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Abstract: A dynamic adjustment of parameters for the particle swarm optimization (PSO) utilizing
an interval type-2 fuzzy inference system is proposed in this work. A fuzzy neural network with
interval type-2 fuzzy number weights using S-norm and T-norm is optimized with the proposed
method. A dynamic adjustment of the PSO allows the algorithm to behave better in the search for
optimal results because the dynamic adjustment provides good synchrony between the exploration
and exploitation of the algorithm. Results of experiments and a comparison between traditional
neural networks and the fuzzy neural networks with interval type-2 fuzzy numbers weights using
T-norms and S-norms are given to prove the performance of the proposed approach. For testing the
performance of the proposed approach, some cases of time series prediction are applied, including
the stock exchanges of Germany, Mexican, Dow-Jones, London, Nasdaq, Shanghai, and Taiwan.

Keywords: particle swarm optimization; fuzzy numbers; type-2 fuzzy weights; neural networks;
backpropagation; time series prediction

1. Introduction

In time series prediction problems, the main objective is to obtain results that approximate the
real data as closely as possible with minimum error. The use of intelligent systems for working with
time series problems is widely utilized [1,2]. For example, Zhou et al. [3] used a dendritic mechanism
in a neural model and phase space reconstruction (PSR) for the prediction of a time series, and
Hrasko et al. [4] presented a prediction of a time series with a Gaussian-Bernoulli restricted Boltzmann
machine hybridized with the backpropagation algorithm.

For optimization problems, the principle objective is to work in a search space to encounter
an optimal choice among a set of potential solutions. In many cases, the search space is too wide,
which means that the time used for obtaining an optimal solution is very extensive. To improve the
optimization and search problems, a set of methods of computational intelligence was the focus of
some recent work in improving the solving of optimization and search problems [5–7]. These methods
can achieve competitive results, but not the best solutions. Furthermore, heuristic algorithms can be
used like alternative methods. Although these algorithms are not guaranteed to find the best solution,
they are able to obtain an optimal solution in a reasonable time.

The main contribution is the dynamic adaptation of the parameters for particle swarm
optimization (PSO) used to optimize parameters for a neural network with interval type-2 fuzzy
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numbers weights with different T-norms and S-norms, proposed in Gaxiola et al. [8] and used to
perform the prediction of financial time series [9–11].

The adaptation of parameters is performed with a Type-2 fuzzy inference system (T2-FIS) to adjust
the c1 and c2 parameters for the particle swarm optimization. This adaptation is based on the work of
Olivas et al. [12], who used interval type-2 fuzzy logic to improve the convergence and diversity of
PSO to optimize the minimum for several mathematical functions. In this work, control of the c1 and
c2 parameters is performed using fuzzy rules to achieve a good dynamic adaptation [13,14].The use
of type-2 fuzzy logic gives a better performance in our work and this is justified by recent research
from Wu and Tan [15] and Sepulveda et al. [16], who demonstrated that interval type-2 fuzzy systems
perform better than type-1 fuzzy systems.

The neural network with interval type-2 fuzzy numbers weights optimized with the proposed
approach is different from others works using the adjustment of weights in neural networks [17,18],
such as James and Donald [19,20].

A comparison of the performance of the traditional neural network compared to the proposed
optimization for the fuzzy neural network with interval type-2 fuzzy numbers weights is performed
in this paper. In this case, a prediction for a financial time series is used to verify the efficiency of the
proposed method.

The use of T-norms and S-norms of sum-product can be seen in Hamacher [21,22]. Olivas [23]
developed a new method for PSO of parameter adaptation using fuzzy logic. In their work, the authors
improved the performance of the traditional PSO. We decided to use the parameter adaptation because
in previous works, we have had good results with other metaheuristic methods. For instance, in [24],
we proposed a gravitational search algorithm (GSA) with parameter adaptation to improve the original
GSA metaheuristic algorithm. The next section states the theoretical approach to the work in the paper.
Section 3 presents the background research performed to adjust the parameters in PSO, as well as
research performed in the neural network area with fuzzy numbers. Section 4 explains the proposed
approach and a description of the problem to be solved in the paper. Section 5 presents the simulation
results for the proposed approach. Section 6 presents a discussion of the results of the experiments.
Finally, in Section 7, conclusions are shown.

