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Abstract: An (L)-semigroup S is a compact n-manifold with connected boundary B together with
a monoid structure on S such that B is a subsemigroup of S. The sum S + T of two (L)-semigroups
S and T having boundary B is the quotient space obtained from the union of S× {0} and T × {1}
by identifying the point (x, 0) in S× {0} with (x, 1) in T × {1} for each x in B. It is shown that no
(L)-semigroup sum of dimension less than or equal to five admits an H-space structure, nor does any
(L)-semigroup sum obtained from (L)-semigroups having an Abelian boundary. In particular, such
sums cannot be a retract of a topological group.
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1. Introduction

An H-space is a space X together with a continuous multiplication m : X×X → X and an identity
element e ∈ X such that m(e, x) = m(x, e) = x for all x ∈ X. If, in addition, the multiplication is
associative, then X is called a topological monoid. A space together with an associative continuous
multiplication is called a topological semigroup. A compact n-manifold S with connected boundary
B together with a topological monoid structure such that B is a subsemigroup of S is called an
(L)-semigroup in [1], p. 117. Such a topological monoid S can be considered as a mapping cylinder
MC( f ) of a quotient morphism f : X → X/N of a compact connected Lie group X where N is a
normal sphere subgroup of X (see [1–3]).

In [2], p. 315, it was shown that every commutative n-dimensional (L)-semigroup is a retract of a
compact connected Lie group, and if n ≤ 4, then every n-dimensional (L)-semigroup is a retract of a
compact connected Lie group. In this note, it is shown that the sum of two commutative (L)-semigroups
cannot be a retract of a topological group, nor can the sum of two n-dimensional (L)-semigroups if
n ≤ 5.

2. (L)-Semigroup Splitting

Let I = [0, 1] denote the unit interval endowed with the operation of multiplication of real numbers.
If f : X → Y is a mapping between compact spaces, then the mapping cylinder MC( f ) is the quotient
space obtained by taking the disjoint union of X× I and Y and identifying each point (x, 0) ∈ X× I with
f (x) ∈ Y. There are natural embeddings iX : X → MC( f ) and iY : Y → MC( f ), so X and Y may be
regarded as disjoint closed subspaces of MC( f ), and it is easy to check that iY(Y) is a strong deformation
retract of MC( f ). In the special case when Y consists of a single point v, the mapping cylinder is called
the cone over X, denoted by cone(X).

Let Sn denote the unit n-sphere in Euclidean n-space Rn. Then, in the following result of Mostert
and Shields [1], cone(Sn), n = 0, 1, 3, is homeomorphic to the unit one-ball in the real line R1, the unit
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disk E2 in the complex plane C, the unit four-ball E4 in the quaternions H, respectively, and is
considered to be a topological monoid with the inherited multiplicative structure.

Proposition 1 (Mostert and Shields [1]; also see [2,3]). Let X be a compact connected Lie group with a
closed normal subgroup N such that N is isomorphic to Sn, n = 0, 1, 3, and let f : X → X/N = Y be the
quotient morphism. Then:

(1) S = MC( f ) is a compact manifold with boundary iX(X) with S being a topological monoid
such that H(S) = iX(X) is the group of units of S with identity iX(1X) and M(S) = iY(Y) is the
minimal ideal of S with identity iY(1Y).

(2) S = MC( f ) is a locally-trivial fibre bundle over the Lie group Y = X/N as base with fibre
F = cone(N), the unit n-ball for n = 1, 2, 4.

A compact topological monoid S of the above type is called an (L)-semigroup in the literature and
S is nonorientable if N = S0 and orientable if N = Sn, n = 1, 3. (Theorem C in [1]).

Let S and T be two (L)-semigroups with boundary B, and let h : B→ B be an autohomeomorphism
of B. The quotient space obtained by taking the union of S×{0} and T×{1} and identifying the point
(x, 0) in S× {0} with (h(x), 1) in T × {1} for each x ∈ B is a closed (i.e., compact without boundary)
connected n-manifold. Any manifold M obtained in this fashion is said to admit an (L)-semigroup
splitting. In the case when h is the identity mapping, we call M the sum of S and T and denote it by
S + T. If S = T, then S + S = 2S, the double of the manifold S.

A space X is said to be homogeneous if for every a, b,∈ X, there is an autohomeomorphism h of
X such that h(a) = b.

Proposition 2. If M admits an (L)-semigroup splitting, then M admits the structure of a topological monoid
iff M is a Lie group.

Proof. If M is a Lie group, then it is a topological monoid. Thus, suppose M is a topological monoid.
A finite-dimensional homogeneous compact connected monoid admits the structure of a topological
group [4]. If, in addition, it is locally contractible, then it must be a Lie group since a compact connected
group is a Lie group iff it is locally contractible [5]. Since M is a closed connected n-manifold, the
result follows. ut

Proposition 3. Let G be a compact connected Lie group. If M admits an (L)-semigroup splitting, then so does
M× G. In particular, if M is an (L)-semigroup sum, then so is M× G.

