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Abstract: This paper is one of a series in which we generalize our earlier results on the equivalence of
existence of Calabi extremal metrics to the geodesic stability for any type I compact complex almost
homogeneous manifolds of cohomogeneity one. In this paper, we actually carry all the earlier results
to the type I cases. In Part II, we obtained a substantial amount of new Kähler–Einstein manifolds
as well as Fano manifolds without Kähler–Einstein metrics. In particular, by applying Theorem 15
therein, we obtained complete results in the Theorems 3 and 4 in that paper. However, we only
have partial results in Theorem 5. In this note, we provide a report of recent progress on the Fano
manifolds Nn,m when n > 15 and N′n,m when n > 4. We provide two pictures for these two classes of
manifolds. See Theorems 1 and 2 in the last section. Moreover, we present two conjectures. Once we
solve these two conjectures, the question for these two classes of manifolds will be completely solved.
By applying our results to the canonical circle bundles, we also obtain Sasakian manifolds with or
without Sasakian–Einstein metrics. These also provide open Calabi–Yau manifolds.
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1. Introduction

This paper is the fourth part of [1]. In [1], we prove the following:

Proposition 1. For any simply connected Type I, compact, Kähler, complex, almost-homogeneous manifold of
cohomogeneity one with a hypersurface end, there is an extremal metric in a given Kähler class if and only if
Condition (7) in [1] holds.

Condition (7) therein was represented as a sign of a topological integral, as was shown in
Section 6.1 of Part III [2]. See also our integral at the beginning of the next section.

We obtained similar results for the higher codimensional end case and the general case,
in Sections 3 and 4 of Part II [3]. See also Theorem 15 in the last section for the Kähler–Einstein
case therein.

As an application, considering the canonical circle bundle, we also obtained Sasakian manifolds
with and without Sasaki–Einstein metrics (with the same Reeb vector field and CR structure, see [4]
Theorem 2.4 (iv), also [5,6]).
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We shall prove the converse for the Type II cases in [7].
We finished all cases in which the existence of the extremal metrics could be reduced to an

ordinary differential equation problem. We also provided many examples for both the stable and
unstable cases, as promised in [8]. It was difficult for us to find any example that is semistable but not
stable. We note that, since the automorphism group was semisimple, the original Futaki invariants
were zero for all manifolds considered in this paper. Therefore, we provide more classical examples
than in [9].

The authors in [10] studied a few of the first cases in [1], i.e., the cases with F = F(OPn) in which
S = SO(4, C), SO(6, C), SO(8, C), SO(10, C), where S is the induced group action on the fibers.

We classify the manifolds into three types: Types I, II, and III. This classification can be found
in [8] Section 12.

Basically, Type III manifolds are completions of a C∗ bundle over a homogeneous manifold.
They were dealt with in [11,12]. See also [13]. Once the automorphism group has a nontrivial solvable
radical, it has a C∗ action. It then has a Type III structure. See [8,14,15].

In the case in which the automorphism group is semisimple, let K be the isometric group, which is
compact, and let L be the isotropic subgroup of K at a point of a generic real hypersurface orbit.
Let N = NornK(L) be the normalizer. Then on the Lie algebra level N is a direct product of the
Lie algebra of L and an algebra A. A is either of real dimension one or three. When dim A = 1,
its Lie group is a torus. When dim A = 3, it is so(3). We call the corresponding manifolds Types I and
II. One can look at [2] for more information. See [16–19] for examples.

In [1], we used very explicit and elementary calculations to avoid the Cauchy–Riemann structure
and other very abstract tools in [10,20] that also cumulating results from other papers of Spiro.

We dealt with the uniqueness in the second section therein, where we proved the existence of
smooth geodesics in the Mabuchi moduli spaces of the Kähler metrics.

Proposition 2. For any two smooth Kähler metrics, which are equivariant under the maximal compact subgroup
in a given Kähler class on a Type I compact complex almost-homogeneous manifold of cohomogeneity one, there is
a smooth geodesic connecting them in the Mabuchi moduli space of Kähler metrics.

The same result was proven for the toric manifolds and the Type III manifolds in [21], for some
Type II manifolds in [8], and for all Type II manifolds in [7].

We also obtained many Kähler–Einstein manifolds as well as Fano manifolds without the
Kähler–Einstein metric of Type I in the fifth section of Part II [3]. The Futaki invariants are zero
in our case since the automorphism groups are semisimple. It turns out that our method is also
easier than that in [22] for finding Kähler–Einstein metrics since they depended on the zeros of Futaki
invariants, which might be very rare. Therefore, their method is more suitable for finding manifolds
without any Kähler–Einstein metric. In our case, both the Kähler–Einstein manifolds and manifolds
without Kähler–Einstein metric might be dense in a certain Zariski sense. It seems to us that it is hard
to see any example with a vanishing generalized Futaki invariant. Furthermore, most of our manifolds
are Fano, but it is not that easy in [22]. Moreover, it is very easy to check that [22] can be a Corollary
of [23] and does not involve much stability.