2. Theoretical Basement

2.1. Particle Swarm Optimization (PSO)

Kennedy and Eberhart [25] introduced a bio-inspired algorithm based on the behavior of a swarm
of particles “flying” (moving around) through a multidimensional space search, and the potential
solutions to the problem are represented as particles [26]. The dynamics of the algorithm are performed
by adjusting the position of each particle based on the experience acquired for each particle and its
neighbors [27,28]. The search in PSO is defined by the equations to update the position (Equation (1))
and velocity (Equation (2)) of each particle, respectively:

xi(t + 1) = xi(t) + vi(t + 1) (1)

where:
xi is the particle i.
t is the current iteration.
vi is the velocity of the particle i.

vi(t + 1) = vij(t) + c1r1(t)
[
yij(t)− xij(t)

]
+ c2r2(t)

[
ŷ j(t)− xij(t)

]
(2)

where:
vi is the velocity of the particle i in the dimension j.
c1 is the cognitive factor (importance of the best previous position of the particle).
c2 is the social factor (importance of the best global position of the swarm).
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r1, r2 are random values in the range of [0, 1].
yij is the best position of the particle i in the dimension j.
xij is the current position of the particle i in the dimension j.
ŷ j is the best global position of the swarm in the dimension j.

In Figure 1, the movements of a particle in the search space according to Equations (1) and (2)
are presented.
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Figure 1. Movement of the particle in the search space.

The triangle and rhombus points represent the movement of the particle with a change in the
parameters, c1 and c2. The triangle point is the result for the case when c1 > c2, in this case, the swarm
performs exploration and “fly” in the search space to find a best area which allows the obtainment
of the global best position; so, the exploration allows the particles to perform long movements for
travelling in all the search space. The rhombus point is the result for the case when c1 < c2, in this
case, the swarm uses exploitation and “fly” in the best area of the search space with short movements
to perform an exhaustive search in the best area.

2.2. Type-2 Fuzzy Systems

Zadeh [29] introduced the approach of type-2 fuzzy sets as an extension of the type-1 fuzzy sets.
Later, Mendel and John [30] defined the type-2 fuzzy set as follows:

A∼ = {[(x, u), µA∼(x, u)]|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (3)

where
A∼ is a type-2 fuzzy set.
µA∼(x, u) is a type-2 membership function.
Jx is called primary membership function of A∼.

The type-2 fuzzy set (T2FS) consists of generating a bounded region of uncertainty in the primary
membership, called the footprint of uncertainty (FOU) [31]. The interval type-2 fuzzy sets are a
particular case of T2FS in which the FOU is generated by the union of two type-1 membership
functions (MF), a lower MF (LMF) and an upper MF (UMF) [32]. For IT2FS, the defuzzification is
performed by the calculation of the centroid of the FOU founded in Karnik and Mendel [33]. The use
of a T2FS allows the handling of more uncertainty and provides fuzzy systems with more robustness
than a type-1 fuzzy sets [34–36].



Axioms 2019, 8, 14 4 of 21

2.3. Fuzzy Neural Network

The area of fuzzy neural networks consists in developing hybrid algorithms that implement the
approach of neural networks architectures with fuzzy logic theory [17,18,37,38].

3. Antecedents Development

The PSO bio-inspired algorithm has received many improvements in their performance by many
researchers. The most important modifications made to PSO are to increment the diversity of the
swarm and to enhance the convergence [39,40].

Olivas et al. [12] proposed a method to dynamically adjust the parameters of particle swarm
optimization using type-2 and type-1 fuzzy logic.

Muthukaruppan and Er [41] presented a hybrid algorithm of particle swarm optimization using a
fuzzy expert system in the diagnosis of coronary artery disease.

Taher et al. [42] developed a fuzzy system to perform an adjustment of the parameters, c1, c2, and
w (inertia weight), for the particle swarm optimization.

Wang et al. [43] presented a PSO variant utilizing a fuzzy system to implement changes in the
velocity of the particle according to the distance between all particles. If the distance is small, the
velocity of some particles is modified drastically.

