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Abstract: In this article, we show how to define a metric on the finite power multisets of positive
real numbers. The metric, based on the minimal matching, consists of two parts: the matched part
and the mismatched part. We also give some concrete applications and examples to demonstrate the
validity of this metric.
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1. Introduction

A multiset, unlike a Cantorian set, is a collection of elements whose instances might be multiple
(the number of its instances of an element is named multiplicity). The cardinality of a multiset A is
defined by the sum of the multiplicities with respect to their corresponding elements and is denoted
by |A|m. For example, the cardinality of multiset A = {2, 2, 3, 3, 3, 6, 11} is 7, i.e., |A|m = 7. Though
unconventional, the theory of multisets has well been developed (see Reference [1]) and it also has
various applications in many situations (see Reference [2]). From practical point of view, multisets
are easier to represent or simulate than mathematical objects with multiple instances. In this article,
we mainly focus on the finite power multisets of positive real numbers.

Let R+ denote the set of all positive real numbers. Let N0 denote the set of natural numbers
including 0. Let power multiset MP(R+) denote the set of all the sub-multisets of R+. Suppose
K ⊆MP(R+) is an arbitrary set of some sub-multisets in R+ ( each multiset is finite) ofMP(R+). We
call K a finite power multiset of positive real numbers. The main result in this article is to define a metric
on K based on the concept of minimal matching. The distance between any two multisets consists of
two separated parts: the matched part and mismatched part. Matching has been an important problem
and has wide applications in the fields of artificial intelligence, graph theories, and operation research
(see References [3–5]). In this article, we come up with a new metric which is based on the concept of
minimal matching. This metric is used to measure the distance between any two finite multisets of
positive real numbers. Though what we define in this article is a standard metric, the whole setting
could also be extended to other generalized metrics, for example, G−metric (see Reference [6]).

2. Definitions

In this section, we introduce and present multisets via the forms of functions. The basic concepts
could be found in many textbooks or journals (see, e.g., References [7,8]). Let Γ denote the set R+ → N0,
i.e., the set of all the functions from R+ to N0. Let D f denote the domain of a function f . Let set
D∗f = {r ∈ R+ : f (r) 6= 0} be the non-zero domain of f .
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2.1. Multisets

Let Γ< denote all the finite multi-subsets of R+, i.e., Γ< = { f ∈ Γ : |D∗f | < ∞}. Each element in
Γ< is simply named a multiset in this article. If for all x ∈ R+, f (x) ≤ g(x), we say f is a multi-subset
of g, denoted by f ≤ g. Let f , g ∈ Γ< be arbitrary.

Definition 1. (Empty Multiset) We call the zero function in Γ< the empty multiset.

Definition 2. (Equality =) f = g if and only if f ≤ g and g ≤ f .

Definition 3. (Intersection ∧) The intersection of f and g, denoted by the function f ∧ g : R+ → N0, is defined
by ( f ∧ g)(a) := min{ f (a), g(a)} for all a ∈ R+.

Definition 4. (Union ∨) The union of f and g, denoted by the function f ∨ g : R+ → N0, is defined by
( f ∨ g)(a) := max{ f (a), g(a)} for all a ∈ R+.

Definition 5. (Difference 	) Exclusion of g from f , denoted by the function f 	 g : R+ → N0, is defined by
( f 	 g)(a) := f (a)− ( f ∧ g)(a).

Each multiset f in Γ< could be uniquely represented by the following descending form (named a
representative descending form):

f− = (a f (a1)
1 , a f (a2)

2 , ..., a f (an)
n ), (1)

or in brief f− = a f (a1)
1 a f (a2)

2 ...a f (an)
n ; or by the following ascending form (named a representative

ascending form):
f+ = (a f (an)

n a f (an−1)
n−1 , ..., a f (a2)

2 a f (a1)
1 ), (2)

or in brief f+ = a f (an)
n a f (an−1)

n−1 ...a f (a1)
1 , where a1 > a2 > a3... > an > 0 and a1, a2, ..., an ∈ D∗f and

f (av) > 0 for all 1 ≤ v ≤ n. Let | f | = f (a1) + f (a2) + ... + f (an).

Definition 6. (Descending) Define the p− th element in f by function OD as follows:

OD(p, f ) :=


a1 if 1 ≤ p ≤ f (a1);

aj if
j−1

∑
l=1

f (al) < p ≤
j

∑
l=1

f (al) and |D∗f | ≥ j ≥ 2;

0 otherwise .

Definition 7. (Ascending) Define the p− th element in f by function OA as follows:

OA(p, f ) :=


an if 1 ≤ p ≤ f (an);

an−j if
j−1

∑
l=0

f (an−l) < p ≤
j

∑
l=0

f (an−l) and |D∗f | ≥ j ≥ 1;

0 otherwise .

2.2. Background

In this article, we show how to define a metric on K (see Introduction). For any Cantorian set S,
we use |S| to denote the cardinality of S. Let d be an arbitrary metric on R+ satisfying

d(a, b) ≤ a + b, (3)

d(a, b) + a ≥ b, (4)

d(a, b) + b ≥ a, (5)
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for all a, b, c ∈ R+. Observe that d is a metric (for our generalization purpose) on R+ ×R+, which lays
a foundation for our latter definition of a metric on K. Let A, B, C ∈ K be arbitrary. Let A→ B denote
the set of all the functions from A to B, in which the repeated elements are deemed distinct.

