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Abstract: The generic structure and some peculiarities of real rank one solvable Lie
algebras possessing a maximal torus of derivations with the eigenvalue spectrum spec(t) =

(1, k, k + 1, · · · , n + k− 3, n + 2k− 3) for k ≥ 2 are analyzed, with special emphasis on the resulting Lie
algebras for which the second Chevalley cohomology space vanishes. From the detailed inspection of
the values k ≤ 5, some series of cohomologically rigid algebras for arbitrary values of k are determined.
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1. Introduction

In a wide sense, the notion of rigidity of Lie algebras can be understood as the stability of its
defining structure tensor with respect to some action of a group or a deformation, implying that
whatever the alteration of the structure tensor defined by geometric or algebraic means, the resulting
Lie algebra is isomorphic to the starting one. Although originally developed in the context of smooth
manifolds and functional spaces, the rigidity concept has turned out to be very important in the Lie
algebraic frame, not only for classification purposes, but also for the geometric study of the variety
determined by the structure tensor of Lie algebras in a given dimension [1], its irreducible components
and various limiting processes on the variety [2]. The development of Lie algebra cohomology [3],
as well as its implications in the theory of deformations and contractions [2,4,5] motivated the search for
rigidity criteria beyond the well-known case of semisimple algebras, which follows as a consequence
of the classical Whitehead lemmata [6,7]. The rigidity of Lie algebras has been analyzed from various
perspectives, ranging from the geometrical and topological point of view in terms of the so-called Jacobi
schemes [8] to the pure algebraic approach, based on the Chevalley cohomology of Lie algebras [3] or
the root theory of solvable Lie algebras relying on the study of the eigenvalue spectrum of generators
of maximal tori of derivations of nilpotent algebras. This generalizes naturally the approach of roots
systems of semisimple Lie algebras [9,10]. In this context, large classes of rigid Lie algebras in the
cohomological sense have been classified (see, e.g., [11–18] and references therein), albeit it is well
known that the rigidity notion goes far beyond the cohomological criteria [19,20], even allowing the
existence of rigid Lie algebras that can be purely nonrational and nonreal [21].

In this work, we consider solvable Lie algebras r of rank one possessing a maximal
torus of derivations t, the spectrum of which is given by the eigenvalues spec(t) =

(1, k, k + 1, · · · , n + k− 3, n + 2k− 3) on its n-dimensional nilradical n. These nilradicals are known
to contract onto the so-called Qn-model filiform algebra, a nilpotent Lie algebra of maximal nilpotence
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index with the additional property of satisfying the condition [[n,n] , [n,n]] 6= 0 [22]. Analyzing in detail
these nilradicals n for low values of k, we concentrate on the resulting solvable Lie algebras that are rigid
in the cohomological sense. Based on certain patterns observed for these low values, we extrapolate the
result to obtain various infinite series of rigid Lie algebras.

This work complements and extends the existing analysis of rank one solvable rigid Lie algebras,
following the same motivations and techniques used in the works [9,13,15,23,24], where the eigenvalue
spectra spec(t) = (1, 2, 3, · · · , n), spec(t) = (1, 3, 4, · · · , n + 1) and spec(t) = (1, 4, 5, · · · , n + 2) are
studied in detail.

Unless otherwise stated, any Lie algebra considered in this work is finite-dimensional and defined
over the real field K = R.

1.1. Solvable Real (Rigid) Lie Algebras

Let g be a Lie algebra and Der(g) denote the Lie algebra formed by its derivations, i.e., by the
linear maps D : g→ g such that

D [X, Y] = [D(X), Y] + [X, D(Y)] , X, Y ∈ g.

A derivation D will be called inner if there exists an element X ∈ g such that D(Y) = ad(X)(Y) :=
[X, Y] for all Y ∈ g. Otherwise, it will be called an outer derivation.

Definition 1. Let g be a Lie algebra of dimension d. An external torus of derivations is an Abelian subalgebra
of Der(g), the generators of which are semisimple.

Due to the semi-simplicity and Abelianity, the maps f ⊗R Id ∈ End(g⊗R C) are simultaneously
diagonalizable over the complex field C. For complex Lie algebras, maximal tori t are known to be
conjugate to each other, while for the real case the maximal tori are divided into a finite number of
equivalence classes [25]. In both cases, the dimension of a maximal torus is a scalar invariant r(g) of
the Lie algebra, called the rank of g.

One important structural result (see, e.g., [26] and references therein) states that any real or
complex solvable Lie algebra r admits a decomposition

r = t
−→⊕n (1)

satisfying the relations
[t, n] ⊂ n, [n, n] ⊂ n, [t, t] ⊂ n, (2)

where n is the maximal nilpotent ideal of r (called the nilradical) and −→⊕ denotes the semidirect sum
determined by the complementary linear space t formed by linearly nil-independent outer derivations
of n. It can be further shown that the dimension of t satisfies the following inequality

dim n− dim [n, n] ≥ dim t, (3)

providing an upper bound for the rank of a solvable Lie algebra.

1.2. Cohomologically Rigid Lie Algebras

Let Ln denote the variety of n-dimensional real Lie algebras g =
(
Rn, [ , ]g

)
over R. The general

linear group GL (n,R) acts naturally on Ln by means of:

( f ? g) (X, Y) = f
([

f−1 (X) , f−1 (Y)
]
g

)
, f ∈ GL (n,K) , X, Y ∈ g. (4)
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The orbit O (g) of a Lie algebra g is thus given by all algebras isomorphic to g. The space O (g)

can further be identified with the homogeneous space GL (n,R) /Aut(g), from which the identity
dimO (g) = n2 − dim Der(g) follows at once.

Definition 2. A Lie algebra g is called rigid if the orbit O (g) is an open set on the space of structure constants
Rn3

with respect to the Euclidean topology.

An equivalent definition can be obtained using the openness of the orbit O (g) with respect
to the Zariski topology of Ln [1,27]. Although rigidity is primarily a topological notion, sufficient
conditions to ensure that a Lie algebra is rigid can be obtained by purely algebraic means, using
the Chevalley cohomology [3]. This approach involves the computation of the cohomology spaces
Hp (g, g) for p ≤ 3. The spaces H0 (g, g) and H1 (g, g) are identified with the center Z(g) and the outer
derivations Der(g)/IDer(g) of g, respectively [6]. To illustrate how the rigidity problem leads naturally
to cohomological methods, we recall the notion of contraction of Lie algebras (see, e.g., [28–31] and
references therein).

Let g be a Lie algebra and Φε ∈ Aut(g) a family of automorphisms of g, where ε ∈ (0, 1] with Φ1

being the identity. For any X, Y ∈ g we define

[X, Y]Φε
:= Φ−1

ε [Φε(X), Φε(Y)] , (5)

which are obviously the brackets of the Lie algebra over the transformed basis. Now, suppose that
the limit

[X, Y]0 := lim
ε→0

Φ−1
ε [Φε(X), Φε(Y)] (6)

exists for any X, Y ∈ g. Then, Equation (6) defines a Lie algebra g′ called the contraction of g (by Φε),
non-trivial if g and g′ are non-isomorphic, and trivial otherwise. A contraction for which there exists
some basis {Y1, .., Yn} such that the contraction matrix AΦ is diagonal, i.e., adopts the form

(AΦ)ij = δijε
nj , nj ∈ R, ε > 0,

is further known as a generalized Inönü–Wigner contraction [31].
Deformations of Lie algebras, deeply related to contractions and cohomology [4,5], originally arise

from the study of local geometric properties of the variety Ln when considered as a transformation
space. In this context, a formal deformation gt of a Lie algebra g = (V, µ) is given by the
deformed commutator:

[X, Y]ε := [X, Y] + ψm(X, Y)εm,

where ε is a parameter and ψm : V ×V → V is a skew-symmetric bilinear map. Imposing the Jacobi
identity (up to quadratic order of ε) to the deformed commutator, we obtain:[

Xi,
[
Xj, Xk

]
ε

]
ε
+
[

Xk,
[
Xi, Xj

]
ε

]
ε
+
[
Xj, [Xk, Xi]ε

]
ε
= ε dψ1(Xi, Xj, Xk)+

ε2
(

1
2 [ψ1, ψ1] + dψ2

)
(Xi, Xj, Xk) +O(ε3),

(7)

where
dψl(Xi, Xj, Xk) :=

[
Xi, ψl(Xj, Xk)