Hongbo and Abraham [44] proposed a new parameter, called the minimum velocity threshold,
to the equation used to calculate the velocity of the particle. The approach consists in that the new
parameter performs the control in the velocity of the particles and applies fuzzy logic to make the new
parameter dynamically adaptive.

Shi and Eberhart [45] presented a dynamic adaptive PSO to adjust the inertia weight utilizing a
fuzzy system. The fuzzy system works with two input variables, the current inertia weight and the
current best performance evaluation, and the change of the inertia weight is the output variable.

In neural networks, the use of fuzzy logic theory to obtain hybrid algorithms has improved the
results for several problems [46–48]. In this area, some significant papers of works with fuzzy numbers
are presented [49,50]:

Dunyak et al. [51] proposed a fuzzy neural network that works with fuzzy numbers for the
obtainment of new weights (inputs and outputs) in the step of training. Coroianu et al. [52] presented
the use of the inverse F-transform to obtain the optimal fuzzy numbers, preserving the support and
the convergence of the core.

Li Z. et al. [53] proposed a fuzzy neural network that works with two fuzzy numbers to calculate
the results with operations, like subtraction, addition, division, and multiplication. Fard et al. [54]
presented a fuzzy neural network utilizing sum and product operations for two interval type-2
triangular fuzzy numbers in combination with the Stone-Weierstrass theorem.

Molinari [55] proposed a comparison of generalized triangular fuzzy numbers with other fuzzy
numbers. Asady [56] presented a comparison of a new method for approximation trapezoidal fuzzy
numbers with methods of approximation in the literature.

Figueroa-García et al. [57] presented a comparison for different interval type-2 fuzzy numbers
performing distance measurement. Requena et al. [58] proposed a fuzzy neural network working
with trapezoidal fuzzy numbers to obtain the distance between the numbers and utilized a proposed
decision personal index (DPI).

Valdez et al. [59] proposed a novel approach applied to PSO and ACO algorithms. They used
fuzzy systems to dynamically update the parameters for the two algorithms. In addition, as another
important work, we can mention Fang et al. in [60], who proposed a hybridized model of a phase
space reconstruction algorithm (PSR) with the bi-square kernel (BSK) regression model for short term
load forecasting. Also, it is worth mentioning the interesting work of Dong et al. [61], who proposed
a hybridization method using the support vector regression (SVR) model with a cuckoo search (CS)
algorithm for short term electric load forecasting.
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4. Proposed Method and Problem Description

In this work, the optimization for interval type-2 fuzzy number weights neural networks
(IT2FNWNN) using particle swarm optimization (PSO) is proposed. The PSO is dynamically adapted
utilizing interval type-2 fuzzy systems. A comparison of the traditional neural network and the
IT2FNWNN optimized with PSO is performed. The operations in the neurons are obtained with
calculation of T-norms and S-norms of the sum-product, Hamacher and Frank [62–64].

For testing the proposed method, the prediction of the financial time series of the stock exchange
markets of Germany, Mexican, Dow-Jones, London, Nasdaq, Shanghai, and Taiwan is performed. The
databases consisted of 1250 data for each time series (2011 to 2015).

The architecture of the traditional neural network used in this paper (see Figure 2) consists of 16
neurons for the hidden layer and one neuron for the output layer.

Axioms2018, 7, x FOR PEER REVIEW  5 of 21 

4. Proposed Method and Problem Description 

In this work, the optimization for interval type-2 fuzzy number weights neural networks 
(IT2FNWNN) using particle swarm optimization (PSO) is proposed. The PSO is dynamically 
adapted utilizing interval type-2 fuzzy systems. A comparison of the traditional neural network 
and the IT2FNWNN optimized with PSO is performed. The operations in the neurons are obtained 
with calculation of T-norms and S-norms of the sum-product, Hamacher and Frank [62–64]. 

For testing the proposed method, the prediction of the financial time series of the stock 
exchange markets of Germany, Mexican, Dow-Jones, London, Nasdaq, Shanghai, and Taiwan is 
performed. The databases consisted of 1250 data for each time series (2011 to 2015). 