Proof. Let M, S, T, and h : B → B be defined as in the definition of an (L)-semigroup splitting.
Then, S × G and T × G are (L)-semigroups with B × G as a boundary, and the correspondence
(x, g) 7→ (h(x), g) determines an autohomeomorphism of B× G. It follows that M × G admits an
(L)-semigroup splitting if M does. In the case when h = 1B, the identity mapping on B, we obtain
M× G = (S× G) + (T × G). ut

Remark 1. It is well known that the fundamental group of an H-space is Abelian and that a covering space
of an H-space admits an H-space structure (cf. p. 78 and p. 157 in [6]). According to a famous theorem of
J.F.Adams [7], the only spheres that are H-space are Sn, n = 0, 1, 3, 7, and it follows that RPn, n = 0, 1, 3, 7,
are the only real projective n-spaces, which admit H-space structures. We also remark that if a product space is
homogeneous, then it admits an H-space structure iff each factor does (Corollary 2.5 in [8]).

Proposition 4. Let B be a compact connected Abelian Lie group and let S, and T be (L)-semigroups with
boundary B. Then, the sum S + T does not admit an H-space structure.
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Proof. Let Tn denote the n-torus, which is the product of n copies of the circle group S1. In the case
when B = T1 = S1, the normal sphere subgroups are S0 and S1. For the two element subgroups S0 of S1,
the quotient morphism f :S1 → S1 / S0 yields MC( f ) = M2, the classical Möbius band (see Example
2.3(b) in [2]). When the normal subgroup of S1 is S1, the quotient morphism f :S1 → S1/ S1 = {1}
yields MC( f ) = E2, the unit disk in the complex plane C (see Example 2.3(a) in [2]). Thus, the only
two-dimensional (L)-semigroup splittings are 2E2 = S2, E2 + M2 = RP2 and 2M2 = K2, the Klein bottle.
By Remarks 1, S2 and RP2 do not admit H-spaces structures, nor does K2 since its fundamental group
Π1(K2) is not Abelian (this follows from the fact that the Abelianization of Π1(K2) is Z⊕ Z2, the direct
sum of the integers and a cyclic group of order two (see [6], p. 135), but Π1(K2) must contain a copy
of Π1(T2) =Z ⊕ Z since the two-torus T2 is a double covering space of the Klein bottle K2).

It follows from Proposition 2.3 that S2× Tn, RP3× Tn, and K2× Tn, n = 1, 2, · · · , are
(L)-semigroup sums. Since E2× Tn and M2× Tn are the only (n + 2)-dimensional (L)-semigroups with
boundary B =Tn+1 (see Corollaries 7.5.4 and 7.5.5 in [1]), it follows that the (L)-semigroup sum S + T
must be one of the manifolds S2, RP2, K2, S2× Tn, RP2× Tn or K2× Tn for n = 1, 2, · · · . However
none of these manifolds admit on H-space structure since a homogeneous product space admits an
H-space structure iff each of its factors does (see Corollary 2.5 in [8]). ut

We remark that a retract of a homogeneous H-space admits an H-space structure (cf. Proposition 2.4
in [8]). Consequently, we have the following corollary.

Corollary 1. Let B be a compact connected Abelian Lie group, and let S and T be (L)-semigroups with boundary B.
Then, the sum S + T is not a retract of a topological group.

Proposition 5. If M is a manifold that admits an (L)-semigroup splitting and is either two-dimensional or
orientable and three-dimensional, then the following statements are equivalent:

(1) M is a retract of a topological group.
(2) M admits an H-space structure.
(3) M is a Lie group.

Proof. In the two-dimensional case, the collection of (L)-semigroup sums coincides with the collection
of spaces that admit (L)-semigroup splittings since the connected sum of two surfaces is independent
of the homeomorphism h used to form the connected sum. Thus, the only surfaces that admit
(L)-semigroup splittings are S2, RP2, and K2, and the result follows for surfaces.

The remark following the proof of Proposition 4 shows that (1) implies (2), and since the
topological group is a retract of itself, (3) implies (1). Thus, it suffices to show that (2) ⇒ (3).
As was noted in the proof of Proposition 4, the only orientable three-dimensional (L)-semigroup is the
solid torus E2× S1. It follows that M must be a (p, q)-lens space L(p, q) where the degenerate cases
L(0, 1) = S2× S1 and L(1, q) = S3 are included (see p. 234 in [9]). It follows from a theorem of William
Browder (p. 140 in [10]) that only L(1, q) = S3 and L(2, 1) = RP3 = SO(3) admit H-space structures.
Since each of these spaces is a Lie group, the result follows. ut

Lemma 1. Let X be a closed n-manifold, which is the total space of a locally-trivial S2 fibre bundle over a
compact Lie group G. Then, X does not admit an H-space structure.