Example 1. Suppose A = {2, 2, 3, 5} and B = {6, 8, 8, 8, 8, 9, 12, 12}, and ρ(2) = 9, ρ(2) = 6, ρ(3) = 8,
ρ(5) = 12. Then, ρ ∈ A→ B. For clarity, one could simply associate A and B with their ranked multiplicities as
follows: A = {(2, 1), (2, 2), (3, 1), (5, 1)} and B = {(6, 1), (8, 1), (8, 2), (8, 3), (8, 4), (9, 1), (12, 1), (12, 2)}
and ρ could also be represented by ρ(2, 1) = (9, 1), ρ(2, 2) = (6, 1), ρ(3, 1) = (8, 1), ρ(5, 1) = (12, 1). To save
space, we simply use ρ(21) = 91, ρ(22) = 61, ρ(31) = 81, ρ(51) = 121 for the representation in this article.

For any function ϕ, we use Dϕ and Rϕ to denote its domain and codomain, respectively. For the
previous example, Dρ = A and Rρ = B. We use ϕ(S) to denote the image {ϕ(s) : s ∈ S}, in particular
ϕ(Dϕ) to denote the image of ϕ and ϕ−1(S) to denote the pre-image of S. If S ⊆ Dϕ, we use ϕ|S to
denote ϕ whose domain is restricted to S. One candidate in mind is d(a, b) := |a− b|.

Definition 8. (Bijective embeddings) Define

BF[A→ B] := {ϕ ∈ A→ B : |A|m = |ϕ(A)|m},

BF[B→ A] := {ϕ ∈ B→ A : |B|m = |ϕ(B)|m},

BF[A, B] := BF[A→ B] ∪ BF[B→ A].

Example 2. Suppose ρ is defined in Example 1. Since |A|m = 4 = |ρ(A)|m, by the above definition, one
has ρ ∈ BF[A → B]. On the other hand, suppose κ(21) = 61, κ(22) = 61, κ(31) = 8, κ(51) = 12,
then κ /∈ BF[A → B], since |A|m = 4 6= |κ(A)|m = 3. Note that BF[A, B] = BF[B, A]. Moreover,
if |A|m > |B|m, then BF[A → B] = ∅; similarly, if |B|m > |A|m, then BF[B → A] = ∅. Take A and B in
Example 1 for example. One has BF[B→ A] = ∅.

Definition 9. For any function ϕ ∈ BF[A→ B], we call it a a matched function. We call (a, ϕ(a)) a matched
pair. Every remaining element in B− ϕ(A) is called a mismatched element.

On this basis, we could define the distance for the matched elements and the distance for the
mismatched elements as follows:

Definition 10. For any ϕ ∈ BF[A, B], define

||ϕ|| := ∑
e∈Dϕ

d(e, ϕ(e)) and ||ϕ||− := ∑
e∈Rϕ−ϕ(Dϕ)

e,

where Dϕ and Rϕ and denote the domain and codomain of ϕ, respectively. ||ϕ|| represents the distance of all the
matched elements (or the sum of the distances of all the matched pairs), while ||ϕ||− represents the distance of
all the mismatched elements in the range. ||ϕ||− = 0 iff |A| = |B|. For example, if A = {1, 1, 2, 3, 1}, B =

{2, 4, 6, 2} and ϕ : A → B is defined by ϕ(11) = 2, ϕ(12) = 61, ϕ(2) = 21, ϕ(3) = 22, then the matched
part yields ||ϕ|| = |1− 2|+ |1− 6|+ |2− 2|+ |3− 2| = 7, where in denotes the n−th repetition of i and the
mismatched part ||ϕ||− = 1. Next, we define the set of all minimal distances consisting of the matched parts
and the mismatched parts.
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Definition 11. (Minimal matched functions) Define

BF∗[A→ B]

:= {ϕ ∈ BF[A→ B] : ||ϕ||+ ||ϕ||− ≤ ||ψ||+ ||ψ||−, ∀ψ ∈ BF[A→ B]},
BF∗[B→ A]

:= {ϕ ∈ BF[B→ A] : ||ϕ||+ ||ϕ||− ≤ ||ψ||+ ||ψ||−, ∀ψ ∈ BF[B→ A]},
BF∗[A, B]

:= {ϕ ∈ BF[A, B] : ||ϕ||+ ||ϕ||− ≤ ||ψ||+ ||ψ||−, ∀ψ ∈ BF[A, B]}.

Definition 12. (Distance function) Define δ : K×K→ R+ by

δ(A, B) := min{||ϕ||+ ||ϕ||− : ϕ ∈ BF[A, B]}. (6)

By the definition, one has δ(A, B) = ||ϕ||+ ||ϕ||− for any ϕ ∈ BF∗[A, B]. In the following, we
show that δ is indeed a metric. The reasoning will be proceeded by their relations (i.e., larger, less
than and equal to) between cardinalities of A, B, and C, i.e., |A|m, |B|m, and |C|m. To validate that
δ is a metric, we need to consider all the 27 relations between |A|m, |B|m and |C|m: for example,
|A|m > |B|m > |C|m, |A|m = |B|m < |C|m, etc. In order to facilitate our computing, we encode the
27 relations by the following set