The architecture of the traditional neural network used in this paper (see Figure 2) consists of 
16 neurons for the hidden layer and one neuron for the output layer. 

 
Figure 2. Scheme of the architecture of the traditional neural network. 

The architecture of the interval type-2 fuzzy number weight neural network (IT2FNWNN) has 
the same structure of the traditional neural network, ,with 16, 39, and 19 neurons in the hidden 
layer for the sum-product, Hamacher and Frank, respectively, and one neuron for the output layer 
(see Figure 3) [8]. 

 
Figure 3. Scheme of the architecture of the interval type-2 fuzzy number weight neural network. 

The IT2FNWNN work with fuzzy numbers weights in the connections between the layers, and 
these weights are represented as follows [8]: 𝑤෥ = ൣ𝑤, 𝑤൧ (4) 

Figure 2. Scheme of the architecture of the traditional neural network.

The architecture of the interval type-2 fuzzy number weight neural network (IT2FNWNN) has
the same structure of the traditional neural network, with 16, 39, and 19 neurons in the hidden layer
for the sum-product, Hamacher and Frank, respectively, and one neuron for the output layer (see
Figure 3) [8].
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The IT2FNWNN work with fuzzy numbers weights in the connections between the layers, and
these weights are represented as follows [8]:

w̃ = [w, w] (4)

where w and w are obtained using the Nguyen-Widrow algorithm [65] in the initial execution of
the network.

The linear function as the activation function for the output neuron and the secant hyperbolic for
the hidden neurons are applied. The S-Norm and T-Norm for obtaining the lower and upper outputs
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of the neurons are applied, respectively. For the lower output, the S-Norm is used and for the upper
output, the T-Norm is utilized. The T-Norms and S-Norms used in this work are described as follows:

Sum-product:
TNorm

(
Net, Net

)
= Net.× Net (5)

SNorm
(

Net, Net
)
= Net + Net− TNorm

(
Net, Net

)
(6)

Hamacher: for γ > 0.

TNormH
(

Net, Net, γ
)
=

Net.× Net
γ + (1− γ)

(
Net + Net− Net.× Net

) (7)

SNormH
(

Net, Net, γ
)
=

Net + Net + (γ− 2)
(

Net.× Net
)

1 + (γ− 1)
(

Net.× Net
) (8)

Frank: for s > 0.

TNormF
(

Net, Net, s
)
= logs

1 +
(

sNet − 1
)(

sNet − 1
)

s− 1

 (9)

SNormF
(

Net, Net, s
)
= 1− logs

1 +
(

s1−Net − 1
)(

s1−Net − 1
)

s− 1

 (10)

The back-propagation algorithm using gradient descent and an adaptive learning rate is
implemented for the neural networks.

A modification of the back-propagation algorithm that allows operations with interval type-2
fuzzy numbers to obtain new weights for the forthcoming epochs of the fuzzy neural network is
proposed [8].

The particle swarm optimization (PSO) is used to optimize the number of neurons for the
IT2FNWNN for operations with S-norm and T-norm of Hamacher and Frank. Also, for Hamacher, the
parameter, γ, is optimized, and for Frank, the parameter, s, is optimized.

The parameters used in the PSO to optimize the IT2FNWNN are presented in Table 1. The same
parameters and design are applied to optimize all the IT2FNWNN for all the financial time series.

Table 1. Parameters of PSO to optimize IT2FNWNN.

Parameters Values

Particles 50
Dimensions 2

Iterations 50
Inertia Weight 0.1

Constriction Coefficient (C) 1
R1, R2 Random in [0, 1]
c1, c2 Dynamic adjust IT2FIS

In the literature [27], the recommended values for the c1 and c2 parameters are in the interval of
0.5 and 2.5; also, the change of these parameters in the iterations of the PSO can generate better results.

