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Abstract: A well-known result of Ferri and Galindo asserts that the topological group c0 is not
reflexively representable and the algebra WAP(c0) of weakly almost periodic functions does not
separate points and closed subsets. However, it is unknown if the same remains true for a larger
important algebra Tame(c0) of tame functions. Respectively, it is an open question if c0 is representable
on a Rosenthal Banach space. In the present work we show that Tame(c0) is small in a sense that
the unit sphere S and 2S cannot be separated by a tame function f ∈ Tame(c0). As an application
we show that the Gromov’s compactification of c0 is not a semigroup compactification. We discuss
some questions.
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1. Introduction

Recall that for every Hausdorff topological group G the algebra WAP(G) of all weakly almost
periodic functions on G determines the universal semitopological semigroup compactification uw :
G → Gw of G. This map is a topological embedding for many groups including the locally compact
case. For some basic material about WAP(G) we refer to [1,2].

The question if uw always is a topological embedding (i.e., if WAP(G) determines the topology
of G) was raised by Ruppert [2]. This question was negatively answered in [1] by showing that the
Polish topological group G := H+[0, 1] of orientation preserving homeomorphisms of the closed unit
interval has only constant WAP functions and that every continuous representation h : G → Is(V)

(by linear isometries) on a reflexive Banach space V is trivial. The WAP triviality of H+[0, 1] was
conjectured by Pestov.

Recall also that for G := H+[0, 1] every Asplund (hence also every WAP) function is constant and
every continuous representation G → Iso(V) on an Asplund (hence also reflexive) space V must be
trivial [3]. In contrast one may show (see [4,5]) that H+[0, 1] is representable on a (separable) Rosenthal
space (a Banach space is Rosenthal if it does not contain a subspace topologically isomorphic to l1).

We have the inclusions of topological G-algebras

WAP(G) ⊂ Asp(G) ⊂ Tame(G) ⊂ RUC(G).

For details about Tame(G) and definition of Asp(G) see [5–7]. We only remark that f ∈ Tame(G)

if and only if f is a matrix coefficient of a Rosenthal representation. That is, there exist: a Rosenthal
Banach space V; a continuous homomorphism h : G → Is(V) into the topological group of all linear
isometries V → V with strong operator topology; two vectors v ∈ V; ψ ∈ V∗ (the dual of V) such that
f (g) = ψ(h(g)v) for every g ∈ G.

Similarly, it can be characterized f ∈ Asp(G) replacing Rosenthal spaces by the larger class of
Asplund spaces. A Banach space is Asplund if the dual of every separable subspace is separable.
Every reflexive space is Asplund and every Asplund is Rosenthal. A standard example of an Asplund
but nonreflexive space is just c0.
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Recall that c0, as an additive abelian topological group, is not representable on a reflexive Banach
space by a well-known result of Ferri and Galindo [8]. In fact, WAP(c0) separates the points but not
points and closed subsets. The group c0 admits an injective continuous homomorphism h : c0 → Is(V)

with some reflexive V but such h cannot be a topological embedding.
Presently it is an open question if every topological group (abelian, or not) G is Rosenthal

representable and if Tame(G) determines the topology of G. Note that the algebra Tame(G) appears as
an important modern tool in some new research lines in topological dynamics motivating its detailed
study [5,7].

One of the good reasons to study Tame(G) is a special role of tameness in the dynamical
Berglund-Fremlin-Talagrand dichotomy [5]; as well as direct links to Rosenthal’s l1-dychotomy. In a
sense Tame(G) is a set of all functions which are not dynamically massive.

By these reasons and since H+[0, 1] is Rosenthal representable, it seems to be an attractive concrete
question if c0 is Rosenthal representable and it is worth studying how large is Tame(c0). In the present
work we show that Tame(c0) is quite small (even for the discrete copy of c0, see Theorem 3).

Theorem 1. Tame(c0) does not separate the unit sphere S and 2S.

So, the closures of S and 2S intersect in the universal tame compactification of c0 (a fortiori,
the same is true for the universal Asplund (HNS) semigroup compactification).

Another interesting question is if c0 admits an embedding into a metrizable semigroup
compactification. Note that any metrizable semigroup compactification of H+[0, 1] is trivial.

In Section 3 we show that the Gromov’s compactification γ : c0 ↪→ P, which is metrizable (and γ

is a G-embedding), is not a semigroup compactification.

