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Abstract: We consider several unification problems in mathematics. We refer to transcendental
numbers. Furthermore, we present some ways to unify the main non-associative algebras (Lie algebras
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1. Introduction

Andre Weil explains (see [1]) that the areas of modern mathematics need to be unified in a simple
and general theory. In this way, we will see more clearly which are the main problems in mathematics
(as opposed to the less important themes and results).

In physics, unification theories have contributed to a better understanding of certain phenomena.
The unified approaches suggested in this communication refer to the theory of functions and algebraic
structures, two of the pillars of modern physical tools.

The purpose of this paper is three-fold: (i) we present new results on transcendental numbers;
(ii) we obtain new results in the theory of the unification of non-associative structures; (iii) we re-initiate
a debate on unification(s) in mathematics.

In the next section, we will give several examples of unification problems. This section is related
to the paper [2] on transcendental numbers. Some knowledge of Hopf algebra theory is needed in
order to understand some results from this section.

The third section presents structures that unify (non-)associative structures. The main
non-associative structures are Lie algebras and Jordan algebras. Arguably less studied, Jordan algebras
have applications in physics, differential geometry, ring geometries, quantum groups, analysis, biology,
etc. (see [3]). There are several ways to unify Lie algebras, Jordan algebras and associative algebras.
We will also refer to cases when the unification of (non-)associative structures could be realized just in
the conclusions of theorems.

This paper is related to a talk and a poster presented at “Noncommutative and non-associative
structures, braces and applications”, Malta, 11–15 March 2018, and to a private communication made
at the “Workshop on Non-associative Algebras and Applications”, Lancaster University, UK, July 2018.

All tensor products will be defined over the field k.

2. Examples of Unification Problems

In this section, we will give several examples of unification problems related to transcendental
numbers.

The following two identities with transcendental numbers:
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∫ +∞

−∞
e−x2

dx =
√

π , (1)

∫ +∞

−∞
e−ix2

dx =

√
π

2
(1− i) , (2)

were unified and proven (by contour integration) in [4].
The next formulas (from [2]) can be also unified:

eπi + 1 = 0 , (3)

|ei − π| > e (4)

and:

| e1−z + ez̄ |> π ∀z ∈ C . (5)

Remark 1. Let us consider the two-variable complex function f : C × C → R, f (z, w) = |ez + ew|,
which gives the length of the sum of the vectors ez and ew. The Formulas (3)–(5) can be unified using the
function f (z, w):

f (πi, 0) = 0, f (1− z, z̄) > π ∀z ∈ C, f (i, πi + ln π) > e.

Remark 2. The function f (z, w) can be expressed in another form using the formula |ex+iα + ey+iβ| =
ρ
√

1 + sin(2θ) cos(α− β), where ρ =
√

e2x + e2y and θ = cos−1
(

ex

ρ

)
. The relations from Remark 1 can

be reinterpreted using this formula. For example, in the first formula: ρ =
√

2, θ = π
4 , α = π, β = 0;

so, f (πi, 0) =
√

2
√

1 + sin(π
2 ) cos(π) = 0.

Remark 3. While properties about the image of the function f (z, w) unify the Formulas (3)–(5), the formula
ex+iy = ex(cos y + i sin y) could be considered a common part (or an essential part) of all of them.

This latest formula can be related to a certain subcoalgebra of the trigonometric coalgebra (see [5]). Indeed,
the properties of the trigonometric functions cos and sin lead to the trigonometric coalgebra, given by the maps:
∆(c) = c⊗ c− s⊗ s, ∆(s) = s⊗ c + c⊗ s, ε(c) = 1, ε(s) = 0. Euler’s relation leads to the subcoalgebra
generated by c + is.

The dual case states that 1+ ix generates an ideal in the C algebra C[X]
X2+1 = C[x], where x2 = −1. In other

words, Euler’s relation implies that ∀a, b ∈ C, there exists c ∈ C such that (a + bx)(1 + ix) = c(1 + ix)
(this can be checked directly).

According to [5], the role of such objects in number theory is unexplored at the moment.

Remark 4. The properties of the hyperbolic functions cosh and sinh lead to the following coalgebra, given by
the maps: ∆(c) = c⊗ c + s⊗ s, ∆(s) = s⊗ c + c⊗ s, ε(c) = 1, ε(s) = 0. There exists a subcoalgebra
generated by c + s, which can be related to Theorem 1 of [2], leading to some kind of “Euler formula” for
hyperbolic functions.