In the PSO used to optimize the IT2FNWNN, the parameters, c1 and c2, from Equation (2)
are selected to perform the dynamic adjustment utilizing an interval type-2 fuzzy inference system
(IT2FIS).This selection is in the base as these parameters allow the particles to generate movements for
performing the exploration or exploitation in the search space. The structure of the IT2FIS utilized in
the PSO is presented in Figure 4.
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Based on the literature [12,66,67], the inputs selected for the IT2FIS are the diversity of the
swarm and the percentage of iterations. Also, in [68], a problem of online adaptation of radial basis
function (RBF) neural networks is presented. The authors present a new adaptive training, which is
able to modify both the structure of the network (the number of nodes in the hidden layer) and the
output weights.

The diversity input is defined by Equation (11), in which the degree of the dispersion of the
swarm is calculated. This means that for less diversity, the particles are closer together, and for high
diversity, the particles are more separated. The diversity equation can be taken as the average of the
Euclidean distances amongst each particle and the best particle:

Diversity(t) =
1
ns

ns

∑
i=1

√√√√ nx

∑
j=1

[
xij(t)− xj(t)

]
(11)

where:
xij(t): represents the particle in the iteration t.
xj(t): represents the best particle in the iteration t.

For the diversity variable, normalization is performed based on Equation (12), taking values in
the range of 0 to 1:

DiversityNorm = {0, i f minDiver = maxDiverDiverNorm, i f minDiver 6= maxDiver (12)

where:
minDiver: Minimum Euclidian distance for the particle.
maxDiver: Maximum Euclidian distance for the particle.
DiverNorm: Value obtained with Equation (13).

DiverNorm =
Diversity−minDiver
maxDiver−minDiver

(13)

The membership functions for the input diversity are presented in Figure 5.
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The iteration input is considered as a percentage of iterations during the execution of the PSO,
the values for this input are in the range from 0 to 1. In the start of the algorithm, the iteration is
considered as 0% and is increased until it reaches 100% at the end of the execution. The values are
obtained as follows:

Iteration =
Currentiteration
Totalo f iterations

(14)

The membership functions for the input iteration are presented in Figure 6.
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The membership functions for the outputs, c1 and c2, are presented in Figures 7 and 8, respectively.
The values for the two outputs are in the range from 0 to 3.
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Based on the literature of the behavior for the c1 and c2 parameters described in Section 2, for the
dynamic adjustment of the c1 and c2 parameters in each iteration of the PSO, a fuzzy rules set with
nine rules is designed as follows:

1. If (Iteration is Low) and (Diversity is Low) then (c1 is VeryHigh) (c2 is VeryLow).
2. If (Iteration is Low) and (Diversity is Medium) then (c1 is High) (c2 is Medium).
3. If (Iteration is Low) and (Diversity is High) then (c1 is High) (c2 is Low).
4. If (Iteration is Medium) and (Diversity is Low) then (c1 is High) (c2 is Low).
5. If (Iteration is Medium) and (Diversity is Medium) then (c1 is Medium) (c2 is Medium).
6. If (Iteration is Medium) and (Diversity is High) then (c1 is Low) (c2 is High).
7. If (Iteration is High) and (Diversity is Low) then (c1 is Medium) (c2 is VeryHigh).
8. If (Iteration is High) and (Diversity is Medium) then (c1 is Low) (c2 is High).
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9. If (Iteration is High) and (Diversity is High) then (c1 is VeryLow) (c2 is VeryHigh).

In Figure 9, a block diagram of the procedure for the proposed approach is presented.
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5. Simulation Results

We achieved the experiments for the financial time series of the stock exchange markets of
Germany, Mexico, Dow-Jones, London, Nasdaq, Shanghai, and Taiwan, and for all experiments, we
used 1250 data points. In this case, 750 data points are considered for the training stage and 500 data
points for the testing stage.

In Table 2, the results of the experiments for the financial time series of stock exchange markets
for the traditional neural network with 16 neurons in the hidden layer are presented.

Table 2. Results of the traditional neural network for the financial series.