]
+
[
Xk, ψl(Xi, Xj)

]
+
[
Xj, ψl(Xk, Xi)

]
+

ψl(Xi,
[
Xj, Xk

]
) + ψl(Xk,

[
Xi, Xj

]
) + ψl(Xj, [Xk, Xi]), l = 1, 2

(8)

and

1
2
[ψ1, ψ1] (Xi, Xj, Xk) := ψ1

(
ψ1(Xi, Xj), Xk

)
+ ψ1

(
ψ1(Xj, Xk), Xi

)
+ ψ1

(
ψ1(Xk, Xi), Xj

)
. (9)
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To satisfy the Jacobi identity, the conditions

dψ1(Xi, Xj, Xk) = 0, (10)
1
2
[ψ1, ψ1] (Xi, Xj, Xk) + dψ2(Xi, Xj, Xk) = 0 (11)

must be fulfilled. The expression in Equation (10) satisfied by ψ1 characterizes it as a 2-cocycle in the
second cohomology space H2(g, g), while Equation (11) implies that the deformation has to satisfy an
integrability condition (further constraints are obtained if the deformed bracket is developed up to
higher order; see, e.g., [28]). The latter is given by the condition

1
2
[ϕ, ϕ] (Xi, Xj, Xk) = 0, ∀Xi, Xj, Xk ∈ g. (12)

Hence, if ϕ is an integrable cocyle, the linear deformation given by

[X, Y]ε := [X, Y] + ε ϕ(X, Y)

satisfies the Jacobi identity and defines a Lie algebra. In particular, nullity of H2(g, g) implies that any
deformation is isomorphic to g. This constitutes one possible formulation of the Nijenhuis–Richardson
criterion, from which ample classes of Lie algebras such as semisimple and parabolic algebras are
easily shown to be rigid [17,18,20,32].

Proposition 1. Let g be a Lie algebra. If the condition dim H2(g, g) = 0 holds, then g is rigid.

Lie algebras satisfying H2(g, g) = 0 are usually called cohomologically rigid. However, as was
also shown in [17], the nullity of the cohomology space H2(g, g) is not a necessary condition for rigidity,
i.e., there exist Lie algebras satisfying H2(g, g) 6= 0 but possessing an open orbit [19,20]. Such Lie
algebras, called geometrically rigid, are lesser known and harder to obtain than cohomologically
rigid algebras. Cohomologically rigid Lie algebras (over R and C) are dominant in low dimensions
and certain types of maximal tori [16,33–35], although for dimensions n ≥ 12 continuous series of
geometrically (solvable) rigid Lie algebras have been found [12,13,15,17,24,36,37]. In this latter case,
the analysis of the cohomology space H3(g, g), based on the so-called Rim map defined in Equation (9),
has been shown to be of crucial importance [19,38].

The main tool in the cohomological approach is the Hochschild–Serre factorization theorem [3],
a procedure that simplifies the explicit computation of the cohomology classes. For the purpose of
this work, it suffices to restrict ourselves to the case of solvable real Lie algebras r = t

−→⊕n such that
t is Abelian and the operators adrT (T ∈ t) are diagonal. The symbol −→⊕ indicates that the sum is
semidirect, with t acting on n by derivations. In these conditions (see, e.g., [6]), the cohomology space
Hp (r, r) satisfies the isomorphism

Hp (r, r) ' ∑
a+b=p

Ha (t,R)⊗ Hb (n, r)t , (13)

where the space of t-invariant cocycle classes of n with values in r is defined as

Hb (n, r)t =
{
[ϕ] ∈ Hb (n, r) | (T.ϕ) = 0, T ∈ t

}
. (14)

The invariance condition of a b-cochain ϕ is given by

(T.ϕ) (Z1, · · · , Zb) = [T, ϕ (Z1, · · · , Zb)]−
b

∑
s=1

ϕ (Z1, · · · , [T, Zs] , · · · , Zb) . (15)
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Using the well known fact that Ha (t,R) =
∧a t, it is straightforward to verify that Hp (r, r) = 0

holds if and only if Hb (n, r)t = 0 for 0 ≤ b ≤ p.
We observe that, if a complex Lie algebra g′ admits the real form g, i.e., such that g′ ' g⊗R C,

then it follows from the Chevalley cohomology that [33]

dimR H2(g, g) = dimC H2(g′, g′). (16)

In this sense, a real Lie algebra g is cohomologically rigid if

dimR H2(g, g) = 0. (17)

Clearly, in these conditions, the complexified algebra g′ = g⊗R C is a complex cohomologically
rigid Lie algebra. Conversely, real forms gi of a complex cohomologically rigid Lie algebra
gC = gi ⊗C are cohomologically rigid. It should however be observed that there exist purely complex
cohomologically rigid Lie algebras that do not admit real forms [21]. A negative test for a solvable Lie
algebra r to be cohomologically rigid is further given by the following relation (see, e.g., [27,39]):

dim Der(r) ≤ dim r+ dim H2(r, r). (18)

It follows that if dim Der(r) > dim r, then r cannot be cohomologically rigid. In particular, if a real
(or complex) Lie algebra satisfying the decomposition (1) is rigid, an important structural result of R.
Carles implies that t must be a maximal external torus of derivations of n [27].

2. Rigid Lie Algebras with Filiform Nilradical

For studying nilpotent Lie algebras, we recall an extremely useful invariant called the characteristic
sequence c(n) of n. Given a nilpotent Lie algebra n, for a non-zero element X ∈ n \ [n, n], we consider
the decreasing sequence of dimensions of the Jordan blocks of the linear operator ad(X).

c (X) = (c1 (X) , c2 (X) , · · · , ck (X) , 1) , ci (X) ≥ ci+1 (X) ≥ 1. (19)

Definition 3. The characteristic sequence of a nilpotent Lie algebra n is defined as

c (n) = sup {c (X) | X ∈ n \ [n, n]} . (20)

In particular, if a nilpotent Lie algebra has characteristic sequence c (n) = (n− 1, 1), then there
exists a basis {X1, · · · , Xn} of n such that[

X1, Xj
]
= Xj+1, 2 ≤ j ≤ n− 1.

Such Lie algebras are commonly called filiform [22]. The remaining commutators
[
Xi, Xj

]
for

2 ≤ i, j are related by means of the Jacobi condition[
X1,

[
Xi, Xj

]]
+
[
Xj, [X1, Xi]

]
+
[
Xi,
[
Xj, X1

]]
= 0. (21)

We observe that, as a consequence of the upper bound (Equation (3)), a filiform Lie algebra has a
maximal torus of dimension at most two. It is shown in [22] that there exist only two isomorphism
classes (called the model filiform algebras) possessing rank two, and given, respectively, by

• Ln (n ≥ 3): [
X1, Xj

]
= Xj+1, 2 ≤ j ≤ n− 1 (22)

• Qn (n = 2q ≥ 6):

[X1, Xi] = Xi+1,
[
Xj, Xn+1−j

]
= (−1)j Xn, 2 ≤ i ≤ n− 2, 2 ≤ j ≤ q. (23)
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If tL and tQ denote a maximal torus of Ln and Qn, respectively, it can be easily shown that the
eigenvalue spectrum of their tori is given by

spec(tL) = (λ, µ, λ + µ, 2λ + µ, · · · , (n− 3)λ + µ, (n− 2)λ + µ) , (24)

spec(tQ) = (λ, µ, λ + µ, 2λ + µ, · · · , (n− 3)λ + µ, (n− 3)λ + 2µ) , (25)

where λ, µ are integers. The remaining filiform Lie algebras are all of rank one, and the generic
properties of their tori have been studied in [40]. In particular, it is shown that any n-dimensional
filiform Lie algebra of rank one is isomorphic to one of the following Lie algebras (in [40], a third type
Ck

n is given, which must be discarded, as it actually has rank two and leads to the model algebra Qn):

1. Ak
n (λ1, · · · , λl−1) , l =

[
n+1−k

2

]
, 2 ≤ k ≤ n− 3 :

[X1, Xi] = Xi+1, 2 ≤ i ≤ n− 1
[Xi, Xi+1] = λi−1X2i+k−1, 2 ≤ i ≤ l[
Xi, Xj

]
= aijXi+j+k−2, 2 ≤ i < j, i + j + k ≤ n

2. Bk
n (λ1, · · · , λl−1) , n = 2m, l =

[
n−k

2

]
, 2 ≤ k ≤ n− 3 :

[X1, Xi] = Xi+1, 2 ≤ i ≤ n− 2
[Xi, Xn+1−i] = (−1)i Xn, 2 ≤ i ≤ n− 1
[Xi, Xi+1] = λi−1X2i+k−1, 2 ≤ i ≤ l[
Xi, Xj

]
= aijXi+j+k−2, 2 ≤ i < j, i + j + k ≤ n− 2

The parameters (λ1, · · · , λl−1) are non-simultaneously vanishing and satisfy the Jacobi relations.
Moreover, the constants ai,j satisfy the conditions

ai,j = ai,j+1 + ai+1,j, ai,i+1 = λi−1.

