph TSM sheet based on the degree of end vertices of each edge.

(ζ(u), ζ(v)), where uv ∈ E(TSM) Number of Edges

(2, 4) 4
(3, 4) 4
(3, 6) 2
(4, 4) 2m + 2n− 10
(4, 6) 4m + 4n− 20
(6, 6) 3mn− 8m− 8n + 21

Total 3mn− 2m− 2n + 1

Theorem 2. The atom-bond connectivity index TSM sheet is given by

ABC(TSM) =
1
2

√
10mn + 2

√
2 +

2
3

√
15 +

1
3

√
14 +

1
4
(2m + 2n− 10)

√
6

+
1
3
(4m + 4n− 20)

√
3 +

1
6
(−8m− 8n + 21)

√
10.

Proof. The number of e2,4, e3,4, e3,6, e4,4, e4,6, and e6,6 edges are mentioned in Table 2. Since the
atom-bond connectivity index is defined as

ABC(TSM) = ∑
uv∈E(TSM)

√
ζ(u)+ζ(v)−2

ζ(u)×ζ(v) ,
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it implies that

ABC(TSM) = e2,4

√
2+4−2

2×4 + e3,4

√
3+4−2

3×4 + e3,6

√
3+6−2

3×6

+ e4,4

√
4+4−2

4×4 + e4,6

√
4+6−2

4×6 + e6,6

√
6+6−2

6×6

=
1
2

√
10mn + 2

√
2 +

2
3

√
15 +

1
3

√
14 +

1
4
(2m + 2n− 10)

√
6

+
1
3
(4m + 4n− 20)

√
3 +

1
6
(−8m− 8n + 21)

√
10.

This completes the proof.

Theorem 3. ""The geometric-arithmetic index GA of the TSM sheet is given by""

GA(TSM) = 4
√

2 +
16
7

√
3− 6m− 6n + 11 +

2
5
(4m + 4n− 20)

√
6 + 3mn.

Proof. The numbers of e2,4, e3,4, e3,6, e4,4, e4,6, and e6,6 edges are mentioned in Table 2. Since the
geometric-arithmetic index is defined as

GA(TSM) = ∑
uv∈E(TSM)

2
√

ζ(u)× ζ(v)
ζ(u) + ζ(v)

,

it implies that

GA(TSM) = e2,4
2
√

2× 4
2 + 4

+ e3,4
2
√

3× 4
3 + 4

+ e3,6
2
√

3× 6
3 + 6

+ e4,4
2
√

4× 4
4 + 4

+ e4,6
2
√

4× 6
4 + 6

+ e6,6
2
√

6× 6
6 + 6

= 4
2
√

2× 4
2 + 4

+ 4
2
√

3× 4
3 + 4

+ 2
2
√

3× 6
3 + 6

+ (2m + 2n− 10)
2
√

4× 4
4 + 4

+ (4m + 4n− 20)
2
√

4× 6
4 + 6

+ (3mn− 8m− 8n + 21)
2
√

6× 6
6 + 6

= 4
√

2 +
16
7

√
3− 6m− 6n + 11 +

2
5
(4m + 4n− 20)

√
6 + 3mn.

This completes the proof.

In the next two theorems, we calculated the fourth atom-bond connectivity index ABC4 and the
fifth geometric-arithmetic index GA5. There are eighteen types of edges on the degree-based sum of
neighbors vertices of each edge in the Tickysim SpiNNaker Model sheet. We used this partition of
edges to calculate ABC4 and GA5 indices. Table 3 gives such types of edges of the Tickysim SpiNNaker
Model sheet. The edge set E(TSM) is divided into eighteen edge partitions based on the degree
of end vertices. The edge partition Eu,v(TSM) contains mu,v edges uv, where Su = u, Sv = v, and
mu,v = |Eu,v(TSM)|.
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Table 3. The edge partition of the graph TSM sheet based on the degree sum of neighbor vertices of
the end vertices of each edge.

(Su, Sv), where uv ∈ E(TSM) Number of Edges

(8, 16) 4
(14, 19) 4
(14, 29) 2
(16, 16) 2
(16, 20) 4
(16, 28) 4
(19, 20) 4
(19, 29) 4
(19, 32) 4
(20, 20) 2m + 2n− 20
(20, 28) 4
(20, 32) 4m + 4n− 36
(28, 32) 4
(29, 32) 4
(29, 36) 2
(32, 32) 2m + 2n− 18
(32, 36) 4m + 4n− 36
(36, 36) 3mn− 14m− 14n + 65

Total 3mn− 2m− 2n + 1

Theorem 4. The fourth atom-bond connectivity index ABC4 of the Tickysim SpiNNaker Model sheet is given by

ABC4(TSM) =
1
12

√
70mn +

1
2

√
11 +

2
133

√
8246 +

1
203

√
16646

+
1
8

√
30 +

1
10

√
170 +

1
2

√
6 +

2
95

√
3515 +

4
551

√
25346

+
7
38

√
38 +

1
20

(2m + 2n− 20)
√

38 +
1

35

√
1610

+
1
8
(4m + 4n− 36)

√
5 +

43
406

√
203 +

1
58

√
3422 +

1
32

(2m + 2n− 18)
√

62

+
1
24

(4m + 4n− 36)
√

33 +
1

36
(−14m− 14n + 65)

√
70.