Remark 5. The coalgebras from Remarks 3 and 4 can be unified as follows. For a ∈ k, we consider the coalgebra
generated by c and s, ∆(c) = c⊗ c + a2s⊗ s, ∆(s) = s⊗ c + c⊗ s, ε(c) = 1, ε(s) = 0. There exists a
subcoalgebra generated by c + as.

Remark 6. The following inequalities hold (see also [2]): π > |ei − π| > e.
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The last inequality was proven in [2]: |ei − π| > e ⇐⇒ (π + e)(π − e) + 1 > 2π cos 1. Now,
π > 3.141, e < 2.719; so, (π + e)(π − e) + 1 > 3.47292 and cos 1 < 1− 1

2 + 1
4! = 13

24 , 2π cos 1 <

3.142× 13
12 = 3.4038(3).

The inequality π > |ei − π| is equivalent to 2π cos 1 > 1, which follows from cos 1 > cos 60◦ = 1
2 .

Remark 7. The next formula generalizes the Basel problem limn→∞ ∑n
k=1

1
k2 = π2

6 :

n

∑
1

1
k2 <

2
3

(n + 1
n

)n
∀n ∈ N∗. (6)

It could be an interesting problem to prove a similar formula for non-associative algebras. Likewise,
one could try to generalize it for q-shifted factorials (see, for example, [6]).

3. The Unification of Non-Associative Structures

3.1. UJLA Structures

The UJLA (Unification of Jordan, Lie (and) Associative (algebras)) structures could be seen as
structures that comprise the information encapsulated in associative algebras, Lie algebras and Jordan
algebras. Thus, the category of the UJLA structures can be seen as a category that “includes” the
categories of Jordan, Lie and associative algebras. A motivation for this unification is related to the
study of bundles over Grassmannian manifolds.

Definition 1. For a k-space V, let η : V ⊗V → V, a⊗ b 7→ ab, be a linear map such that:

(ab)c + (bc)a + (ca)b = a(bc) + b(ca) + c(ab), (7)

(a2b)a = a2(ba), (ab)a2 = a(ba2), (ba2)a = (ba)a2, a2(ab) = a(a2b), (8)

∀ a, b, c ∈ V. Then, (V, η) is called a UJLA structure.

Remark 8. If (A, θ), where θ : A⊗ A → A, θ(a⊗ b) = ab, is a (non-unital) associative algebra, then we
define a UJLA structure (A, θ′), where θ′(a⊗ b) = αab + βba, for some α, β ∈ k. For α = β = 1

2 , (A, θ′)

is a Jordan algebra, and for α = 1 = −β, (A, θ′) is a Lie algebra.

Theorem 1. (Nichita [7]) Let (V, η) be a UJLA structure. Then, (V, η′), η′(a⊗ b) = [a, b] = ab− ba is a
Lie algebra.

Theorem 2. (Nichita [7]) Let (V, η) be a UJLA structure. Then, (V, η′), η′(a⊗ b) = a ◦ b = 1
2 (ab + ba) is

a Jordan algebra.

Remark 9. The structures from the two above theorems are related by the relation:

[a, b ◦ c] + [b, c ◦ a] + [c, a ◦ b] = 0.

Remark 10. The classification of UJLA structures is an open problem.

Remark 11. If the characteristic of k is two, then a Lie algebra is also a Jordan algebra.

Proof. Because the characteristic of k is two, the Lie algebra L is also commutative.
It follows easily that [[x, x], x] = 0 ∀x ∈ L.
Now, in the Jacobi identity, we take z = x2: [[x, y], x2] + [[y, x2], x] + [[x2, x], y] = 0.
From the above observations, it follows that [[x, y], x2] = [x, [y, x2]]. Therefore, L is also a

Jordan algebra.
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3.2. Yang–Baxter Equations

The authors of [8] argued that the Yang–Baxter equation leads to another unification of
(non-)associative structures.

For V a k-space, we denote by τ : V ⊗V → V ⊗V the twist map defined by τ(v⊗ w) = w⊗ v
and by I : V → V the identity map of the space V; for R : V ⊗ V → V ⊗ V a k-linear map,
let R12 = R⊗ I, R23 = I ⊗ R, R13 = (I ⊗ τ)(R⊗ I)(I ⊗ τ).