Error Results Germany Mexican Dow-Jones London Nasdaq Shanghai Taiwan

MAE
Best 1089.19 733.50 920.89 167.05 468.81 361.95 383.00

Average 1138.48 755.34 956.03 168.76 470.43 367.90 412.52

RMSE
Best 1264.68 917.93 1075.70 200.13 550.95 561.29 458.28

Average 1332.28 935.58 1109.73 203.29 558.95 580.00 480.11

The results of the experiments are obtained with the mean absolute error (MAE) and root mean
standard error (RMSE). Thirty experiments with the same parameters and conditions to obtain the
average error were performed, but only the best result and average of the 30 experiments are presented.
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In Table 3, the results of the experiments for the financial time series of the stock exchange for
the IT2FNWNN with 16 neurons in the hidden layer for the S-norm and the T-norm of the sum of the
product are presented (IT2FNWNNSp).

Table 3. Results of the IT2FNWNN with the S-norm and T-norm of the sum of the product for the
financial time series.

Error Results Germany Mexican Dow-Jones London Nasdaq Shanghai Taiwan

MAE
Best 1038.84 739.26 736.26 155.51 585.70 391.21 321.86

Average 1148.27 760.49 937.09 159.20 725.07 403.97 339.18

RMSE
Best 1338.21 915.45 840.21 192.14 786.84 458.75 499.62

Average 1414.93 939.70 1098.61 196.65 884.07 474.99 615.84

In Table 4, the results of the experiments for the financial time series of the stock exchange markets
for the IT2FNWNN with 39 neurons in the hidden layer for the S-norm and T-norm of Hamacher
are presented (IT2FNWNNH). The value for the parameter, γ, in the Hamacher IT2FNWNN without
optimization is 1.

Table 4. Results of the IT2FNWNN with the S-norm and T-norm of Hamacher for the financial
time series.

Error Results Germany Mexican Dow-Jones London Nasdaq Shanghai Taiwan

MAE
Best 1055.06 730.13 686.05 151.76 463.77 314.71 349.78

Average 1093.54 756.95 787.61 158.96 711.63 334.81 392.70

RMSE
Best 1216.24 912.65 800.68 188.46 570.36 569.32 449.41

Average 1334.42 945.19 925.43 198.98 854.65 626.49 472.24

In Table 5, the results of the experiments for the financial time series of the stock exchange for the
IT2FNWNN with 19 neurons in the hidden layer for the S-norm and T-norm of Frank are presented
(IT2FNWNNF). The value for the parameter, s, in the Frank IT2FNWNN without optimization is 2.8.

Table 5. Results of the IT2FNWNN with the S-norm and T-norm of Frank for the financial time series.

Error Results Germany Mexican Dow-Jones London Nasdaq Shanghai Taiwan

MAE
Best 1058.87 730.96 853.69 153.35 663.02 354.07 362.56

Average 4439.15 756.19 944.12 159.58 741.04 336.64 399.85

RMSE
Best 1256.37 915.84 972.34 186.68 730.97 607.68 448.20

Average 1402.82 936.95 1101.39 197.71 902.34 640.26 470.09

We performed the optimization of the Hamacher IT2FNWNN and Frank IT2FNWNN for the
number of neurons in the hidden layer and the parameters, γ and s, respectively, with PSO using the
dynamic adjustment for the c1 and c2 parameters of Equation (2), applying the interval type-2 fuzzy
inference system of Figure 4 and the parameters of Table 1.

In Table 6, the optimization for each financial time series for the Hamacher IT2FNWNN is
presented. We presented the best result of the five experiments performed.
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Table 6. Results of the optimization with Dynamic PSO for Hamacher IT2FNWNN for the financial
time series.

Financial Time Series Prediction Error No. Neurons Parameter γ

Germany 417.33 39 1.6471
Mexican 744.34 21 0.9997

Dow-Jones 517.58 15 1.9270
London 155.72 22 1.0016
Nasdaq 227.53 56 0.6822

Shanghai 211.40 99 1.7397
Taiwan 236.15 28 1.1997

In Table 7, the results of the experiments for the financial time series of the stock exchange for
the IT2FNWNN for the Hamacher S-norm and T-norm optimized with dynamic PSO are presented
(IT2FNWNNH-PSO). The value for the number of neurons in the hidden layer and the parameter, γ,
in the Hamacher IT2FNWNN are taken from Table 6.