Proof. Let mi,j denote the number of edges of the Tickysim SpiNNaker Model sheet with
i = Su and j = Sv. It is easy to see that the summation of the degree of the edge
endpoints of a given graph has eighteen edge types m8,16, m14,19, m14,29, m16,16, m16,20, m16,28, m19,20,
m19,29, m19,32, m20,20, m20,28, m20,32, m28,32, m29,32, m29,36, m32,32, m32,36, and m36,36, which are shown in
Table 3. The fourth atom-bond connectivity index ABC4 is defined as:

ABC4(TSM) = ∑
uv∈E(TSM)

√
Su+Sv−2

Su×Sv
.
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This implies that

ABC4(TSM) = m8,16

√
8+16−2

8×16 + m14,19

√
14+19−2

14×19 + m14,29

√
14+29−2

14×29 + m16,16

√
16+16−2

16×16

+ m16,20

√
16+20−2

16×20 + m16,28

√
16+28−2

16×28 + m19,20

√
19+20−2

19×20

+ m19,29

√
19+29−2

19×29 + m19,32

√
19+32−2

19×32 + m20,20

√
20+20−2

20×20

+ m20,28

√
20+28−2

20×28 + m20,32

√
20+32−2

20×32 + m28,32

√
28+32−2

28×32

+ m29,32

√
29+32−2

29×32 + m29,36

√
29+36−2

29×36 + m32,32

√
32+32−2

32×32

+ m32,36

√
32+36−2

32×36 + m36,36

√
36+36−2

36×36 .

=
1

12

√
70mn +

1
2

√
11 +

2
133

√
8246 +

1
203

√
16646 +

1
8

√
30

+
1

10

√
170 +

1
2

√
6 +

2
95

√
3515 +

4
551

√
25346 +

7
38

√
38

+
1

20
(2m + 2n− 20)

√
38 +

1
35

√
1610 +

1
8
(4m + 4n− 36)

√
5

+
43

406

√
203 +

1
58

√
3422 +

1
32

(2m + 2n− 18)
√

62 +
1

24
(4m + 4n− 36)

√
33

+
1

36
(−14m− 14n + 65)

√
70.

This completes the proof.

Theorem 5. The fifth geometric-arithmetic index GA5 of the Tickysim SpiNNaker Model sheet is given by

GA5(TSM) = 29 +
32
51

√
38− 10 n +

8
33

√
266 +

4
43

√
406 + 1/6

√
551

+
4

13
(4m + 4n− 36)

√
10 +

12
17

(4m + 4n− 36)
√

2

+
16
11

√
7 +

16
9

√
5 +

16
15

√
14 +

8
3

√
2− 10m + 3mn

+
16
39

√
95 +

2
3

√
35 +

32
61

√
58 +

24
65

√
29.

Proof. Let mi,j denote the number of edges of the Tickysim SpiNNaker Model sheet with i = Su

and j = Sv. It is easy to see that the summation of the degree of edge endpoints of given
graph has eighteen edge types m8,16, m14,19, m14,29, m16,16, m16,20, m16,28, m19,20, m19,29, m19,32, m20,20,
m20,28, m20,32, m28,32, m29,32, m29,36, m32,32, m32,36, and m36,36, which are shown in Table 3. The fifth
geometric-arithmetic index GA5 is defined as:

GA5(TSM) = ∑
uv∈E(TSM)