Definition 2. A The Yang–Baxter operator is an invertible k-linear map, R : V ⊗V → V ⊗V, which satisfies
the braid condition (sometimes called the Yang–Baxter equation):

R12 ◦ R23 ◦ R12 = R23 ◦ R12 ◦ R23. (9)

If R satisfies (9), then both R ◦ τ and τ ◦ R satisfy the quantum Yang–Baxter equation (QYBE):

R12 ◦ R13 ◦ R23 = R23 ◦ R13 ◦ R12. (10)

Therefore, Equations (9) and (10) are equivalent.
Let A be a (unitary) associative k-algebra, and α, β, γ ∈ k; the authors of [9] defined the k-linear

map RA
α,β,γ : A⊗ A→ A⊗ A,

a⊗ b 7→ αab⊗ 1 + β1⊗ ab− γa⊗ b (11)

which is a Yang–Baxter operator if and only if one of the following cases holds:

(i) α = γ 6= 0, β 6= 0;
(ii) β = γ 6= 0, α 6= 0;

(iii) α = β = 0, γ 6= 0.

An interesting property of (11), can be visualized in knot theory, where the link invariant
associated with RA

α,β,γ is the Alexander polynomial.
For (L, [, ]) a Lie algebra over k, z ∈ Z(L) = {z ∈ L : [z, x] = 0 ∀ x ∈ L}, and α ∈ k, the authors

of the papers [10,11] defined the following Yang–Baxter operator: φL
α : L⊗ L −→ L⊗ L,

x⊗ y 7→ α[x, y]⊗ z + y⊗ x . (12)

Remark 12. The Formulas (11) and (12) lead to the unification of associative algebras and Lie algebras in the
framework of Yang–Baxter structures. At this moment, we do not have a satisfactory answer to the question how
Jordan algebras fit in this framework (several partial answers were given).

3.3. Unification of the Conclusions of Theorems

Sometimes, it is not easy to find structures that unify theorems for (non-)associative structures,
but we could unify just the conclusions of theorems, as we will see in the next theorems.

Theorem 3. If A is a Jordan algebra, a Lie algebra or an associative algebra and if a, b ∈ A, then:

D : A→ A, D(x) = a(bx) + b(ax) + (ax)b− a(xb)− (xb)a− (xa)b

is a derivation.

Proof. We consider three cases. If A is a Jordan algebra, then D(x) = a(bx) + b(ax) + (ax)b− a(xb)−
(xb)a− (xa)b = a(bx)− (xa)b = a(bx)− b(ax). According to [12], D is a derivation.

If A is a Lie algebra, then D(x) = a(bx) + b(ax) + (ax)b − a(xb) − (xb)a − (xa)b = a(bx) −
b(ax) = a(bx) + b(xa) = (ab)x. Therefore, D is a derivation.



Axioms 2018, 7, 85 5 of 5

If A is an associative algebra, then D(x) = a(bx) + b(ax) + (ax)b− a(xb)− (xb)a− (xa)b =

(ab + ba)x− x(ab + ba). Therefore, D is a derivation.

Theorem 4. If A is a Jordan algebra, a Lie algebra or an associative algebra and if a, b ∈ A, then D : A →
A, D(x) = a(bx)− (xa)b is a derivation.

Proof. The proof follows the same argumentation as the previous one, for which reason it is
omitted.

Remark 13. We presented unifications of formulas, structures, categories and theorems. It is currently an open
problem whether these types can be formulated in a unified form.

Funding: This research received no external funding.

Acknowledgments: We would like to thank the referees for their high quality comments and the Editors for
their help.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Weil, A. A 1940 Letter of Andre Weil on Analogy in Mathematics (Trans. by Martin H. Krieger). Notices AMS
2005, 52, 341. (Trans. in Romanian by Florin Caragiu, “Cunoasterea Stiintifica in Orizontul Experierii
Tainei (II), pg. 98).

2. Marcus, S.; Nichita, F.F. On Transcendental Numbers: New Results and a Little History. Axioms 2018, 7, 15.
[CrossRef]

3. Iordanescu, R. Jordan Structures in Geometry and Physics with an Appendix on Jordan Structures in Analysis;
Romanian Academy Press: Bucharest, Romania, 2003.

4. Desbrow, D. On Evaluating
∫ +∞
−∞ eax(x−2b)dx by Contour Integration Round a Parallelogram. Am. Math. Mon.

1998, 105, 726–731.
5. Majid, S. A Quantum Groups Primer; Cambridge University Press: Cambridge, UK, 2002.
6. Ernst, T. Convergence Aspects for Generalizations of q-Hypergeometric Functions. Axioms 2015, 4, 134–155.

[CrossRef]
7. Nichita, F.F. On Jordan algebras and unification theories. Roman. J. Pure Appl. Math. 2016, 4, 305–316.
8. Iordanescu, R.; Nichita, F.F.; Nichita, I.M. The Yang–Baxter Equation, (Quantum) Computers and Unifying

Theories. Axioms 2014, 3, 360–368. [CrossRef]
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