Now, let n be isomorphic to either Ak
n or Bk

n and consider the endomorphism F : n→ n defined by

X′1 = X1, X′j = ε Xj, X′n = ε2 Xn, 2 ≤ j ≤ n− 1. (26)

Computing the brackets over the transformed basis, we obtain the relations[
X′1, X′j

]
= X′j+1,

[
X′i , X′i+1

]
= ελi−1X′2i+k−1,

[
X′i , X′j

]
= aijεX′i+j+k−2

for both cases, and [
X′i , X′n+1−i

]
= (−1)i X′n

for the Bk
n series. For the limit ε→ 0, it follows that Ak

n contracts onto the model filiform Lie algebra
Ln, while Bk

n contracts onto Qn. In this context, it is convenient to separate the rigidity analysis of
rank one solvable Lie algebras with filiform nilradical into the two cases, depending whether the
nilradical belongs to the Ak

n or Bk
n class, although some conclusions can be obtained simultaneously for

both types (see [15]). We mention that the so-called Bratzlavsky series [36], the first of the solvable
geometrically rigid Lie algebras to be described in detail [37], has a nilradical of type Ak

n. Other large
classes of rigid Lie algebras based on this nilpotent algebra have been obtained for the values k = 2, 3, 4,
covered in full detail (see [15,24,37] and references therein), as well as in the (full) classification of
solvable rigid algebras in low dimensions [16].

In the sequel, we are principally interested in rank one cohomologically rigid Lie algebras
with nilradical of type Bk

n. In this context, it is well known that, for any integer k ≥ 2,
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the n =
(

k + 4 + 1−(−1)k

2

)
-dimensional real nilpotent Lie algebra nk

n defined over a basis {X1, · · · , Xn}
by the commutators [

X1, Xj

]
= Xj+1, 2 ≤ j ≤ n− 2,[

Xi,Xn+1−i
]
= (−1)i Xn, 2 ≤ i ≤ n

2 ,

[X2, X3] = X3+k, [X2, X4] =
1−(−1)k

2 X4+k.

(27)

is cohomologically rigid (this is immediate from the results in [15]). A short computation shows that
the spectrum corresponding to these algebras is given by

spec(t) = (1, k, k + 1, · · · , n + k− 3, n + 2k− 3) , (28)

and actually corresponds to the lowest possible dimension for which the condition C3+k
23 6= 0 is satisfied.

It may seem surprising that, by merely adding one or two additional commutators (depending on
the parity of k), we obtain a rigid Lie algebra of rank one. This fact suggests that the number of
(cohomologically) rigid Lie algebras of rank one and possessing a torus t with the spectrum in
Equation (28) must be very ample. We see that large families of rigid Lie algebras with vanishing
cohomology emerge from this eigenvalue spectrum. The range of dimensions for which such algebras
exist are shown to be determined by the value and the parity of k.

3. Cohomologically Rigid Rank One Lie Algebras with Given Eigenvalue Spectrum

In this section, we analyze some generic features of real solvable Lie algebras rk
n = t

−→⊕nk
n of rank

one, the torus t of which has eigenvalues spec(t) = (1, k, k + 1, · · · , n + k− 3, n + 2k− 3) and such
that the nilradical contracts nk

n onto the model filiform algebra Qn. Let {T, X1, X2, ..., Xn} be a basis of
rk

n. The action of T over the nilradical is given by

[T, X1] = X1,
[
T, Xj

]
= (k + j− 2)Xj, [T, Xn] = (n + 2k− 3)Xn, (2 ≤ j ≤ n− 1). (29)

As follows from this action, for any i, j ≥ 1, the commutator
[
Xi, Xj

]
corresponds to an element of

nk
n with eigenvalue 2k+ i+ j− 4, from which we conclude that the commutators adopt the generic form[

X1, Xj
]
= Cj+1

1,j Xj+1, 2 ≤ j ≤ n− 2,[
Xi, Xj

]
= Ci+j+k−2

i,j Xi+j+k−2, i + j < n + 1− k, (30)

[Xi, Xn+1−i] = Cn
i,n+1−iXn, 2 ≤ i ≤ n

2
.

In particular, as we require that [X2, Xn−1] 6= 0 holds, it can be immediately verified by the Jacobi
condition that Cn

i,n+1−i = (−1)iCn
2,n−1 is satisfied for all i ≥ 2. Without loss of generality, we can

assume that Cn
2,n−1 = 1, so that the generic structure is given by

[
X1, Xj

]
= Xj+1, 2 ≤ j ≤ n− 2,[

Xi, Xj

]
= Ci+j+k−2

i,j Xi+j+k−2, i + j < n + 1− k,

[Xi, Xn+1−i] = (−1)iXn, 2 ≤ i ≤ n
2 .

(31)

The Lie algebras of the type in Equation (31) are therefore determined by the solutions to the
polynomial equations defined by the Jacobi conditions for 1 ≤ i ≤ j ≤ ` ≤ n− 1. The Jacobi condition
applied to the triple

{
X1, Xi, Xj

}
with i < j leads to the linear system

Ci+j+k−2
i,j − Ci+j+k−1

i+1,j − Ci+j+k−1
i,j+1 = 0, 2 ≤ i < j. (32)
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In particular, for j = i + 1, we get the relations

C2i+k−1
i,i+1 − C2i+k

i,i+2 = 0, i ≥ 2. (33)

Introducing the notation αi−1 = C2i+k−1
i,i+1 for 2 ≤ i ≤

[
n−k

2

]
, a cumbersome but routine

computation shows that the system in Equation (32) admits the solution

Ci+j+k−2
i,j =

[
j+1−i

2

]
∑
p=1

(−1)p+1 Γ(j + 1− i− p)
(p− 1)! Γ(j + 2− 2p− i)

αi+p−2, (34)

where Γ(z) denotes the Gamma function. With this reduction, any Lie algebra of the type in (31) will
be characterized by the values αs for 1 ≤ s ≤

[
n−k−1

2

]
. It remains to evaluate the Jacobi conditions for

the triples
{

Xi,Xj, Xl
}

with i, j, l ≥ 2. Expanding these relations, we obtain the equations

Cj+l+κ−2
j,l Ci+j+l+2κ−4

i,j+l+κ−2 − Ci+j+κ−2
i,j Ci+j+l+2κ−4

i+j+κ−2,l − Ci+l+κ−2
i,l Ci+j+l+2κ−4

j,i+l+κ−2 = 0. (35)

We observe that, whenever the numerical relation

i + j + l = n + 3− κ

is satisfied, the corresponding equation (Equation (35)) is linear, because it involves commutators of the
type [Xa, Xn+1−a] = (−1)aXn. Now, replacing the Cj+l+κ−2

j,l by the expression given by Equation (34),
the system in Equation (35) reduces to a set of linear or homogeneous quadratic polynomials in the
variables αs, so that the nilradical nk

n is completely specified (using the previous identities) by the
“diagonal” sequence

(
α1, . . . , αp0

)
=

(
Ck+3

2,3 , · · · , Cn−1− 1+(−1)k
2

p0,p0+1

)
, p0 =

n− k− 1− 1+(−1)k

2
2

 . (36)

At this point, is is worthy to be mentioned that a kind of systematization to the solution analysis
of Equation (35) for given values of k and n can be obtained if we proceed as follows: For each s ≥ 1,
we define q0 = p0 − s and evaluate Equation (35) for the sequence

βs =
(

β1, · · · , βp0

)
= (0, · · · , 0, αp0−s, · · · , αp0). (37)

We can assume that αp0−s 6= 0, and thus we can normalize it to one. This avoids repetitions
of tuples when increasing the value of s. We then analyze whether the system in Equation (35),
when reduced with respect to the sequence in Equation (37), admits a solution for the parameters{

αp0−s+1, · · · αp0

}
. For each of the sequences βs, the Jacobi conditions (possibly) simplify and provide

the solutions of a given type. This simplification is specially useful for high dimensions, where a great
number of (parameterized) solutions may exist, solving the system in Equation (35) directly may be
very time consuming.