{(n1, n2, n3) : n1, n2, n3 ∈ {1, 2, 3}},

in which each (n1, n2, n3) represents the relation |A|mn1|B|m, |B|mn2|C|m and |A|mn3|C|m, respectively,
where 1, 2, and 3 represent the relation <,= and > correspondingly. For example, (1, 2, 3) represents
the relation |A|m < |B|m, |B|m = |C|m, and |A|m > |C|m. By the transitivity of their cardinalities, only
13 of the 27 relations are valid (shown in Lemma 1). Moreover, these 13 relations could be further
reduced to 8 relations by the symmetry of δ, i.e.,

δ(A, B) + δ(B, C) ≥ δ(A, C)⇔ δ(C, B) + δ(B, A) ≥ δ(C, A), (7)

as shown in Corollary 1. If ϕ is a bijective function, we use ϕ−1 to denote its inverse function. In the
following, let ϕ ∈ BF∗[A, B], ϕ̃ ∈ BF∗[B, C], and ˜̃ϕ ∈ BF∗[A, C] be arbitrary. Before we proceed further,
we have the definitions:

1. We use BA to denote ϕ(A), if |A|m ≤ |B|m and AB to denote ϕ(B), if |A|m > |B|m.
2. We use CB to denote ϕ̃(B), if |B|m ≤ |C|m and BC to denote ϕ̃(C), if |B|m > |C|m.
3. We use CA to denote ˜̃ϕ(A), if |A|m ≤ |C|m and AC to denote ˜̃ϕ(C), if |C|m < |A|m.

Though there are 27 relations between the cardinalities of A, B, and C, only 13 of them are valid
as shown in the following lemma.

Lemma 1. There are only 13 relations which do not violate the transitivity property in terms of their cardinalities:

(1, 1, 1), (1, 2, 1), (1, 3, 1), (1, 3, 2), (1, 3, 3), (2, 1, 1),

(2, 2, 2), (2, 3, 3), (3, 1, 1), (3, 1, 2), (3, 1, 3), (3, 2, 3), (3, 3, 3).

Proof. The result follows immediately from their relations. Take the relation (1, 1, 1) for example.
Recall that (1, 1, 1) represents the relation |A|m < |B|m < |C|m, in which the property of transitivity
|A|m < |C|m holds. One could verify that each of the other 12 relations also holds the transitivity
property. However, the other 15 relations fail the transitivity property: for example (1, 1, 3)
( i.e., |A|m < |B|m, |B|m < |C|m, |A|m > |C|m).
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Lemma 2. (Non-negative, symmetric)

1. δ(A, B) ≥ 0.
2. δ(A, B) = 0 iff A = B.
3. δ(A, B) = δ(B, A).

Proof. The first statement follows immediately from the definition and the third one follows from the
fact that BF[A, B] = BF[B, A]. Here we show the second one. Suppose A = B, then δ(A, B) = ||I|| = 0,
where I is the identity function. Suppose A 6= B. Then, there are two cases: either |A|m 6= |B|m or
|A|m = |B|m. For the former one, one has ∀ϕ ∈ BF[A, B](||ϕ||− > 0), i.e., δ(A, B) > 0. For the latter
one, one has I /∈ BF[A, B] and thus ∀ϕ ∈ BF[A, B](||ϕ|| > 0), i.e., δ(A, B) > 0. Hence, we have shown
δ(A, B) = 0 iff A = B.

In the following, we show the triangle inequality of δ. Let us show the following corollary first.

Corollary 1. To show δ satisfy the triangle inequality, it suffices to consider the following eight relations:

(2, 2, 2), (2, 3, 3), (2, 1, 1), (3, 1, 2),

(1, 3, 2), (1, 1, 1), (3, 1, 1), (1, 3, 1).

Proof. By Equation (7) and Lemma 1, A and C are interchangeable, i.e., the relations

(1, 1, 1), (2, 3, 3), (1, 3, 1), (2, 1, 1), (3, 1, 1)

are equivalent to (respectively)

(3, 3, 3), (1, 2, 1), (1, 3, 3), (3, 2, 3), (3, 1, 3).

By this corollary, we only need to consider the triangle inequality of the above-mentioned
eight relations.

Lemma 3. (Relation (2, 2, 2))
If |A|m = |B|m = |C|m, then δ(A, B) + δ(B, C) ≥ δ(A, C).

Proof. Since |A|m = |B|m = |C|m, it follows

δ(A, B) = ||ϕ|| = ∑
e∈A

d(e, ϕ(e))

and
δ(B, C) = ||ϕ̃|| = ∑

h∈A
d(h, ϕ̃(h)) = ∑

e∈A
d(ϕ(e), ϕ̃ ◦ ϕ(e)).

Since ϕ̃ ◦ ϕ ∈ BF(A, C), by the definition of d, it follows

δ(A, B) + δ(B, C) ≥ ∑
e∈A

d(e, ϕ̃ ◦ ϕ(e)) ≥ ∑
e∈A

d(e, ˜̃ϕ(e)),

i.e., δ(A, B) + δ(B, C) ≥ δ(A, C).