Proof. Suppose X does admit an H-space structure, and consider the fibre bundle S2 → X → G.
This sequence extends to a fibration sequence · · ·ΩG → S2 → X → G (cf. [11], p. 409). Since
X is a (compact metric) ANR-space (see [12]), it has the homotopy type of a finite complex ([13],
Corollary 44.2), and it follows from a theorem of W.Browder ([14]) that Π2(X) = 0, where Π2(X)

denotes the second homotopy group of X. Exactness yields a surjection from Π2(ΩG) onto Π2(S2).
An element of Π2(ΩG) mapping to a generator of Π2(S2) is represented by a map S2 → ΩG whose
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composition with the map Ω(G)→ S2 is homotopic to the identity mapping 1S2 on S2. Consequently,
there is a homotopy retraction r : ΩG → S2 (i.e., r| S2 is homotopic to 1S2). Since a loop space admits
an H-space structure, we may assume that ΩG is an H-space with identity e, and we may assume that
e ∈ S2 (since ΩG is a homogeneous space when viewed as a loop group).

Define a mapping m : S2 × S2 → S2 by m(x, y) = r(xy) for x, y ∈ S2, where xy denotes the
product of x and y in the H-space ΩG. The maps S2 → S2 given by x 7→ m(x, e) and x 7→ m(e, x)
are homotopic to the identity mapping 1S2 , and therefore, e is a homotopy identity of S2. For CW
complexes the existence of a homotopy identity can be used as the definition of an H-space (see [11],
p. 291). Consequently, S2 admits an H-space structure, and this contradiction completes the proof of
the lemma. ut

Proposition 6. Let S = MC( f ) be an (L)-semigroup as defined in Proposition 1 where X is a compact
connected Lie group and f : X → X/N = Y is a quotient morphism with N being a closed normal subgroup of
X, which is isomorphic to S1. Then, the double 2S does not admit an H-space structure.

Proof. By Proposition 1 S = MC( f ) is a locally-trivial E2 bundle over the compact connected Lie
group Y, and it follows that its double is a locally-trivial S2 bundle over Y. Consequently, by Lemma 1,
2S does not admit an H-space structure. ut

Corollary 2. Let f : U(n) → U(n)/ZU(n) = PU(n) denote the quotient morphism where U(n) is the
unitary group, Z(U(n)) is its centre, and PU(n) is the projective unitary group. Then, if n > 1 and
S = MC( f ), the double 2S does not admit an (H)-space structure.

Proof. The elements of U(n) are the complex n × n unitary matrices, and its centre Z(U(n)) is
isomorphic to S1 since its elements are diagonal matrices equal to eiθ multiplied by the identity
matrix. It follows from Proposition 6 that 2S does not admit an H-space structure. ut

Theorem 1. No (L)-semigroup sum of dimension n ≤ 5 admits an H-space structure.

Proof. Proposition 4 shows that the result is true for all n-dimensional (L)-semigroup sums of the
form S + L where both S and L have a compact connected Abelian Lie group boundary B. Thus, we
need only consider admissible n-dimensional non-Abelian boundaries B with n = 3, 4. Hence, B must
be one of S3, S1 × S3, S1 × SO(3) and U(2) (we note that SO(3) does not qualify as an admissible
boundary for an (L)-semigroup since it does not contain normal subgroups of the form Sn, n = 0, 1, 3).

In [2], it is shown that the (L)-semigroups with boundary S3 are E4 and the four-dimensional
Möbius manifold M4 (which is homeomorphic to RP4 with the interior of a four-dimensional Euclidean
ball removed). It follows (see [2]) that the (L)-semigroups with boundaries S3, S1 × S3, S1 × SO(3)
are E4, M4, E2 × S3, M2 × S3, S1 × E4, S1 ×M4, E2 × SO(3), M2 × SO(3), and the corresponding
(L)-semigroup sums are S4, RP4, 2M4, S2 × S3, RP4 × S3, K2 × S3, S1 × S4, S1 × RP4, S1 × (2M4),
S2 × SO(3), RP2 × SO(3), K2 × SO(3). Since a retract of a homogeneous H-space admits an H-space
structure (cf. [8], Prop. 2.4), it follows that no product containing a copy of S2, S4, RP2, RP4 of K2

as a factor can admit an H-space structure. This leaves only 2M4 for consideration. However, its
fundamental group Π1(2M4) is the free product of Π1(RP4) = Z2 with itself, which is non-Abelian, so
2M4 does not admit an H-space structure. Finally, the only five-dimensional (L)-semigroup sum with
boundary U(2) is the manifold 2U(2) in Corollary 2, which does not admit an H-space structure. ut

Corollary 3. No (L)-semigroup sum of dimension n ≤ 5 is a retract of a topological group.

Proof. It was noted above that every retract of a homogeneous H-space admits an H-space structure.
Since a topological group is an H-space, the result follows from Theorem 1. ut
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In [15], a space homeomorphic to a retract of a topological group is called a GR-space (often
referred to as a retral space in the literature). Clearly AR-spaces and topological groups themselves are
GR-spaces, and in [2], it was shown that M2 and M4 are GR-spaces. Since GR-spaces are preserved
by topological products, it follows that products of E2, E4, M2, M4, and topological groups are
GR-spaces. This will include all the (L)-semigroups mentioned in this note excluding (L)-semigroups
with boundary U(n), n ≥ 2. This suggests two questions.

(a) Is every (L)-semigroup a retract of a topological group?
(b) Does every (L)-semigroup sum fail to admit an H-space structure?
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