Although for low values of k and n such a subdivision may not be required as these equations can
be solved by hand, for increasing dimensions k + 6 ≤ n ≤ 4k, the use of computer methods becomes a
necessity to obtain the solutions for the quadratic equations determined by Equation (35), as well as to
compute the cohomology H2

(
rk

n, rk
n

)
. It is therefore unavoidable, from a certain dimension onwards,

to use computer packages to determine precise (even partial) classifications of rigid Lie algebras.
The computation of the cohomologies has been done using the symbolic computation package

SuperLie (see [41,42] and references therein) as well as specific codes for rank one Lie algebras developed
by the authors, which have also been adapted to solve the quadratic systems given by the Jacobi



Axioms 2019, 8, 10 9 of 21

conditions. Both programs have been executed on different platforms in order to double-check
the cohomologies.

4. A Case Study: k ≤ 5

For low values k = 2, 3, 4, 5, the analysis of the Jacobi conditions in Equation (35) can still be
developed directly, due to the low dimension of the resulting algebras and the relative simplicity of the
Jacobi conditions. It is therefore instructive to consider these values in detail, even if most of the rigid
algebras that arise in these cases have already been considered in the literature (see, for instance, the
references in [13,15,16,33]). The dimensions analyzed are n ≥ k + 4 or k + 5 depending on the parity
of k, as the series given in Equation (27) describes the lowest-dimensional case for which Ck+3

2,3 6= 0
is satisfied.

4.1. k = 2

Let r2
n = t

−→⊕n2
n. For this value, the corresponding eigenvalue spectrum is given by

spec(t) = (1, 2, 3, · · · , n− 1, n + 1) . (38)

We assume that n > k + 4, as n = k + 4 = 6 is already covered by Equation (27).

1. dim n = 8. There is only one solution, corresponding to (α1, α2) = (1,−2). A short computation
shows that H2 (r2

8, r2
8
)
= 0.

2. dim n = 10. The Jacobi conditions in Equation (35) reduce to the equations

2α1 − α2 − α3 = 0, 2α2
2 − 2α1α3 − α2α3 = 0.

There are only two solutions corresponding to the triples (α1, α2, α3) = (1, 1, 1) and (1,−1, 3).
Both Lie algebras are cohomologically rigid.

3. dim n = 12. In this case, the Jacobi conditions lead to the system

2α1 − 3α2 + α4 = 0, 2α2
2 − 2α1α3 − α2α3 = 0, 4α2α3 − 6α2

3 − (2α1 − α2 − α3) α4 = 0.

It admits four independent solutions, two of which are complex conjugate and two real
non-rational solutions given by

(α1, α2, α3, α4) =

(
1,

2
3

(
1± i

√
2
)

,± i
√

2,±2i
√

2
)

,

(α1, α2, α3, α4) =

(
1,±

√
2
5

,
1

15

(
10∓

√
10
)

,
1
5

(
−10± 3

√
10
))

.

All these Lie algebras can be verified to have a vanishing second cohomology space, hence they
are cohomologically rigid.

4. For n = 2q ≥ 14, the Jacobi conditions have only the trivial solution αi = 0, implying that there
are no rank one solvable Lie algebras with the eigenvalues in Equation (38).

We remark that the existence of complex nonreal rigid Lie algebras is announced in [21], where the
first examples are also given.

4.2. k = 3

If n = 8, the Lie algebra is rigid by Equation (27).
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1. For dim n = 10, the Jacobi conditions are trivially satisfied for any values of the variables α1 and
α2, hence the Lie algebra is not rigid.

2. dim n = 12. The Jacobi conditions reduce to the equations:

2α2 + α3 = 0, 4α2
2 − 3α1α3 − 3α2α3 = 0,

admitting the two independent solutions (α1, α2, α3) = (1, 0, 0) and (1,− 3
5 , 6

5 ). Both resulting
solvable Lie algebras are cohomologically rigid.

3. dim n = 14. Three quadratic equations are obtained:

2α2 − α3 − α4 = 0, 4α2
2 − 3α1α3 − 3α2α3 = 0, 10α2

3 + 3α1α4 − 5α2α3 − 2α2α4 − 4α3α4 = 0.

There are four solutions, corresponding to the values

(α1, α2, α3, α4) = (1, 0, 0, 0), (1, 3, 3, 3),
(

1,
3
4

,
3
7

,
15
14

) (
1,−3

7
,

3
7

,−9
7

)
.

All the resulting solvable Lie algebras are verified to have a vanishing second cohomology space,
from which their cohomological rigidity follows.

4. For dim n = 16, the Jacobi conditions lead to five independent quadratic equations

2α2 − 3α3 + α5 = 0, 4α2
2 − 3α1α3 − 3α2α3 = 0, 10α2

3 + 3α1α4 − 5α2α3 − 2α2α4 − 4α3α4 = 0,

5α2
3 − 4α2α4 − 6α3α4 + 2α2α5 + α3α5 = 0, 20α2

4 − 3α1α5 + 5α2α5 − 6α2α4 − 21α3α4 − 5α4α5 = 0.

This system admits only two nontrivial solutions

(α1, α2, α3, α4, α5) = (1, 0, 0, 0, 0),
(

1,
3
5

,
3
10

, 0,− 3
10

)
.

Again, the computation shows that the second cohomology space vanishes in both cases.
5. For dim n = 18 + 2` with ` ≥ 0, the only nontrivial solution to the Jacobi conditions is given by

(α1, · · · , α6+`) =
(

1, 05+`
)

. This series is actually the analog of the so-called Bratzlavsky series

(see, e.g., [15,36,37]) for nilradicals of type Bk
n.

Proposition 2. For any n = 18 + 2` with ` ≥ 0, the solvable Lie algebra r3
n with nilradical corresponding to

the solution (α1, · · · , α6+`) =
(

1, 05+`
)

satisfies dim H2 (r3
n, r3

n
)
= 0.

One point that deserves a comment is the fact that all the rigid rank one solvable Lie algebras
obtained for k = 3 are rational, in contrast to the case of k 6= 3, where there always exist nonrational
and even complex solutions.

4.3. k = 4

Again, the case n = 8 belongs to the family in Equation (27) and leads to a rigid Lie algebra.

1. For dim n = 10 there is only one nontrivial solution to the Jacobi conditions, given by (α1, α2) =

(1,−2). The corresponding solvable Lie algebra has vanishing cohomology.
2. For dim n = 12, the Jacobi conditions are trivially satisfied for any values of the variables α1 and

α2, hence the Lie algebra is not rigid.
3. For dim n = 14, we obtain parameterized families and no solutions with vanishing

cohomology exist.
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4. For dim n = 16, we obtain four nontrivial solutions to the Jacobi conditions, two real and two
complex ones, respectively:

(α1, α2, α3, α4, α5) =
(

1, 2
105

(
±11∓

√
226 +

√
−1963 + 188

√
226
)

, 1
63

(
10 +

√
226∓

√
577 + 62

√
226
)

,
2

63

(
−10−

√
226±

√
577 + 62

√
226
)

, 1
9

(
10 +

√
226∓

√
−1057 + 122

√
226
))

(α1, α2, α3, α4, α5) =
(

1, 2
105

(
11 +

√
226± i

√
1963 + 188

√
226
)

, 1
63

(
10−

√
226± i

√
577 + 62

√
226
)

,
2

63

(
−10 +

√
226∓ i

√
577 + 62

√
226
)

, 1
9

(
10−

√
226∓ i

√
1057 + 122

√
226
))

The corresponding Lie algebras (complex and real) all satisfy the Richardson criterion and are
cohomologically rigid.