Lemma 4. (Relation (2, 3, 3))
If |A|m = |B|m > |C|m, then δ(A, B) + δ(B, C) ≥ δ(A, C).
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Proof. By the definition δ, it follows

δ(A, C) = ∑
a∈A−AC

a + ∑
a∈AC

d(a, ˜̃ϕ(a)) ≤ ∑
a∈A−ABC

a + ∑
a∈ABC

d(a, ϕ̃ ◦ ϕ(a)),

where ABC denotes ϕ−1(BC). Furthermore,

δ(A, B) = ∑
a∈A−ABC

d(a, ϕ(a)) + ∑
a∈ABC

d(a, ϕ(a)),

δ(B, C) = ∑
b∈B−BC

b + ∑
b∈BC

d(b, ϕ̃(b))

= ∑
a∈A−ABC

ϕ(a) + ∑
a∈ABC

d(ϕ(a), ϕ̃ ◦ ϕ(a)).

Henceforth, by the properties of d and the definition of δ

δ(A, B) + δ(B, C)

= ∑
a∈A−ABC

[d(a, ϕ(a)) + ϕ(a)] + ∑
a∈ABC

[d(a, ϕ(a)) + d(ϕ(a), ϕ̃ ◦ ϕ(a))]

≥ ∑
a∈A−ABC

a + ∑
a∈ABC

d(a, ϕ̃ ◦ ϕ(a)) ≥ δ(A, C).

Lemma 5. (Relation (2, 1, 1))
If |A|m = |B|m < |C|m, then δ(A, B) + δ(B, C) ≥ δ(A, C).

Proof. By the definition δ, it follows

δ(A, C) = ∑
c∈C−CA

c + ∑
a∈A

d(a, ˜̃ϕ(a)) ≤ ∑
c∈C−CB

c + ∑
a∈A

d(a, ϕ̃ ◦ ϕ(a)),

δ(A, B) = ∑
a∈A

d(a, ϕ(a)),

δ(B, C) = ∑
c∈C−CB

c + ∑
b∈B

d(b, ϕ̃(b)) = ∑
c∈C−CB

c + ∑
a∈A

d(ϕ(a), ϕ̃ ◦ ϕ(a)).

Henceforth, by the triangle inequality of d

δ(A, B) + δ(B, C)

= ∑
a∈A

d(a, ϕ(a)) + ∑
c∈C−CB

c + ∑
b∈B

d(b, ϕ̃(b))

= ∑
a∈A

d(a, ϕ(a)) + ∑
c∈C−CB

c + ∑
a∈A

d(ϕ(a), ϕ̃ ◦ ϕ(a))

≥ ∑
c∈C−CB

c + ∑
a∈A

d(a, ϕ̃ ◦ ϕ(a)) ≥ ∑
c∈C−CA

c + ∑
a∈A

d(a, ˜̃ϕ(a))

= δ(A, C).

Lemma 6. (Relation (3, 1, 2))
If |A|m = |C|m > |B|m, then δ(A, B) + δ(B, C) ≥ δ(A, C).
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Proof. Since
δ(A, C) = ∑

a∈A
d(a, ˜̃ϕ(a)),

δ(A, B) = ∑
a∈A−AB

a + ∑
a∈AB

d(a, ϕ(a)),

δ(B, C) = ∑
c∈C−CB

c + ∑
b∈B

d(b, ϕ̃(b)) = ∑
c∈C−CB

c + ∑
a∈AB

d(ϕ(a), ϕ̃ ◦ ϕ(a)).

By the triangle inequality of d and the definitions of δ

δ(A, B) + δ(B, C)

≥ ∑
A−AB

a + ∑
c∈C−CB

c + ∑
a∈AB

[d(a, ϕ(a)) + d(ϕ(a), ϕ̃ ◦ ϕ(a))]

≥ ∑
a∈A−AB

[a + ψ(a)] + ∑
a∈AB

[d(a, ϕ̃ ◦ ϕ(a))] for some bijective function ψ

between A− AB and C− CB

≥ ∑
a∈A−AB

d(a, ψ(a)) + ∑
a∈AB

[d(a, ϕ̃ ◦ ϕ(a))] for some bijective function ψ

between A− AB and C− CB

≥ δ(A, C)( since the coupling of ψ|A−AB and ϕ|AB lies in BF(A, C)).

Lemma 7. (Relation (1, 3, 2))
If |A|m = |C|m < |B|m, then δ(A, B) + δ(B, C) ≥ δ(A, C).

Proof. By the definitions,

δ(A, B) = ∑
b∈B−BA

b + ∑
a∈A

d(a, ϕ(a))

= ∑
b∈B−BA

b + ∑
a∈ABA∩BC

d(a, ϕ(a)) + ∑
a∈A−ABA∩BC

d(a, ϕ(a))

≥ ∑
b∈BC−BA∩BC

b + ∑
a∈ABA∩BC

d(a, ϕ(a)) + ∑
a∈A−ABA∩BC

d(a, ϕ(a))

= ∑
b∈BC−BA∩BC

b + ∑
a∈ABA∩BC

d(a, ϕ(a)) + ∑
a∈A−ABA∩BC

d(a, ϕ(a))

where ABA∩BC denotes ϕ−1(BA ∩ BC). Moreover,

δ(B, C)

= ∑
b∈B−BC

b + ∑
b∈BC

d(b, ϕ̃(b))

= ∑
b∈B−BC

b + ∑
b∈BC−BA∩BC

d(b, ϕ̃(b)) + ∑
b∈BA∩BC

d(b, ϕ̃(b))

≥ ∑
b∈BA−BA∩BC

b + ∑
b∈BC−BA∩BC

d(b, ϕ̃(b)) + ∑
b∈BA∩BC

d(b, ϕ̃(b))