Theorem 2. Let γ : c0 ↪→ P be the Gromov’s compactification of the metric space (c0, d
1+d ), where d(x, y) :=

||x− y||. Then γ is not a semigroup compactification.

This gives an example of a naturally defined separable unital (original topology determining)
G-subalgebra of RUC(G) (for G = c0) which is not left m-introverted in the sense of [9].

2. Tame Functions on c0

Recall that a sequence fn of real-valued functions on a set X is said to be independent if there exist
real numbers a < b such that

⋂
n∈P

f−1
n (−∞, a) ∩

⋂
n∈M

f−1
n (b, ∞) 6= ∅

for all finite disjoint subsets P, M of N. Every bounded independent sequence is an l1-sequence [10].
As in [6,7] we say that a bounded family F of real-valued (not necessarily continuous) functions

on a set X is a tame family if F does not contain an independent sequence.
Let G be a topological group, f : G → R be a real-valued function. For every g ∈ G define

f g : G → R as ( f g)(x) = f (gx) (for multiplicative G). Denote by RUC(G) the algebra of all bounded
right uniformly continuous functions on G. So, f ∈ RUC(G) means that f is bounded and for
every ε > 0 there exists a neighborhood U of the identity e (of the multiplicative group G) such that
| f (ux)− f (x)| < ε for every x ∈ G and u ∈ U. This algebra RUC(G) corresponds to the greatest
G-compactification G → βGG of G (with respect to the left action), greatest ambit of G.

We say that f ∈ RUC(G) is a tame function if the orbit f G := { f g}g∈G is a tame family. That is,
f G does not contain an independent sequence; notation f ∈ Tame(G).
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2.1. Proof of Theorem 1

We have to show that Tame(c0) does not separate the spheres S and 2S (where S := {x ∈ c0 :
||x|| = 1}). In fact we show the following stronger result.

Theorem 3. Let G = c0 be the additive group of the classical Banach space c0. Assume that f : c0 → R be any
(not necessarily continuous) bounded function such that{

f (x) ≤ a ∀ ||x|| = 1

b ≤ f (x) ∀ ||x|| = 2

for some pair a < b of real numbers. Then f is not a tame function on the discrete copy of the group c0.

Proof. For every n ∈ N consider the function

fn : c0 → R, x 7→ f (en + x),

where en is a vector of c0 having 1 as its n-th coordinate and all other coordinates are 0. Clearly,
fn = f gn where gn = en ∈ c0. We have to check that f G is an untame family. It is enough to show that
the sequence { fn}n∈N in f G is an independent family of functions on c0. We have to show that for
every finite nonempty disjoint subsets I, J in N the intersection⋂

n∈I
f−1
n (−∞, a] ∩

⋂
n∈J

f−1
n [b, ∞)

is nonempty.
Define v = (vk)k∈N ∈ c0 as follows: vj = 1 for every j ∈ J and vk = 0 for every k /∈ J. Then

(1) v ∈ c0 and ||v|| = 1.
(2) ||ei + v|| = 1, fi(v) = f (ei + v) ≤ a for every i ∈ I.
(3) ||ej + v|| = 2, f j(v) = f (ej + v) ≥ b for every j ∈ J.

So we found v such that

v ∈
⋂
n∈I

f−1
n (−∞, a] ∩

⋂
n∈J

f−1
n [b, ∞).

Corollary 1. The bounded RUC function

f : c0 → [−1, 1], x 7→ ||x||
1 + ||x||

is not tame on c0 (even on the discrete copy of the group c0).

Proof. Observe that f (S) = 1
2 , f (2S) = 2

3 and apply Theorem 3.

Theorem 3 remains true for the spheres rS and 2rS for every r > 0. In the case of Polish c0 it is
unclear if the same is true for any pair of different spheres around the zero. If, yes then this will imply
that Tame(c0) does not separate the zero and closed subsets. The following question remains open
even for any topological group [5,7].