2
√

Su × Sv

Su + Sv
.
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This implies that

GA5(TSM) = m8,16
2
√

8× 16
8 + 16

+ m14,19
2
√

14× 19
14 + 19

+ m14,29
2
√

14× 29
14 + 29

+ m16,16
2
√

16× 16
16 + 16

+ m16,20
2
√

16× 20
16 + 20

+ m16,28
2
√

16× 28
16 + 28

+ m19,20
2
√

19× 20
19 + 20

+ m19,29
2
√

19× 29
19 + 29

+ m19,32
2
√

19× 32
19 + 32

+ m20,20
2
√

20× 20
20 + 20

+ m20,28
2
√

20× 28
20 + 28

+ m20,32
2
√

20× 32
20 + 32

+ m28,32
2
√

28× 32
28 + 32

+ m29,32
2
√

29× 32
29 + 32

+ m29,36
2
√

29× 36
29 + 36

+ m32,32
2
√

32× 32
32 + 32

+ m32,36
2
√

32× 36
32 + 36

+ m36,36
2
√

36× 36
36 + 36

= 29 +
32
51

√
38− 10n +

8
33

√
266 +

4
43

√
406 + 1/6

√
551

+
4
13

(4m + 4n− 36)
√

10 +
12
17

(4m + 4n− 36)
√

2 +
16
11

√
7

+
16
9

√
5 +

16
15

√
14 +

8
3

√
2− 10m + 3mn +

16
39

√
95

+
2
3

√
35 +

32
61

√
58 +

24
65

√
29.

This completes the proof.

We compute the hyper-Zagreb index HM(G), first multiple Zagreb index PM1(G), second
multiple Zagreb index PM2(G), and Zagreb polynomials M1(G, x), M2(G, x) for the Tickysim
SpiNNaker Model sheet in the following theorem.

Theorem 6. Let TSM be a Tickysim SpiNNaker Model sheet, then

1. HM(TSM) = 886− 624 m− 624 n + 432 mn,
2. PM1(TSM) = 252047376

(
26mn−6 m−6 n−8 × 33mn−8 m−8 n+21 × 54 m−4 n−20) ,

3. PM2(TSM) = 27518828544
(
26mn+4 m+4 n−58 × 36mn−12 m−12 n+22) ,

4. M1(TSM, x) = 4 x6 + 4 x7 + 2 x9 + (2m + 2n− 10) x8 + (4m + 4n− 20) x10 + (3mn− 8m− 8n +

21) x12,
5. M2(TSM, x) = 4 x8 + 4 x12 + 2 x18 + (2m+ 2n− 10) x16 + (4m+ 4n− 20) x24 + (3mn− 8m− 8n+

21) x36.

Proof. Let TSM be a Tickysim SpiNNaker Model sheet. The edge set E(TSM) is divided into six
edge partitions based on degree of end vertices. The first edge partition E1(TSM) contains 4 edges uv,
where ζ(u) = 2, ζ(v) = 4. The second edge partition E2(TSM) contains m edges uv, where ζ(u) = 3,
ζ(v) = 4. The third edge partition E3(TSM) contains 2 edges uv, where ζ(u) = 3, ζ(v) = 6. The
fourth edge partition E4(TSM) contains 2m + 2n− 10 edges uv, where ζ(u) = ζ(v) = 4. The fifth edge
partition E5(TSM) contains 4m + 4n− 20 edges uv, where ζ(u) = 4, ζ(v) = 6. The sixth edge partition
E6(TSM) contains 3mn− 8m− 8n + 21 edges uv, where ζ(u) = ζ(v) = 6.
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Since

HM(TSM) = ∑
uv∈E(TSM)

(
ζ(u) + ζ(v)

)2

= ∑
uv∈E1(TSM)

[
ζ(u) + ζ(v)

]2
+ ∑

uv∈E2(TSM)

[
ζ(u) + ζ(v)

]2
+ ∑

uv∈E3(TSM)

[
ζ(u) + ζ(v)

]2
+ ∑

uv∈E4(TSM)

[
ζ(u) + ζ(v)

]2
+ ∑

uv∈E5(TSM)

[
ζ(u) + ζ(v)

]2
+ ∑

uv∈E6(TSM)

[
ζ(u) + ζ(v)

]2
=e2,4 (2 + 4)2 + e3,4 (3 + 4)2 + e3,6 (3 + 6)2 + e4,4 (4 + 4)2 + e4,6 (4 + 6)2

+e6,6 (6 + 6)2,

after putting the values of edge partitions, we get

HM(G) = 886− 624m− 624n + 432mn.

Since,

PM1(TSM) = ∏
uv∈E(TSM)

(ζ(u) + ζ(v))

= ∏
uv∈E1(TSM)

(ζ(u) + ζ(v))× ∏
uv∈E2(TSM)

(ζ(u) + ζ(v))× ∏
uv∈E3(TSM)

(ζ(u) + ζ(v))

× ∏
uv∈E4(TSM)

(ζ(u) + ζ(v))× ∏
uv∈E5(TSM)

(ζ(u) + ζ(v))× ∏
uv∈E6(TSM)

(ζ(u) + ζ(v))

=(2 + 4)|E1(TSM)| × (3 + 4)|E2(G)| × (3 + 6)|E3(TSM)| × (4 + 4)|E4(TSM)|

×(4 + 6)|E5(G)| × (6 + 6)|E6(TSM)|

=(6)4 × (7)4 × (9)2 × (8)2m+2n−10 × (10)4m+4n−20 × (12)3mn−8m−8n+21

=252047376
(

26mn−6 m−6 n−8 × 33mn−8 m−8 n+21 × 54 m−4 n−20
)

.