= ∑
a∈A−ABA∩BC

ϕ(a) + ∑
b∈BC−BA∩BC

d(b, ϕ̃(b)) + ∑
a∈ABA∩BC

d(ϕ(a), ϕ̃ ◦ ϕ(a)).
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Hence, by the triangle inequality of d and the definitions of δ

δ(A, B) + δ(B, C)

≥ ∑
a∈A−ABA∩BC

[ϕ(a) + d(a, ϕ(a))] + ∑
b∈BC−BA∩BC

[b + d(b, ϕ̃(b))]

∑
a∈ABA∩BC

[d(a, ϕ(a)) + d(ϕ(a), ϕ̃ ◦ ϕ(a))]

≥ ∑
a∈A−ABA∩BC

a + ∑
b∈BC−BA∩BC

ϕ̃(b) + ∑
a∈ABA∩BC

d(a, ϕ̃ ◦ ϕ(a))

≥ ∑
a∈A−ABA∩BC

d(a, ψ(a)) + ∑
a∈ABA∩BC

d(a, ϕ̃ ◦ ϕ(a)),

where ψ ∈ BF(A− ABA∩BC , BC − BA ∩ BC)

≥ ∑
a∈A

d(a, ˜̃ϕ(a)) = δ(A, C).

Lemma 8. (Relation (1, 1, 1))
If |A|m < |B|m < |C|m, then δ(A, B) + δ(B, C) ≥ δ(A, C).

Proof. By the definitions of δ

δ(A, C) = ∑
c∈C−CA

c + ∑
a∈A

d(a, ˜̃ϕ(a)) ≤ ∑
c∈C−CBA

c + ∑
a∈A

d(a, ϕ̃ ◦ ϕ(a)),

where CBA denotes ϕ̃(BA);
δ(A, B) = ∑

b∈B−BA

b + ∑
a∈A

d(a, ϕ(a)).

Furthermore,

δ(B, C) = ∑
c∈C−CB

c + ∑
b∈B

d(b, ϕ̃(b))

= ∑
c∈C−CB

c + ∑
b∈BA

d(b, ϕ̃(b)) + ∑
b∈B−BA

d(b, ϕ̃(b))

= ∑
c∈C−CB

c + ∑
a∈A

d(ϕ(a), ϕ̃ ◦ ϕ(a)) + ∑
b∈B−BA

d(b, ϕ̃(b)).

Then, by the triangle inequality of d and the definitions of δ

δ(A, B) + δ(B, C)

≥ ∑
a∈A

d(a, ϕ̃ ◦ ϕ(a)) + ∑
b∈B−BA

[b + d(b, ϕ̃(b))] + ∑
c∈C−CB

c

≥ ∑
a∈A

d(a, ϕ̃ ◦ ϕ(a)) + ∑
b∈B−BA

ϕ̃(b) + ∑
c∈C−CB

c( by Equation (4))

= ∑
a∈A

d(a, ϕ̃ ◦ ϕ(a)) + ∑
c∈CB−CBA

c + ∑
c∈C−CB

c

≥ ∑
a∈A

d(a, ϕ̃ ◦ ϕ(a)) + ∑
c∈C−CBA

c ≥ δ(A, C).
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Lemma 9. (Relation (3, 1, 1))
If |C|m > |A|m > |B|m, then δ(A, B) + δ(B, C) ≥ δ(A, C).

Proof. We derive the three components one by one. Firstly, suppose ¯̄ϕ ∈ BM(A → B) is a function
satisfying ¯̄ϕ|(AB) = CB (as shown in Figure 1), i.e., ¯̄ϕ(a) = ϕ̃ ◦ ϕ−1(a) for all a ∈ AB. By the definitions
of δ

δ(A, C) = ∑
c∈C−CA

c + ∑
a∈A

d(a, ˜̃ϕ(a))

≤ ∑
c∈C− ¯̄ϕ(A)

c + ∑
a∈A

d(a, ¯̄ϕ(a))

= ∑
c∈C− ¯̄ϕ(A)

c + ∑
a∈AB

d(a, ¯̄ϕ(a)) + ∑
a∈A−AB

d(a, ¯̄ϕ(a))

Secondly,
δ(A, B) = ∑

a∈A−AB

a + ∑
a∈AB

d(a, ϕ−1(a)).

Thirdly,

δ(B, C) = ∑
c∈C−CB

c + ∑
b∈B

d(b, ϕ̃(b))

= ∑
c∈C− ¯̄ϕ(A)

c + ∑
c∈ ¯̄ϕ(A)− ¯̄ϕ(AB)

c + ∑
b∈B

d(b, ϕ̃(b))

= ∑
c∈C− ¯̄ϕ(A)

c + ∑
c∈ ¯̄ϕ(A)− ¯̄ϕ(AB)

c + ∑
a∈AB

d(ϕ−1(a), ϕ̃ ◦ ϕ−1(a))

= ∑
c∈C− ¯̄ϕ(A)

c + ∑
c∈ ¯̄ϕ(A)− ¯̄ϕ(AB)

c + ∑
a∈AB

d(ϕ−1(a), ¯̄ϕ(a))

= ∑
c∈C− ¯̄ϕ(A)

c + ∑
a∈A−AB

¯̄ϕ(a) + ∑
a∈AB

d(ϕ−1(a), ¯̄ϕ(a))

Hence,

δ(A, B) + δ(B, C) ≥ ∑
c∈C− ¯̄ϕ(A)

c + ∑
a∈AB

d(a, ¯̄ϕ(a))

+ ∑
a∈A−AB

[a + ¯̄ϕ(a)]

≥ ∑
c∈C− ¯̄ϕ(A)

c + ∑
a∈AB

d(a, ¯̄ϕ(a)) + ∑
a∈A−AB

d(a, ¯̄ϕ(a))(Equation(3))

≥ δ(A, C).