Table 7. Results of the IT2FNWNN with the S-norm and T-norm of Hamacher optimized with dynamic
PSO for the financial time series.

Error Results Germany Mexican Dow-Jones London Nasdaq Shanghai Taiwan

MAE
Best 417.33 728.61 517.58 154.87 227.53 211.40 236.15

Average 813.21 751.48 881.97 160.47 342.14 313.86 401.49

RMSE
Best 507.43 909.39 769.15 192.81 283.92 443.85 331.32

Average 1172.56 930.47 1290.34 197.99 530.34 543.39 472.44

In Table 8, the optimization for each financial time series for the Frank IT2FNWNN is presented.
We are only showing the best result of five performed experiments.

Table 8. Results of the optimization with dynamic PSO for Frank IT2FNWNN for the financial
time series.

Financial Time Series Prediction Error No. Neurons Parameter γ

Germany 935.77 89 1.7796
Mexican 726.84 22 1.4607

Dow-Jones 768.81 119 3.1526
London 153.60 32 1.2669
Nasdaq 302.19 73 1.2910

Shanghai 277.72 79 1.9962
Taiwan 359.21 124 1.6347

In Table 9, the results of the experiments for the financial time series of the stock exchange
for the IT2FNWNN for Frank S-norm and T-norm optimized with dynamic PSO are presented
(IT2FNWNNF-PSO). The value for the number of neurons in the hidden layer and the parameter, s,
in the Frank IT2FNWNN are taken for Table 8.

Table 9. Results of the IT2FNWNN with the S-norm and T-norm of Frank optimized with dynamic
PSO for the financial time series.

Error Results Germany Mexican Dow-Jones London Nasdaq Shanghai Taiwan

MAE
Best 935.77 726.84 768.81 153.60 288.70 277.72 359.21

Average 1050.87 773.60 863.79 163.12 391.39 373.38 399.28

RMSE
Best 1226.07 911.63 979.26 188.63 349.02 491.98 439.93

Average 1302.99 963.74 1082.81 201.38 469.52 597.62 481.62
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In Table 10, a comparison of the best results for the prediction for all financial time series of the
stock exchange markets with the traditional neural network (TNN), the interval type-2 fuzzy numbers
weights neural network with the sum of the product (IT2FNWNNSp), Hamacher (IT2FNWNNH)
and Frank (IT2FNWNNF) without optimization, and Hamacher (IT2FNWNNH-PSO) and Frank
(IT2FNWNNF-PSO) optimized with dynamic PSO is presented.

Table 10. Comparison of the best results of financial time series prediction with all neural networks.

Financial
Time Series Error TNN IT2FNWNNSp IT2FNWNNH IT2FNWNNF IT2FNWNNH-PSO IT2FNWNNF-PSO

Germany MAE 1089.19 1038.84 1055.06 1058.87 417.33 935.77
RMSE 1264.68 1338.21 1216.24 1256.37 507.43 1226.07

Mexican
MAE 733.50 739.26 730.13 730.96 728.61 726.84
RMSE 917.93 915.45 912.65 915.84 909.39 911.63

Dow-Jones
MAE 920.89 736.26 686.05 853.69 517.58 768.81
RMSE 1075.70 840.21 800.68 972.34 769.15 979.26

London
MAE 167.05 155.51 151.76 153.35 154.87 153.60
RMSE 200.13 192.14 188.46 186.68 192.81 188.63

Nasdaq MAE 468.81 585.70 463.77 663.02 227.53 288.70
RMSE 550.95 786.84 570.36 730.97 283.92 349.02

Shanghai MAE 361.95 391.21 314.71 354.07 211.40 277.72
RMSE 561.29 458.75 569.32 607.68 443.85 491.98

Taiwan
MAE 383.00 321.86 349.78 362.56 236.15 359.21
RMSE 458.28 499.62 449.41 448.20 331.32 439.93

In Figures 10–16, the plots of the real data of each stock exchange time series against the predicted
data of the best results for the Interval type-2 fuzzy number weights neural network taken from the
comparison in Table 10 are presented.
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Figure 16. Illustration of the real data against the prediction data of Taiwan stock exchange time series
for the fuzzy neural network using Hamacher optimized with dynamic PSO.