Question 1. Is it true that Tame(c0) separates the points and closed subsets ? Is it true that Polish group c0 is
Rosenthal representable ?
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3. Gromov’s Compactification Need Not Be a Semigroup Compactification

Studying topological groups G and their dynamics we need to deal with various natural closed
unital G-subalgebras A of the algebra RUC(G). Such subalgebras lead to G-compactifications of G
(so-called G-ambits, [11]). That is we have compact G-spaces K with a dense orbit Gz ⊂ K such that
the Gelfand algebra which corresponds to the compactification G → K, g 7→ gz is just A. Frequently
but not always such compactifications are the so-called semigroup compactifications, which are very
useful in topological dynamics and analysis. Compactifications of topological groups already is a
fruitful research line. See among others [12–14] and references there. In our opinion semigroup
compactifications deserve even much more attention and systematic study in the context of general
topological group theory.

A semigroup compactification of G is a pair (α, K) such that K is a compact right topological
semigroup (all right translations are continuous), and α is a continuous semigroup homomorphism
from G into K, where α(G) is dense in K and the left translation K → K, x 7→ α(g)x is continuous for
every g ∈ G.

One of the most useful references about semigroup compactifications is a book of Berglund,
Junghenn and Milnes [9]. For some new directions (regarding topological groups) see also [3,4,15,16].

Question 2. Which natural compactifications of topological groups G are semigroup compactifications?
Equivalently which Banach unital G-subalgebras of RUC(G) are left m-introverted (in the sense of [9])?

Recall that left m-introversion of a subalgebra A of RUC(G) means that for every v ∈ A and every
ψ ∈ MM(A) the matrix coefficient m(v, ψ) belongs to A, where

m(v, ψ) : G → R, g 7→ ψ(g−1v)

and MM(A) ⊂ A∗ denotes the spectrum (Gelfand space) of A.
It is not always easy to verify left m-introversion directly. Many natural G-compactifications

of G are semigroup compactifications. For example, it is true for the compactifications defined
by the algebras RUC(G), Tame(G), Asp(G), WAP(G). Of course, the 1-point compactification is a
semitopological semigroup compactification for any locally compact group G.

As to the counterexamples. As it was proved in [3], the subalgebra UC(G) := RUC(G) ∩ LUC(G)

of all uniformly continuous functions is not left m-introverted for G := H(C), the Polish group of
homeomorphisms of the Cantor set.

In this section we show that the Gromov’s compactification of a metrizable topological group G
need not be a semigroup compactification.

Let ρ be a bounded metric on a set X. Then the Gromov’s compactification of the metric space
(X, ρ) is a compactification γ : X → P induced by the algebra A which is generated by the bounded
set of functions

{ρz : X → R, ρz(x) = ρ(z, x)}z∈X .

Then γ always is a topological embedding. If X is separable then P is metrizable. Moreover,
if (X, ρ) admits a continuous ρ-invariant action of a topological group G then γ is a G-compactification
of X; see [17].

Here we examine the following particular case. Let G be a metrizable topological group.
Choose any left invariant metric d on G. Denote by γ : G → P the Gromov’s compactification
of the bounded metric space (G, ρ), where ρ = d

1+d .
Consider the following natural bounded RUC function

f : G → R, x 7→ ||x||
1 + ||x||
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where ||x|| := d(e, x). By A f we denote the smallest closed unital G-subalgebra of RUC(G) which
contains f G = { f g : g ∈ G}. Then A f is the algebra which corresponds to the compactification γ.
Indeed, ρg−1(x) = ρ(g−1, x) = ( f g)(x) for every g, x ∈ G.

Proof of Theorem 2

We have to prove Theorem 2.

Proof. By the discussion above, the unital G-subalgebra A f of RUC(G) associated with γ is generated

by the orbit f G, where f : G → R, f (x) = ||x||
1+||x|| . Since c0 is separable the algebra A f is separable.

Hence, P is metrizable. If we assume that γ is a semigroup compactification then the separability of
A f guarantees by [4] ( Prop. 6.13) that A f ⊂ Asp(G). On the other hand, since Asp(G) ⊂ Tame(G),
and f ∈ A f we have f ∈ Tame(G). Now observe that f separates the spheres S and 2S and we get a
contradiction to Corollary 1.

Question 3. Is it true that the Polish group c0 admits a semigroup compactification α : c0 ↪→ P such that P is
metrizable and α is an embedding? What if P is first countable?

This question is closely related to the setting of this work. Indeed, by [4] (Prop. 6.13) (resp., by [4]
(Cor. 6.20)) the metrizability (first countability) of P guarantees that the corresponding algebra is a
subset of Asp(G) (resp. of Tame(G)).
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