A

B

C

AB

ϕ

ϕ̃

CA

¯̄ϕ(A)

CB

˜̃ϕ

¯̄ϕ|
¯̄ϕ(AB)

¯̄ϕ

ϕ−1

Figure 1. Triangle Inequality for (3, 1, 1) case.
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Lemma 10. (Relation (1, 3, 1))
If |B|m > |C|m > |A|m, then δ(A, B) + δ(B, C) ≥ δ(A, C).

Proof. Suppose A2 = ϕ−1(BA ∩ BC) ≡ ABA∩BC . Suppose A1 = A− A2. Suppose BA1 = ϕ(A1) =

BA − BA ∩ BC, BA2 = ϕ(A2) = BA ∩ BC. Choose a function ψ ∈ BF(A, BC), in which ∀a ∈ A2[ψ(a) =
ϕ(a)], i.e., ψ|A2 = ϕ|A2. Suppose B̄ = BA2 ∪ ψ(A1) ≡ BA2 ∪ B∗A1

, where B∗A1
≡ ψ(A1). Let ρ denote

the composition ϕ̃−1|B ◦ ψ (or simply ϕ̃−1 ◦ ψ). Then, ρ ∈ BF[A, C] and

ρ(A) = ϕ̃−1 ◦ ψ(A) = ϕ̃−1 ◦ ψ(A1) ∪ ϕ̃−1 ◦ ψ(A2) = ϕ̃−1 ◦ ψ(A1) ∪ ϕ̃−1(BA2),

as shown in Figure 2. Furthermore, by the definition of δ,

δ(A, C) = ∑
c∈C−CA

c + ∑
c∈CA

d(a, ˜̃ϕ(a)) ≤ ∑
c∈C−ρ(A)

c + ∑
a∈A

d(a, ρ(a))

= ∑
c∈C−ρ(A)

c + ∑
a∈A1

d(a, ρ(a)) + ∑
a∈A2

d(a, ρ(a));

δ(A, B) = ∑
b∈B−BA

b + ∑
a∈A

d(a, ϕ(a))

= ∑
b∈B−BA

b + ∑
a∈A1

d(a, ϕ(a)) + ∑
a∈A2

d(a, ϕ(a))

= ∑
b∈B−BA∪BC

b + ∑
b∈BC−BA1

∪BA2

b + ∑
b∈BA1

b

+ ∑
a∈A1

d(a, ϕ(a)) + ∑
a∈A2

d(a, ϕ(a))

≥ ∑
b∈BC−B̄

b + ∑
b∈B∗A1

b + ∑
a∈A1

d(a, ϕ(a)) + ∑
a∈A2

d(a, ϕ(a))

δ(B, C) = ∑
b∈B−BC

b + ∑
b∈BC

d(b, ϕ̃−1(b))

= ∑
b∈B−BC

b + ∑
b∈BA2

d(b, ϕ̃−1(b)) + ∑
b∈B∗A1

d(b, ϕ̃−1(b)) + ∑
b∈BC−B̄

d(b, ϕ̃−1(b))

≥ ∑
a∈A1

ϕ(a) + ∑
b∈BA2

d(b, ϕ̃−1(b)) + ∑
b∈B∗A1

d(b, ϕ̃−1(b)) + ∑
b∈BC−B̄

d(b, ϕ̃−1(b))

= ∑
a∈A1

ϕ(a) + ∑
a∈A2

d(ϕ(a), ρ(a)) + ∑
b∈B∗A1

d(b, ϕ̃−1(b)) + ∑
b∈BC−B̄

d(b, ϕ̃−1(b)).

Henceforth, by Equations (3)–(5), it follows

δ(A, B) + δ(B, C) ≥ ∑
b∈BC−B̄

[b + d(b, ϕ̃−1(b))]

+ ∑
b∈B∗A1

[b + d(b, ϕ̃−1(b))] + ∑
a∈A1

[d(a, ϕ(a)) + ϕ(a)]

+ ∑
a∈A2

[d(a, ϕ(a)) + d(ϕ(a), ρ(a))]

≥ ∑
b∈BC−B̄

ϕ̃−1(b) + ∑
b∈B∗A1

ϕ̃−1(b) + ∑
a∈A1

a + ∑
a∈A2

d(a, ρ(a))
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= ∑
b∈BC−B̄

ϕ̃−1(b) + ∑
a∈A1

[(ρ(a) + a] + ∑
a∈A2

d(a, ρ(a))

≥ ∑
b∈BC−B̄

ϕ̃−1(b) + ∑
a∈A1

d(a, ρ(a)) + ∑
a∈A2

d(a, ρ(a))

= ∑
c∈C−ρ(A)

c + ∑
a∈A1

d(a, ρ(a)) + ∑
a∈A2

d(a, ρ(a))

≥ δ(A, C).