5. For dim n = 18, the Jacobi conditions admit two nontrivial solutions

(α1, α2, α3, α4, α5, α6) =

(
1,

2
5

,
1
5

,
1
5

,
1
5

, 0
)

,
(

1,−1,−5
3

,−5
3

,−5
3

,−7
3

)
.

In addition, in this case, the corresponding solvable Lie algebras satisfy H2 (r4
18, r4

18
)
= 0.

6. Finally, for any n ≥ 20, the only solution to the system of Jacobi equations is given by αi = 0,
corresponding to the rank two model algebra Qn. Hence, no rank one solvable algebras with the
given eigenvalues exist.

4.4. k = 5

As the last case to be explicitly analyzed for all dimensions, we consider k = 5. By Equation (27),
we already know that the nilradical in n = 10 leads to a rigid Lie algebra. We show that, for this
value of k, the same type of solution leads to solvable Lie algebras that are either cohomologically or
geometrically rigid, depending on the dimension.

1. For dim n = 12, 14 and 16, we obtain parameterized families of nilpotent algebras that can be
deformed into each other. No cohomologically rigid Lie algebras exist.

2. If dim n = 18, Equation (35) admits a two-parameter family of solutions, as well as two
isolated solutions

(α1, α2, α3, α4, α5) =

(
0, 0, 1,

9
5

, 3
)

,
(

0, 0, 0, 1, 0,
5

24

)
.

The solvable Lie algebras corresponding to these values are not cohomologically rigid, as they
both satisfy dim H2 (r5

18, r5
18
)
= 1. Moreover, they can be deformed into the family, so that they

are not geometrically rigid.
3. The Jacobi conditions for dim n = 20 admit two nontrivial solutions

(α1, α2, α3, α4, α5, α6) = (1, 0, 0, 0, 0) ,
(

1,
5
8

,
5

24
, 0, 0,

5
24

)
.

The corresponding solvable Lie algebras r5
20 satisfy in both cases H2 (r5

20, r5
20
)
= 0.

4. For dim n = 22, we find two nontrivial solutions to Equation (35)

(α1, α2, α3, α4, α5) = (1, 0, 0, 0, 0, 0) ,(
1, 5

14 , 5
42

(
5±
√

22
)

, 5
126

(
17∓ 4

√
22
)

, 5
126

(
17∓ 4

√
22
)

, 5
126

(
19∓ 5

√
22
))

.

In both cases, the solutions lead to cohomologically rigid Lie algebras.



Axioms 2019, 8, 10 12 of 21

5. For dim n = 24 + 4l (l ≥ 0) , the only nontrivial solution is given by

(α1, . . . , α7+2l) = (1, 0, . . . , 0) .

If we compute the cohomology of the associated solvable Lie algebra r5
24+4l , we find that it

does not vanish, but satisfies dim H2
(
r5

24+4l , r
5
24+4l

)
= 1. However, this Lie algebra is always

geometrically rigid, as can be shown with a topological argument (see, for instance, the argument
in [37], which is also valid for this case).

6. For dim n = 26 + 4l (l ≥ 0) , the only nontrivial solution is again

(α1, . . . , α8+2l) = (1, 0, . . . , 0) ,

but, in contrast to the previous case, we have that dim H2
(
r5

26+4l , r
5
26+4l

)
= 0, showing that the

Lie algebras r5
26+4l are cohomologically rigid.

As a consequence of this analysis we conclude that, depending on the parity of k, for high
dimensions n ≥ 4k we either obtain only the trivial solution for the equations determined by the Jacobi
conditions (hence the non-existence of rank one Lie algebras with the prescribed eigenvalue spectrum)
or the solution (1, 0, . . . , 0), the cohomological behaviour of which depends on the value of n. As a
general fact, we can establish the following

Proposition 3. Let nk
n be a nilpotent Lie algebra of the type in Equation (31) satisfying the quadratic

Equation (35). Then, the following relations hold:

1. If k ≥ 6 is even and n ≥ 4k, then nk
n is isomorphic to Qn.

2. If k ≥ 7 is odd and n ≥ 4k, then nk
n is either isomorphic to Qn or to the Lie algebra with brackets[

X1, Xj

]
= Xj+1, 2 ≤ j ≤ n− 2,[

X2, Xj

]
= Xj+k, 3 ≤ j ≤ n− 1− k,

[Xi, Xn+1−i] = (−1)iXn, 2 ≤ i ≤ n
2 .

(39)

Clearly, the Jacobi conditions always admit the zero solution (α1, · · · , α`) = (0, · · · , 0) with
` =

[
n−k−1

2

]
corresponding to a nilpotent Lie algebra isomorphic to Qn. For any fixed dimension n,

the number of Jacobi conditions is given by 1
6 n(n− 1)(n− 2), while the number of parameters equals

`. Now, while for the change of dimension n→ n + 2 the number of parameters αi increases by one
unity, the number of new Jacobi conditions that appear is given by n2, implying that the number of
independent equations increases quadratically. Therefore, from a certain dimension onwards, the
number of independent Jacobi conditions exceeds that of parameters, implying that only the trivial
solution is possible. The only exception to this rule is given by the case of odd k and (α1, · · · , α`) =

(1, 0, · · · , 0), where the coefficients Ck+3
2,3 = Cq+k

2,q for 4 ≤ q ≤ n− 1− k always constitute a solution to
the Jacobi conditions. The corresponding nilradical is the analog, contracting onto Qn, of the nilradical
fn of the so-called Bratzlavsky series contracting onto Ln [12,36].

Technically, the systematized analysis of nilpotent Lie algebras admitting a one-dimensional
maximal torus of derivations with eigenvalues spec(t) = (1, k, k + 1, · · · , n + k− 3, n + 2k− 3) can
be continued beyond k = 5. However, even with the help of computer packages, we encounter
dimensions where the solutions can only be obtained numerically, as the Jacobi conditions cannot be
solved in closed form. The lowest value and dimension for which this occurs is given by k = 6 and
d = 22, respectively. Supposed that n6

22 is a Lie algebra of the type in Equation (31) and that C9
2,3 6= 0 is

satisfied, the solutions to the Jacobi conditions, besides two rational ones (see Table 1), correspond
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to solutions of the following system of linear and quadratic equations equations (As α1 = C9
2,3 6= 0,

we can suppose that it equals 1):

2α3 − 3α4 + α6 = 0, 2− 9α2 + 11α3 − 4α4 + α6 − α7 = 0
7α2

2 − α3(6 + 15α2) + α4(9 + 10α2)− α5(2 + α2) = 0,
8α2

3 − α4(7α2 + 21α3) + α5(14α2 + 20α3)− α6(7α2 + 5α3) = 0,
588α2

4 + α2(48α3 − 54α4 + 335α5 − 246α6 + 21α7) + 12α5 + 51α6

−14α7 − α3(546α4 − 330α5 + 99α6)− α4(36 + 490α5 − 147α6 + 7α7) = 0
α2(16α3 − 39α4 + 86α5 − 47α6) + α3(−77α3 + 110α5 − 33α6 − 77)− 12α4 + 18α5 − 4α6 = 0.