A statistical test of T-student is applied to verify the accuracy of the results. In Table 11, the best
results for each financial time series is compared with the TNN. The null hypothesis is H1 = H2 and
the alternative hypothesis is H1 > H2 (AVG = average, SD = standard deviation, SEM = standard
error of the mean, ED = estimation of the difference, LLD 95% = lower limit 95% of the difference,
GL = degrees of liberty) [69].



Axioms 2019, 8, 14 17 of 21

Table 11. Comparison of the best results of financial time series prediction with all neural networks.

Financial
Time Series Comparison Results N AVG SD SEM ED LLD

95%
T

Value
P

Value GL

Germany H1:TNN 30 1332.3 22.8 4.2
159.7 66 2.9 0.004 29H2: IT2FNWNNH-PSO 30 1173 301 55

Mexican
H1:TNN 30 935.6 12.5 2.3 −28.15 −35.27 −5.83 1 44H2: IT2FNWNNF-PSO 30 9637 23.3 4.3

Dow-Jones
H1:TNN 30 1082.8 47.1 8.6 −208 −491 −1.24 0.888 29H2: IT2FNWNNH-PSO 30 1290 912 167

London
H1:TNN 30 203.29 2.48 0.45

4.304 2.927 5.24 0.0004 50H2: IT2FNWNNH 30 198.98 3.76 0.69

Nasdaq H1:TNN 30 558.95 4.19 0.77
28.6 −26 0.89 0.190 29H2: IT2FNWNNH-PSO 30 530 176 32

Shanghai H1:TNN 30 580 7.48 1.4
36.61 22.93 4.54 0.0004 30H2: IT2FNWNNH-PSO 30 543.4 43.5 7.9

Taiwan
H1:TNN 30 480.11 7.31 1.3 −1.51 −5.88 −0.58 0.717 47H2: IT2FNWNNH-PSO 30 481.6 12.2 2.2

6. Discussion of Results

For the best results of the financial time series, the results in Table 10 show that the interval type-2
fuzzy numbers weights neural network with S-Norms and T-norms Hamacher (IT2FNWNNH-PSO)
and Frank (IT2FNWNNF-PSO) optimized using particle swarm optimization (PSO) with dynamic
adjustment obtains better results than the neural networks without optimization; only for the London
time series is the best result the result of the interval type-2 fuzzy numbers weights neural network
with Hamacher (IT2FNWNNH).

The data of the statistical test of T-student in Table 11 demonstrate that the IT2FNWNNH-PSO
and IT2FNWNNF-PSO have acceptable accuracy for almost all the financial time series against the
traditional neural network. Only in the Nasdaq and Shanghai time series, the T value is minimal to
consider a meaningful difference

7. Conclusions

Based on the experiments, we have reached the conclusion that the interval type-2 fuzzy
numbers weights neural network with S-Norms and T-norms Hamacher (IT2FNWNNH) and Frank
(IT2FNWNNF) optimized using particle swarm optimization (PSO) with dynamic adjustment achieves
better results than the traditional neural network and the interval type-2 fuzzy numbers weights neural
network without optimization, in almost all the cases of study, for the stock exchanges time series
used in this work. This assertion is based on the comparison of prediction errors for all stock exchange
time series shown in Table 10 and the data of the statistical test of T-student for best results against the
traditional neural network (TNN).

The proposed approach of dynamic adjustment in PSO for optimization of interval type-2 fuzzy
numbers weights neural network was compared with the traditional neural network to demonstrate
the effectiveness of the proposed method.

The proposed optimization applying an interval type-2 fuzzy inference system to perform
dynamic adjustment of the c1 and c2 parameters in PSO allows the algorithm find optimal results
for the testing problems. In almost all the cases of testing, the results obtained with the IT2FNWNN
optimized were the better results, only in the London stock exchanges time series did the IT2FNWNNH
obtained better results.

These results are good considering that the number of iterations and the number of particles for
the executions of the PSO are relatively small, only 50 iterations with 50 particles. We believe that
performing experiments with more iterations and particles will allow it to find better optimal results.
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