A

B

C
ϕ|A1

ϕ̃

BA

BC

ρ ≡ ϕ̃−1|B̄ ◦ ψ

A2

A1

BA1

BA2

B∗
A1

ψ|A1

ψ|A2

ϕ̃|BA2

ϕ̃−1(B
A

2 )

ϕ̃−1(ψ(A
1))

ϕ̃−1

ϕ

ρ(A)

˜̃ϕ

CA

Figure 2. Triangle Inequality for (1, 3, 1) case.

Theorem 1. (K, δ) is a metric space.

Proof. By Lemmas 2–10 and Corollary 1, the result follows immediately.

3. Applications and Computations

In this section, we give a group of numerical data and demonstrate how to compute their distances
(or adjacency matrix) via the metric δ. In order to facilitate our computing, we show the following
lemmas first. Let a1, a2, b1, b2 ∈ R be arbitrary.

3.1. Lemmas

Lemma 11. If a1 ≤ a2 and b1 ≤ b2, then |a1 − b1|+ |a2 − b2| ≤ |a1 − b2|+ |a2 − b1|.

Proof. Suppose a2 = a1 + λa, suppose b2 = b1 + λb, where λa, λb ≥ 0. Let k = a1 − b1. Then,

|a1 − b2|+ |a2 − b1| − |a1 − b1| − |a2 − b2|
= |a1 − b1 − λb|+ |a1 − b1 + λa| − |a1 − b1| − |a1 − b1 + λa − λb|
= |k− λb|+ |k + λa| − |k| − |k + λa − λb|.

Furthermore, we consider the following cases:

1. k = 0: Then,

|k− λb|+ |k + λa| − |k| − |k + λa − λb|
= λb + λa − |λa − λb| ≥ 0;
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2. k > 0: Then,

|k− λb|+ |k + λa| − |k| − |k + λa − λb|
= |k− λb|+ k + λa − k− |k + λa − λb| ≥ 0;

3. k < 0: Then,

|k− λb|+ |k + λa| − |k| − |k + λa − λb|
= −k + λb + |k + λa|+ k− |k + λa − λb| ≥ 0.

Hence, we have shown |a1 − b2|+ |a2 − b1| − |a1 − b1| − |a2 − b2| ≥ 0.

Lemma 12. Let ρ ∈ BF∗(A, B) be arbitrary. Let e1, e2 ∈ Dρ be arbitrary such that e1 ≤ e2. Then,
∃η ∈ BF∗[A, B] such that η(e) = ρ(e) for all e ∈ Dρ − {e1, e2} and η(e1) ≤ η(e2).

Proof. If ρ(e1) ≤ ρ(e2), then one simply chooses η to be ρ. If ρ(e1) > ρ(e2), then one could choose
η(e) = ρ(e) for all e ∈ Dρ−{e1, e2} and η(e1) := ρ(e2) and η(e2) := ρ(e1). Then, one has η(e1) < η(e2).
By Lemma 11, one has

|e1 − ρ(e2)|+ |e2 − ρ(e1)| ≤ |e1 − ρ(e1)|+ |e2 − ρ(e2)|,

which together with ρ ∈ BF∗[A, B] yields

|e1 − ρ(e2)|+ |e2 − ρ(e1)| = |e1 − ρ(e1)|+ |e2 − ρ(e2)|,

i.e.,
|e1 − η(e1)|+ |e2 − η(e2)| = |e1 − ρ(e1)|+ |e2 − ρ(e2)|,

i.e., ||η||+ ||η||− = ||ρ||+ ||ρ||−, i.e., η ∈ BF∗[A, B].

Corollary 2. If ρ ∈ BF∗[A, B] and Dρ = {e1, e2, ..., en} with e1 ≤ e2 ≤ ... ≤ en, then η ∈ BF∗[A, B],
where Dη = Dρ and η(e1) = min[ρ(Dρ)], η(e2) = min[ρ(Dρ)− {η(e1)}], ..., η(k + 1) = min[ρ(Dρ)−
{η(e1), η(e2), ..., η(ek)}] for all k ≤ n− 1.

Proof. By applying Lemma 12 repeatedly, the result follows immediately.

This corollary directly facilitates our computation in the next section. In addition, one could also
simplify and redefine the metric δ by the result of this corollary.

3.2. Computation

In the following, we demonstrate the computation of our metric δ via a group of simulated
data. Suppose

K = {A1, A2, A3, A4, A5, A6} ⊆ MP(R+)

is defined as follows:

• A1 = {91.67, 2, 39.53, 98.34, 8.78};
• A2 = {1.99, 62, 7, 9.52, 9, 8.11};
• A3 = {2.1, 6.22, 27.1, 9.67, 9.19, 81.29, 5.55, 12.41, 1.67, 11.08, 51.15, 0.33};
• A4 = {22.21, 61.26, 71.12, 29.61, 29.19, 29.29, 35.3, 40};
• A5 = {17.19, 2, 70.56, 9.52, 9.45, 18.16, 40};
• A6 = {1.26, 0.19, 2, 4.70, 8.56, 9.09}.
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Suppose the distance function over R+ is defined by

d(e, ϕ(e)) := |e− ϕ(e)|.

Then, our metric (defined in Equation (6)) derived from this d could be applied. We could then
obtain the adjacency matrix of K via the following two methods:

1. (Method One) List all the permutations and find the optimal permutation and its associated
distance, which is the summation of the matched and mismatched parts.

2. (Method Two) List all the combinations and find the optimal combination and its associated
distance, which is the summation of the matched and mismatched parts.