Now, since

PM2(G) = ∏
uv∈E(TSM)

(ζ(u)× ζ(v))

= ∏
uv∈E1(TSM)

(ζ(u)× ζ(v))× ∏
uv∈E2(TSM)

(ζ(u)× ζ(v))× ∏
uv∈E3(TSM)

(ζ(u)× ζ(v))

× ∏
uv∈E4(TSM)

(ζ(u)× ζ(v))× ∏
uv∈E5(TSM)

(ζ(u)× ζ(v))× ∏
uv∈E6(TSM)

(ζ(u)× ζ(v))

=(2× 4)|E1(TSM)| × (3× 4)|E2(G)| × (3× 6)|E3(TSM)| × (4× 4)|E4(TSM)|

×(4× 6)|E5(G)| × (6× 6)|E6(TSM)|

=(8)4 × (12)4 × (18)2 × (16)2m+2n−10 × (24)4m+4n−20 × (36)3mn−8m−8n+21.

After simplification, we get

PM2(TSM) = 27518828544
(

26mn+4 m+4 n−58 × 36mn−12 m−12 n+22
)

.
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As,

M1(TSM, x) = ∑
uv∈E(TSM)

x(ζ(u)+ζ(v))

= ∑
uv∈E1(TSM)

x(ζ(u)+ζ(v)) + ∑
uv∈E2(TSM)

x(ζ(u)+ζ(v)) + ∑
uv∈E3(TSM)

x(ζ(u)+ζ(v))

+ ∑
uv∈E4(TSM)

x(ζ(u)+ζ(v)) + ∑
uv∈E5(TSM)

x(ζ(u)+ζ(v)) + ∑
uv∈E6(TSM)

x(ζ(u)+ζ(v))

= ∑
uv∈E1(TSM)

x2+4 + ∑
uv∈E2(TSM)

x3+4 + ∑
uv∈E3(TSM)

x3+6

+ ∑
uv∈E4(TSM)

x4+4 + ∑
uv∈E5(TSM)

x4+6 + ∑
uv∈E6(TSM)

x6+6

=|E1(TSM)|x6 + |E2(TSM)|x7 + |E3(TSM)|x9

+|E4(TSM)|x8 + |E5(TSM)|x10 + |E6(TSM)|x12

=4 x6 + 4 x7 + 2 x9 + (2m + 2n− 10) x8

+(4m + 4n− 20) x10 + (3mn− 8m− 8n + 21) x12.

As

M2(TSM, x) = ∑
uv∈E(TSM)

x(ζ(u)×ζ(v))

= ∑
uv∈E1(TSM)

x(ζ(u)×ζ(v)) + ∑
uv∈E2(TSM)

x(ζ(u)×ζ(v)) + ∑
uv∈E3(TSM)

x(ζ(u)×ζ(v))

+ ∑
uv∈E4(TSM)

x(ζ(u)×ζ(v)) + ∑
uv∈E5(TSM)

x(ζ(u)×ζ(v)) + ∑
uv∈E6(TSM)

x(ζ(u)×ζ(v))

= ∑
uv∈E1(TSM)

x8 + ∑
uv∈E2(TSM)

x12 + ∑
uv∈E3(TSM)

x18

+ ∑
uv∈E4(TSM)

x16 + ∑
uv∈E5(TSM)

x24 + ∑
uv∈E6(TSM)

x36.

By inserting the values, we obtain

M2(G, x) = 4 x8 + 4 x12 + 2 x18 + (2m+ 2n− 10) x16 + (4m+ 4n− 20) x24 + (3mn− 8m− 8n+ 21) x36.

This completes the proof.

5. Conclusions

In this paper, we deal with a Tickysim SpiNNaker Model sheet and study its topological indices.
We determined the first general Zagreb index Mα, general Randić connectivity index Rα, general
sum-connectivity index χα, atom-bond connectivity index ABC, geometric-arithmetic index GA,
fourth atom-bond connectivity index ABC4, fifth geometric-arithmetic index GA5, hyper-Zagreb index
HM(G), first multiple Zagreb index PM1(G), second multiple Zagreb index PM2(G), and Zagreb
polynomials M1(G, x), M1(G, x).

In the future, we are interested in designing some incipient architectures/networks and
then studying their topological indices, which will be quite auxiliary to understanding their
underlying topology.
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