In Part II [3], Theorems 3 and 4, we completely solved the existence of the Kähler–Einstein metric
for the two classes of manifolds Mn,m and M′n.m therein.

To understand better the Mn in our Section 5 in Part II [3], that is, the Mn,1 in our Theorem 3 there,
it is not difficult to see that Mn is a Qn bundle over

Qn+1 = {[z0, z1, · · · , zn, zn+1, zn+2] ∈ CPn+2|z2
0+···+z2

n+2=0}.

Let Nn = P(T∗Qn+1). Then it is our manifold with F = CPn. Therefore, Nn is never Fano
(see [24,25]). To construct Mn, we notice that by [26] (pp. 590–593) there is a holomorphic conformal
structure on Qn+1 with respect to the line bundle N = O(2). Therefore, Nn = P(T∗Qn+1) = P(N ⊗
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T∗Qn+1) = P(TQn+1). The exceptional divisor comes from the zero set of the corresponding holomorphic
symmetric 2-tensor in Nn. Therefore, the vector bundle O(1)⊕ TQn+1 also has a conformal structure
with respect to N. Mn is just the zero set of the corresponding holomorphic symmetric 2-tensor
in P(O(1) ⊕ TQn+1). The branch double covering map Mn → Nn is introduced by the projection
O(1)⊕ TQn+1 → TQn+1 .

As in the early parts, we shall deal with Lie algebras. A general reader might use [27] as a
reference. In Part II [3], Theorem 5, we completely solved the integral problem for N′′n,m. They are
all homogeneous and hence Kähler–Einstein. However, for Nn,m and N′n,m therein, we only had
partial results.

From Part II [3], the picture in the case of the Ck = Sp(k, C) fiber structure (the paragraph after
Theorem 9, compared with Theorems 3–5 and the results of this note, for example) is quite different
from that in the case of SO(n + 1, C) or Spin(7, C) structures. The results of Theorems 6–12 are quite
complete compared with Theorem 5 in that paper.

In the next two sections, we shall provide more details. In Section 3, we provide two new theorems
and some conjectures, which might lead to a complete solution of the two classes of manifolds Nn,m

and N′n,m.

2. Preliminaries

Now, we apply our arguments in [1–3,8]. In this note, we only consider the case in which
S = SO(n + 1, C). In Part II [3], we first consider the case in which G = S = SO(n + 1, C). Let m be
the codimension. Then as before we have the integral in Theorem 15 of Part II [3]:

∫ −K(F)+m−1

0
(−K(F)− D(F)− x)Q(x)dx.

Here, K(F) is related to the canonical line bundle. We know that K(F) = −n− 1 if F = CPn

and −4k if F = Gr(2k, 2), and K(F) = −n if F = Qn. See the paragraph right before Theorem 15
in Part II [3]. In the case of F = CPn, D = Qn−1 and therefore D(F) = 2. In the case of F = Qn,
D = Qn−1, which is the intersection of Qn ⊂ CPn+1 with a hyperplane. Therefore, D(Qn) = 1. We also
have D(Gr(2k, 2)) = 2. See the paragraph after Theorem 1 in Part II [3]. In both cases of Nn,m and
N′n,m, the divisors are of codimension 1. That is, m− 1 = 0. The upper limits of our integrals are
−K(F). In both cases, we have

−K(F)− D(F) = n− 1.

From the proof of Lemma 6 in [1], we see that the eigenvalues of the Ricci curvature of the
exceptional divisor in the direction other than the 1-strings of roots with zero eigenvalues are
represented as

Rics = n− 1 + m2, c−1aρ,i ± (n− 1 + m2)

where s are indices, similar to i. In the same way, the eigenvalues of the restriction of the Ricci curvature
of the whole manifold in those direction are represented by

R̃ics = −lρ, c−1aρ,i ∓ lρ.

When S = SO(n + 1, C), by the fourth paragraph after Theorem 6 in Part I [1], we have m2 = 0.
By the paragraph after Theorem 4 in Part I [1], we have c = 1. By the second paragraph of Section 3
in Part II [3], we have lρ = −(n + m + m2)c = −n− 1 if F = CPn and lρ = −(n− 1 + m)c = −n for
F = Qn.

Therefore, when F = CPn, we have

R̃ics = n + 1, aρ,i ∓ (n + 1)
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Rics = n− 1, aρ,i ∓ (n− 1).

When F = Qn, Rics are the same and

R̃ics = n, aρ,i ∓ n.