Table 1. Cohomologically rigid Lie algebras in dimensions n ≤ 30 for k ≥ 6.

dimn k s (α1, . . . , αs)

22 6 7
(

0, 0, 0, 1, 74
35 , 3,−1

)
22 6 7

(
0, 1, 3

2 , 9
5 , 5

2 , 15
2

)
22 6 7

(
1, (5±α)

46 , (−21±5α)
253 , (−21±5α)

506 , 0, (21∓5α)
506 , (80∓7α)

253

)
, α =

√
301

24 7 7 (0, 0, 0, 0, 1,−1, 0)

24 7 7
(

0, 0, 0, 1, 10
7 , 4

7 ,−4
)

26 7 8
(

0, 0, 0, 1, 2, 20
7 , 4, 7

)
26 7 8 (0, 0, 0, 0, 0, 1,−2, 0)

26 7 8
(

0, 0, 0, 0, 1, 295
126 , 3,−1

)
26 7 8

(
0, 0, 1, 27

22 , 12
11 , 10

11 , 9
11 , 21

22

)
26 7 8

(
353±12α

161 , 1, 16∓3α
11 , 138∓30α

121 , 69±15α
121 , 0, −69±15α

121 , −169±42α
121

)
, α =

√
26

26 8 8
(

1, 25±α
120 , 15±3α

520 , 5±α
120 , 0, 0, 5±α

120 , −95±7α
780

)
, α =

√
1585

28 8 9
(

0, 0, 1, 61
44 , 31

22 , 15
11 , 16

11 , 91
44 , 7

)
28 8 9 (0, 0, 0, 0, 0, 1,−1, 0, 0)

28 8 9
(

0, 0, 0, 42
25 , 64

35 , 268
175 , 7

25 ,− 308
25

)
28 8 9

(
0, 0, 0, 0, 1, 265

168 , 71
168 ,−4, 1

)
30 8 10

(
0, 0, 0, 0, 17

7 , 1135
294 , 37

7 , 46
7 ,−6

)
30 8 10

(
0, 0, 0, 1, 11

20 , 1, 5
4 , 10

7 , 7
4 , 14

5 , 21
2

)
30 8 10

(
0, 0, 0, 0, 0, 1, 387

154 , 3,−1, 0
)

30 9 9
(

0, 0, 1, 23
26 , 5

11 , 25
286 ,− 25

143 ,− 119
286 ,− 126

143

)
30 9 9

(
0, 0, 0, 0, 1, 20

27 ,− 40
27 ,− 115

27 , 5
)

30 9 9 (0, 0, 0, 0, 0, 1,−2, 1, 0)

30 9 9
(

0, 0, 0, 1, 64
55 , 5

11 ,− 10
11 ,− 37

11 ,− 112
11

)
30 9 9

(
1, 3(4720±27α

28859 , 3(196169±5665α)
750334 , 3(527147±16664α)

9754342 , 9(527147±16664α)
9754342 ,

0, 0, 3(527147±16664α)
9754342 , 3(2194126±76151α

9754342

)
, α =

√
1147
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The solutions to these equations cannot be found in closed form, and require a numerical analysis.
There are twelve solutions, divided into six real and six complex solutions. The real solutions (with a
six digits approximation) are given by

(α2, · · · , α7)1 = (−0.672116,−0.689923,−2.3539,−3.77899,−5.68185, 4.19364) ,

(α2, · · · , α7)2 = (−0.53422, 0.401517,−0.507803, 0.647213,−2.32645, 10.9294) ,

(α2, · · · , α7)3 = (−0.268464,−0.425877,−0.212938, 0, 0.212938, 0.796227) ,

(α2, · · · , α7)4 = (0.763277, 0.27263,−0.00432786,−0.271782,−0.558244,−2.41149) ,

(α2, · · · , α7)5 = (0.485855, 0.259869, 0.129934, 0,−0.129934,−0.163816) ,

(α2, · · · , α7)6 = (0.13456,−0.142263,−0.143553,−0.101978,−0.146134,−0.347857) .

In these conditions, computing the cohomology with these values could lead to error due to the
approximation of the values in the solution, hence an indirect approach for comparison is required.
A quite laborious one consists in solving first the linear equations of the system and looking for
a reduced set of polynomial equations equivalent to the system. Then, computing formally the
cohomology with the diagonal entries (1, α2, · · · , α7) and introducing successively the constraints
on the αi, a cumbersome computation allows us to establish that for the previous solutions the
cohomology space H2(r6

22, r6
22) actually vanishes, so that these six nonrational solutions indeed provide

cohomologically rigid Lie algebras (indeed, the direct computation with a nine digits approximation
of the values αi give a vanishing cohomology). As can be expected, the computing time for solving
such cases for higher dimensions and values of k, even numerically, increases exponentially. This
makes the separation of the solutions a difficult task, added to the fact that, for certain values of k and
n, several dozens of solutions may exist. Therefore, in the following, we focus only on the isolated
solutions to the Jacobi conditions in Equation (35), especially emphasizing those solutions (α1, · · · , αs)

that are rational.

5. Cohomologically Rigid Algebras in Dimension n ≤ 30

In this section, we present the nilradicals of the type in Equation (31) that lead to real
cohomologically rigid Lie algebras for values k ≥ 6 and dimensions n ≤ 30. For the reasons mentioned
above, we restrict ourselves to the real solutions of Equation (35) that can be described in closed form,
i.e., that do not require numerical analysis for their description. The nilradicals are given in terms of
their fundamental parameters (α1, . . . , αs) (see Equation (36)) in tabular form, specifying the dimension
of the nilradical n, the value of k and the number of fundamental parameters.

Just as observed for the value k = 5, for odd values of k and dimensions n ≥ 30, there begin to
appear many solutions having non-vanishing cohomology that must be analyzed separately (unless
they are the only nontrivial solution). The nonrational solutions also have a quite complicated form,
thus, to find some pattern that leads to series of cohomologically rigid Lie algebras, it is in practice
convenient to separate the rational solutions. Table 2 contains the rational solutions in dimensions
32 ≤ n ≤ 40.
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Table 2. Rational cohomological rigid Lie algebras in dimensions 30 < n ≤ 40.

dimn k s (α1, . . . , αs)

32 9 10
(

0, 0, 0, 0, 0, 1, 56
33 , 10

33 ,−4, 1
)

32 9 10 (0, 0, 0, 0, 0, 0, 1,−1, 0, 0)

32 9 10
(

0, 0, 0, 0, 1, 2, 7
3 , 5

3 ,−1, 12
)

32 9 10
(

0, 0, 0, 1, 22
13 , 25

13 , 25
13 , 25

13 , 28
13 , 42

13

)
32 10 10

(
0, 0, 1, 0, 0, 40

37 , 1359
518 , 120

37 , 34
37 ,−36

)
34 9 11

(
0, 0, 0, 0, 0, 1, 14

5 , 791
165 , 32

5 , 31
5 ,−6

)
34 9 11

(
0, 0, 0, 0, 1, 30

13 , 45
13 , 175

39 , 75
13 , 108

13 , 210
13

)
34 9 11

(
0, 0, 0, 1, 8

5 , 22
13 , 20

13 , 35
26 , 16

13 , 84
65 , 24

13

)
34 9 11

(
0, 0, 0, 0, 0, 0, 1, 413

156 , 3,−1, 0
)

34 10 11
(

0, 0, 0, 0, 1, 10
7 , 41

56 ,− 82
63 ,− 283

63 ,− 62
7 , 130

7

)
34 10 11 (0, 0, 0, 0, 0, 0, 1,−2, 1, 0, 0)

34 10 11
(

0, 0, 0, 0, 0, 1, 137
65 ,− 274

65 ,− 688
165 , 5,−1

)
34 10 11

(
0, 0, 0, 1, 118

91 , 85
91 , 25

91 ,− 50
91 ,− 164

91 ,− 66
13 ,−30

)
34 11 10

(
1, 0, 0, 0, 737

988 , 737
546 , 31691

20748 , 8107
6916 ,− 3685

20748 ,− 47168
5187

)
36 10 12 (0, 0, 0, 0, 0, 0, 0, 1,−1, 0, 0, 0)

36 10 12
(

0, 0, 0, 0, 1, 188
91 , 243

91 , 109
39 , 695

273 , 162
91 ,− 114

91 ,− 462
13

)
36 10 12

(
0, 0, 0, 0, 0, 0, 1, 70

39 , 8
39 ,−4, 1, 0

)
36 10 12

(
0, 0, 0, 0, 0, 1, 151

66 , 3073
1089 , 1910

1089 ,− 71
33 ,− 773

66 , 7
)

36 10 12
(

0, 0, 0, 1, 7
4 , 52

26 , 107
52 , 105

52 , 109
52 , 33

13 , 111
26 , 231

13

)
36 12 11

(
0, 0, 1, 0, 0, 343

933 , 266
933 ,− 532

933 ,− 483
311 ,− 151

933 , 45374
933

)
38 10 13

(
0, 0, 0, 0, 1, 13

6 , 3, 7
2 , 35

9 , 9
2 , 6, 11, 99

2

)
38 10 13

(
0, 0, 0, 0, 0, 1, 135

49 , 33
7 , 1532

231 , 423
9 , 543

49 , 660
49 ,− 1188

49

)
38 10 13

(
0, 0, 0, 0, 0, 0, 0, 1, 124

45 , 3,−1, 0, 0
)