Method One comes directly from the definition. By Corollary 2, Method Two is also justified.
To demonstrate this, let us first compute δ(A2, A3). If Method One is applied, then one has to
compute all the P(12, 6) = 665,280 permutations, and measure the matched distances between these
permutations and A2 and the mismatched distances between these permutations and A3. If Method
Two is applied, then one sorts the set A2 first, and then sorts each of the C(12, 6) = 924 combinations
to measure the matched part between each sorted combination and sorted A2, and the mismatched
part between the sorted combination and A3. Both methods agree as follows:

δ(A2, A3) = min{||ϕ||+ ||ϕ||− : ϕ ∈ BF(A2, A3)} = 120.14,

in which the matched distance is ||ϕ|| = 69.6 and the mismatched distance ||ϕ||− = 50.54, where
the optimal ϕ is defined as follows: ϕ(1.99) = 2.1, ϕ(62) = 81.29, ϕ(7) = 9.19, ϕ(9.52) = 51.15,
ϕ(9) = 12.41, ϕ(8.11) = 11.08. Proceed similarly, the distances for other pairs (Ai, Aj) could also be
obtained and the resulting adjacency matrix is demonstrated in Figure 3.

One could verify that this adjacency matrix satisfies all the metric axioms, in particular,
δ(Ai, Aj) + δ(AJ , Ak) ≥ δ(Ai, Ak) for all i, j, k ∈ {1, 2, 3, 4, 5, 6}.

Figure 3. Adjacency Matrix [δ(Ai, Aj)]
6
i,j=1.

4. Real World Applications

In addition to some trivial applications, one could consider other handy applications, for example,
by replacing the usual Euclidean metric with our metric in the following fields: k−means, clustering
analysis, graph comparisons, etc. (see Reference [2]). These are frequently-used techniques in analyzing
data or theoretical computations. The author has also succeeded in defining a novel metric for graphs
based on the metric defined in this article. This enables one to measure the distances between any
two graphical structures or networks. The idea for the derived metric is to measure the differences
between any two graphs by induction on vertexes. Suppose there are two graphs G1 and G2 with the
same set of vertices V. For each vertex v ∈ V, one could then generate two multisets whose elements
are the lengths between v and its respective set of endpoints in G1 and G2. Then, he could compute
the distances via the minimal sum of matched elements and mismatched elements as defined in this
article. This approach yields a new metric for graphs.

4.1. Example

Let us consider a concrete example. Suppose the government in a country is trying to associate a
village (among three candidate villages: VL1,VL2,VL3) which produces maize with the wholesalers
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which sell maize. In VL1, there are five farmers; in VL2, there are six farmers; in VL3, there are 10 farmers.
The expected annual yields of maize for each farmer in VL1 are 3.2, 5.1, 7.6, 3.2, 8.8 tons; the ones in VL2
are 1.2, 2.1, 3.6, 7.9, 12.1, 6.4 tons; and the ones in VL3 are 2.6, 4.6, 8.1, 5.1, 2.2, 5, 7.9, 11.1, 12, 4.5 tons. On
the other hand, suppose there are four wholesalers whose annual demands are 7.9, 9.2, 11.6, 8.3 tons,
respectively. The government policy is to associate a village with the wholesalers based on the criterion
that the total discrepancy between the village and the wholesalers must be minimal and the condition
that each farmer could only exclusively sign the contract with exactly one wholesaler. Assume the
government adopts the metric defined in this article. The results could be computed as follows Table 1.

Table 1. Analysis of Optimal Matchings

Villages Expected Annual Yield (tons) Matched Mismatched Total Discrepancy

VL1 {3.2, 5.1, 7.6, 3.2, 8.8} 12.3 3.2 15.5

VL2 {1.2, 2.1, 3.6, 7.9, 12.1, 6.4} 8.0 3.3 11.3

VL3 {2.6, 4.6, 8.1, 5.1, 2.2, 5, 7.9, 11.1, 12, 4.5} 2.5 24 26.5

Since the total discrepancy (i.e., matched part plus mismatched part) between VL2 and the
wholesalers is minimal (or 11.3), the government should associate VL2 with the wholesalers.
Henceforth, the government should pick VL2 to sign the contract with the four wholesalers exclusively.
In doing so, the total dissatisfaction (or discrepancy) from both the farmer and the wholesalers would
be minimal.

4.2. Characteristic and Analysis

The main characteristic of our metric is that it takes the minimal discrepancy into consideration.
For the usual metrics, one hardly associates a metric with the minimal matching via combinations
or permutations of all sorts of choices. Our method successfully combines the usual definition of
a metric with the concept of an optimal choice. With these two concepts combined, one could pick up
an optimal decision purely based on the metric defined in this article. This approach gives one a much
more direct decision-making process. In addition, since this metric consists of two parts: the matched
and mismatched parts, it would provide one with much more insightful knowledge of the discrepancy
between mathematical objects.

5. Conclusions

We have defined a metric on a finite power multiset of positive real numbers via the concept of
minimal matchings, in which the distances of any two multisets consist of two parts: the distance of the
matched part and the distance of the mismatched part. We also implement this metric by an adjacency
matrix. A concrete example is also included in this article. In addition to the adjacency matrix, we
show another definitional computation to facilitate our computing of the metric. The metric defined in
this article could be further applied in some real problems regarding artificial intelligence, clustering,
or some other theoretical mathematical research.
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