38 10 13
(

0, 0, 0, 0, 0, 0, 1, 378
121 , 8890

1573 , 892
121 , 711

121 ,−6, 1
)

38 11 12
(

0, 0, 0, 0, 1, 23
14 , 10

7 , 1
2 ,−1,− 47

14 ,− 57
7 ,− 165

7

)
38 11 12

(
0, 0, 0, 0, 0, 0, 1, 259

286 ,− 259
143 ,− 1171

286 , 5,−1
)

38 11 12 (0, 0, 0, 0, 0, 0, 0, 1,−2, 1, 0, 0)

38 11 12
(

0, 0, 0, 0, 0, 1, 5
3 , 28

33 ,− 56
33 ,− 181

33 ,− 23
3 , 55

3

)
38 11 12

(
0, 0, 0, 1, 43

34 , 65
68 , 1

2 , 7
68 ,− 7

34 ,− 33
68 ,− 15

17 ,− 33
17

)
40 11 13 (0, 0, 0, 0, 0, 0, 0, 0, 1,−1, 0, 0, 0)

40 11 13
(

0, 0, 0, 0, 1, 35
17 , 91

34 , 49
17 , 49

17 , 49
17 , 105

34 , 66
17 , 231

34

)
40 11 13

(
0, 0, 0, 0, 0, 0, 0, 1, 516

275 , 34
275 ,−4, 1, 0

)
40 11 13

(
0, 0, 0, 0, 0, 0, 1, 28

11 , 5166
1573 , 2842

1573 ,− 35
11 ,− 126

11 , 7
)

40 11 13
(

0, 0, 0, 0, 0, 1, 17
7 , 7

2 , 42
11 , 35

11 , 1,− 11
2 ,−33

)
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6. Some Series of Rigid Lie Algebras with H2(rk
n, rk

n) = 0

As can be inferred from the tables, there are certain patterns in the (rational) solutions that suggest
that the corresponding Lie algebras can be described for arbitrary values of k (for even or odd values,
respectively) while preserving the condition that the second cohomology space vanishes. The simplest
of these series appears for even k, and has quite a low dimension, namely k + 6, corresponding to the
solution (α1, α2) = (1,−2) of the Jacobi in Equation (35).

Proposition 4. Let k ≥ 2 be an even integer and nk
k+6 be the nilpotent Lie algebra with brackets

[
X1, Xj

]
= Xj+1, 2 ≤ j ≤ n− 2

[Xi, Xn+1−i] = (−1)iXn, 2 ≤ i ≤ n
2

[X2, X3] = Xj+k, j = 3, 4
[X2, X5] = 3X5+k, [X3, X4] = −2X5+k.

(40)

Then, the solvable Lie algebra rk
k+6 = t

−→⊕nk
k+6 satisfies H2

(
rk

k+6, rk
k+6

)
= 0.

Besides this family, exclusive for even values k, there are other series that have very similar
structure for both parities of k. The following result enumerates those series that begin for values of k
not exceeding twelve.

Proposition 5. The following Lie algebras nk
n of the type in Equation (31) satisfying the quadratic in

Equation (35) lead to rank one cohomologically rigid Lie algebras rk
n with eigenvalue spectrum (28):

1. For odd k ≥ 7 and dimension n = 4k− 4:(
α1, · · · , α 3k−7

2

)
=
(

0k−3, 1,−1, 0
k−5

2

)
2. For odd k = 2q + 1 ≥ 7 and dimension n = 4k− 2:(

α1, · · · , α 3k−5
2

)
=
(

0k−3, 1, ϕ(q), 3,−1, 0q−3
)

where

ϕ(q) =
3 (2q− 1)

(
10q2 − 11q + 2

)
2q(2q + 1)(4q− 3)

, q ≥ 3.

3. For odd k = 2q + 1 ≥ 9 and dimension n = 4k− 4:(
α1, · · · , α 3k−7

2

)
=
(

0k−4, 1, ϕ1(q), ϕ2(q),−4, 1, 0q−4
)

where

ϕ1(q) =
(q− 1) (2q− 1)(11q− 12)

q(2q + 1)(4q− 5)
, ϕ2(q) =

3
(
4− 19q + 15q2 − 2q3)
q(2q + 1)(4q− 5)

, q ≥ 3.

4. For odd k = 2q ≥ 11 and dimension n = 4k− 6:(
α1, · · · , α 3k−9

2

)
=
(

0k−5, 1, φ1(q), φ2(q), φ3(q), 5,−1, 0q−5
)
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where

φ1(q) =
(2q− 3) (20− 37q + 14q2)

2q(2q + 1)(4q− 7)
, φ2(q) =

(3−2q)(40−74q+28q2)
2q(2q+1)(4q−7) ,

φ3(q) =
(
60− 221q + 16q2 + 52q3)

2q(1 + 2q)(7− 4q)
, q ≥ 5.

5. For even k ≥ 8 and dimension n = 4k− 4:(
α1, · · · , α 3k−6

2

)
=
(

0k−3, 1,−1, 0
k−4

2

)
6. For even k = 2q ≥ 6 and dimension n = 4k− 2:(

α1, · · · , α 3k−4
2

)
=
(

0k−3, 1, ψ(q), 3,−1, 0q−3
)

where

ψ(q) =
3 (q− 1)

(
10q2 − 21q + 10

)
q(2q− 1)(4q− 3)

, q ≥ 3.

7. For even k = 2q ≥ 8 and dimension n = 4k− 4:(
α1, · · · , α 3k−6

2

)
=
(

0k−4, 1, ψ1(q), ψ2(q),−4, 1, 0q−4
)

where

ψ1(q) =
(q− 1) (2q− 3)(22q− 35)

2q(2q− 1)(4q− 7)
, ψ2(q) =

3
(
35− 71q + 36q2 − 4q3)
2q(2q− 11)(4q− 7)

, q ≥ 4.

8. For even k = 2q ≥ 10 and dimension n = 4k− 6:(
α1, · · · , α 3k−8

2

)
=
(

0k−5, 1, ψ1(q), ψ2(q), ψ3(q), 5,−1, 0q−5
)

where

ψ1(q) =
(q− 2) (42− 51q + 14q2)

q(2q− 1)(4q− 9)
, ψ2(q) =

(2−q)(84−102q+28q2)
q(2q−1)(4q−9) ,

ψ3(q) =
(
84− 99q− 31q2 + 26q3)

q(1− 2q)(4q− 9)
, q ≥ 5.

The proof of the rigidity of these Lie algebras, as well as those of Proposition 5, is essentially the
same, based on the Hochschild–Serre factorization theorem. In the following, we give an outline of
the proof that is valid for all these cases. The first step consists in showing that for all these solvable
algebras the derivations are all inner. To this extent, any 1-cochain f ∈ C1(nn

k , rn
k ) can be written as

f (Xi) =
n

∑
l=1

al
i Xl + biT, 1 ≤ i ≤ n. (41)

The invariance condition for cochains, as a consequence of the diagonal action of the torus
generator T on the nilradical, implies the following constraints

f (Xi) = ai
iXi, 1 ≤ i ≤ n. (42)
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If we now compute the coboundary operator for these cochains, we find that the only nonzero
terms are the following:

d f (X1, Xj) =
(

a1
1 + aj

j − a1+j
1+j

)
X1+j, 2 ≤ j ≤ n− 2,

d f (Xi, Xj) =
(

ai
i + aj

j − ai+j+k−2
i+j+k−2

)
Ci+j+k−2

i,j Xi+j+k−2, 2 ≤ i ≤ k, i < j ≤ n− i− 1, (43)

d f (Xi, Xn−i+1) =
(

ai
i + an−i+1

n−i+1 − an
n

)
Xn, 2 ≤ i ≤ n− 1.

Solving the resulting coefficient system allows us to find a basis of 1-cocycles Z1 (nn
k , rn

k
)t,

which can be chosen as

f1(X1) = X1, f1(Xi) = (i + k− 2)Xi, 2 ≤ i ≤ n− 1, f1(Xn) = (n + 2k− 3)Xn. (44)

As the identity [T, X`]− f1(X`) = 0 holds for 1 ≤ ` ≤ n, we can identify the 1-cocycle with the
adjoint operator ad(T) of the torus generator, from which we conclude that Z1 (nn

k , rn
k
)t

= B1 (nn
k , rn

k
)t,

and further that H1 (nn
k , rn

k
)t

= H1 (rn
k , rn

k
)
= 0. The remaining cochains fi(Xj) = aj

i Xj with 2 ≤ i ≤ n
generate the space B2 (nn

k , rn
k
)t and are actually linearly independent, thus dim B2 (nn

k , rn
k
)t

= n− 1.
Consider now a generic 2-cochain that we can write as

ϕ(Xi, Xj) =
n

∑
k=1

θk
i,jXk + ηi,jT. (45)

If we evaluate the condition in Equation (15), we are led to the following constraints:

ϕ(X1, Xj) = θ
j+1
1,j Xj+1, 2 ≤ j ≤ n− 2

ϕ(Xi, Xj) = θ
i+j+k−2
i,j Xi+j+k−2, 2 ≤ i ≤ j, i + j ≤ n− k + 1 (46)

ϕ(Xi, Xn−i+1) = θn
i,n−i+1Xn, 2 ≤ i ≤ n− 1.

Using the identities in Equations (32) and (33), the analysis of 2-cocycles reduces to evaluating the
condition dϕ(Xa, Xb, Xc) = 0 for the triples

{
X1, Xi, Xj

}
and

{
X2, Xi, Xj

}
. For the first triple, we get

dϕ(X1, Xi, Xj) =
(

θ
i+j+k−2
i,j − θ

i+j+k−1
i,j+1 − θ

i+j+k−1
i+1,j

)
Xi+j+k−1, 2 ≤ i + 1 < j, i + j ≤ 2k− 3,

dϕ(X1, Xi, Xn−i) =
(
(−1)iθi+1

1,i + (−1)i+1θn−i+1
1,n−i − θn

i,n−i+1 − θn
i+1,n−i

)
Xn, 2 ≤ i ≤ n

2

dϕ(X1, Xi, Xj) =
(
−Ci+j+k−1

i+1,j θi+1
1,i − Ci+j+k−1

i,j+1 θ
i+j+k−1
i,j + θ

i+j+k−2
i,j − θ

i+j+k−1
i+1,j − θ

i+j+k−1
i,j+1

)
Xi+j+k−1,

(47)

where, in the last identity, 2 ≤ i, i < j, 2k− 2 ≤ i + j ≤ n− k + 1, i < k.
For the triple

{
X2, Xi, Xj

}
, the restrictions obtained are

dϕ(X2, Xi, Xj) =
(

Ci+k
2,i θ

i+j+2k−2
j,i+k − Cj+k

2,j θ
i+j+2k−2
i,j+k + C2,i+j+k−2θ

i+j+k−2
i,j +

)
Xi+j+2k−2+

+
(

Ci+j+k−2
i,j θ

i+j+2k−2
2,i+j+k−2 − Ci+j+2k−2

i,j+k θ
j+k
2,j+k − Ci+j+2k−2

j,i+k θi+k
2,i

)
Xi+j+2k−2

(48)

for 3 ≤ i, i < j, i + j ≤ n− 2k + 1, i < k, as well as the equations

dϕ(X2, Xi, Xn−k−i+1) =
(

θn−1
i,n−k−i+1 − (−1)iθn−k−i+3

2,n−k−i+1 + (−1)i+kθi+k
2,i − Ci+k

2,i θn
i+k,n−k−i+1

−Cn−i+1
2,n−k−i+1θn

i,n−i+1 + Cn−1
i,n−k−i+1θn

2,n−1

)
Xn, 3 ≤ i ≤ n

2 .
(49)
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Now, let `0 be the minimal index such that α`0−1 = Ck+2`0−1
`0,`0+1 6= 0. Rescaling, we can suppose that

it has the value 1. The system of coefficients obtained from Equations (47)–(49) allows us, after some
heavy algebraic manipulation, to obtain the solutions as

θ
i+j+k−2
i,j = Ci+j+k−2

i,j

(
−

i−1

∑
t=2

θt+1
1,t +

2l+1−j

∑
t=1

θ2l+2−t
1,2l+1−t −

j−2l−1

∑
t=1

θ2l+1+t
1,2l+t +

i+j−2l−3

∑
t=1

θ2l+t+k+1
1,2l+t+k + (−1)l+1θ2l+k+1

2,2l+1

)
, 2 ≤ i < j, i + j ≤ n− k + 1 (50)

θn
i,n−i+1 = (−1)i

(
−

i−2

∑
t=1

(
θt+2

1,t+1 + θn−t
1,n−1−t

)
+ θn

2,n−1

)
Xn, 2 ≤ i ≤ n

2
.

Consequently, any 2-cocycle can be expressed as a linear combination of θi+1
1,i with 2 ≤ i ≤ n− 2,

as well as θ2k+k−1
2,2l+1 and θn

2,n−1. The corresponding cocycles are linearly independent, from which we

conclude that dim Z2 (nn
k , rn

k
)t

= n− 1, showing that dim H2(rn
k , rn

k ) = 0.
At this point, it is natural to ask whether the remaining Lie algebras covered in Tables 1 and 2 also

belong to some family dependent on k. It is likely that many other series appear, although, as follows
from the preceding analysis of the series in Proposition 5, the dimension of the first term in each family
increases and dimensions of the nilradical beyond n = 100 are required to recognize the coefficient
pattern for the diagonal sequence in Equation (36). It is hoped to find a more systematic description in
some future work.

7. Conclusions

We have studied some general properties of rank one solvable Lie algebras rk
n with an eigenvalue

spectrum given by spec(t) = (1, k, k + 1, · · · , n + k− 3, n + 2k− 3), corresponding to Lie algebras
possessing a nilradical that contracts onto the model filiform algebra Qn. This can be seen as a
complementary study to that developed in [15], where rank one algebras the nilradical of which
contracts onto Ln are considered. We have particularly focused on those Lie algebras that have a
vanishing Chevalley cohomology dim H2(rn

k , rn
k ). The detailed analysis for low values of k allows us

to extrapolate the results and obtain some series of cohomologically rigid algebras defined for any k
(within a parity).

An interesting observation emerges from the inspection of the rigid families enumerated in
Proposition 5. The regularities observed there lead us to conjecture the existence, in the dimensions
range 4k− 6 ≤ n ≤ 4k− 2, of cohomologically rigid Lie algebras rk

n, the nilradical of which is of the
type in Equation (31) and satisfies Equation (35) for the values

(α1, · · · , αM) =
(

0k−`0 , 1, φ1(q), · · · , φ`0−2(q), (−1)`0−1`0, (−1)`0 , 0q−`0
)

,

where M = 3k+1−2`0
2 for k = 2q + 1, M = 3k+2−2`0

2 for k = 2q, and q ≥ `0 and φs(q) for some
combinatorial function of q. However, to confirm this hypothesis, further detailed analysis of the
solutions of Equation (35) for higher values of k and dimensions n are necessary, in order to establish
precisely what values of `0 actually appear, the exact values for the coefficients φs(q) and whether the
resulting solvable Lie algebras, if existing, have vanishing Chevalley cohomology for all admissible
values of k. It may further be asked whether a global description of these Lie algebras is feasible
by means of a generating function that covers simultaneously the case of even and odd values of k.
The same question concerning a uniform description as families can be formulated for the irrational
solutions, that also appear with certain regularities. Work in this direction is currently in progress.
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It shall be observed that, in addition to the cohomologically rigid solutions found, there
are also geometrically rigid solvable rank one Lie algebras with eigenvalue spectrum spec(t) =

(1, k, k + 1, · · · , n + k− 3, n + 2k− 3) and cohomology space H2 (r, r) of arbitrary dimension d > 1,
as can be expected from the analog analysis of rigid algebras with a nilradical of type Ak

n, where rigid
examples with higher cohomology have been found [24]. However, for geometrically rigid Lie algebras,
the cohomology is merely an accessory tool, and their detailed analysis requires other methods such as
the Jacobi schemes [8,43]. The detailed analysis of rigid Lie algebras of this class with the eigenvalue
spectrum considered in this work will be presented elsewhere.
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