Therefore, according to the calculation in Section 6.1 of Part III [2] or Theorem 2 in Part I [1], we have

Q(x) = xn−1 ∏
i
(a2

ρ,i − x2).

Another way to get the aρ,i is to look at the fiberation

D → G/P.

We see that aρ,i are just the eigenvalues of the Ricci curvatures of G/P. However, aρ,i only occurs
in our volume if e1 acts non-trivially on the corresponding root. The concrete aρ,i can be calculated by
our Theorem 2 in Part I [1]. There, we have the Ricci curvature formula for G/P:

qG/P = ∑
α∈∆+−∆P

Hα.

There, the sum is over all the positive roots which contribute to the tangent space of G/P , i.e.,
the positive roots that are not in P.

For example, when S = SO(8, C) and G = SO(10, C) as in Item 4 in [10], the Ricci curvature of
G/P is decided by ∑α∈∆+−∆P2,4

Hα. Here we assume that S is generated by ei, i > 1. Therefore, the
parabolic subgroup P is determined, which is why we put the first index 2 to imply e2 as our e1 earlier
and the second index 4 as S = D4. We see that qG/P = 8e1, and the only positive roots which are not in
P with nontrivial e2 actions are e1 ± e2. Therefore, aρ,1 = (qG/P, e1 ± e2) = 8. Therefore, it is not Fano
for the CP7 case, and the coefficient in Item 4 of [10], was wrong (it was 16 instead of 8). Moreover,
G/P has a complex dimension of 8. This comes from e1 ± ei. However, only e1 ± e2 are nontrivial by
e2. This is why we have a power of 1 in Part II [3] right before Theorem 3; however, in [10], they had a
power of 4. The one with a F = Qn fiber is our M7,1 in our Part II [3].

One series of examples that we already know are the product Pn of two copies of CPn and Mn,
Nn in [8,14,15]. Since Mn are Kähler–Einstein, so are Pn and Nn, whenever it is Fano.

3. New Kähler–Einstein Metrics

If the Kähler class is the Ricci class, we have, as in Part II [3], Section 5, α = u
c , l = lρ, and

m(u) = 2Q1(u).

Therefore,
fl = [n− 1 + m2 − c−1

√
U]U

n−2
2 Q1(U).

In this section, we shall check case by case on the type of the groups (S, G).
We say that a manifold is nef if the anti-canonical line bundle is nef. We say that a manifold is

Fano if the anti-canonical line bundle is positive.
First, if S = G = Bk k ≥ 2, we have n = 2k, Q1 is a constant, lρ = −(n + 1) if F = CPn or −n if

F = Qn. Then,

Cn =
∫ l2

ρ

0
flρ dU =

∫ (n+1)2

0
(n− 1−

√
U)U

n−2
2 dU

=
2(n− 1)

n
(n + 1)n − 2(n + 1)n = −2(n + 1)n

n
< 0



Axioms 2019, 8, 2 5 of 9

for the case in which F = CPn and

C′n = − nn−1

n + 1
< 0

for the case in which F = Qn. Therefore, there is a Kähler–Einstein metric. Again, this is known since
the manifolds are homogeneous. The same formula is true for G = S = Dk, n = 2k− 1.

Now, we consider the situation in which G = Bk+1 and S = Bk. We have

aρ,1 = 1 + 2k = n + 1 = −lρ

if F = CPn or
aρ,1 = n + 1 = −lρ + 1

if F = Qn. The manifolds are nef but not Fano (or are Fano). The same is true for G = Dk+1 and
S = Dk. We only need to consider the case in which F = Qn. The integral is

In =
∫ n

0
(n− 1− v)vn−1((n + 1)2 − v2)dv

=
nn−1

(n + 2)(n + 3)
(−(n + 1)(n + 2)(n + 3) + 3n2)

=
nn−1

(n + 2)(n + 3)
(2n3 − 6n2 − 11n− 6) > 0

if n ≥ 5. Otherwise, In < 0. Therefore, the corresponding manifolds Mn are Kähler–Einstein for n ≤ 4.
Others are non-Kähler–Einstein Fano manifolds. Each Mn is a Qn bundle over Qn+1.

Now, we consider the general situation in which S = SO(n + 1, C) and G = SO(2m + n + 1, C),
and P is the smallest parabolic subgroup of G containing S as a simple factor. In this case,

Q1(v) =
m−1

∏
j=0

((n + 2j + 1)2 − v2).

They are nef but not Fano (or are Fano). We have the integrals:

In,m =
∫ n

0
(n− 1− v)vn−1

m−1

∏
0
((n + 2j + 1)2 − v2)dv.

For m = 2, we can use Mathematica to check In,2 with

Integrate[(n-1-v)v^(n-1)((n + 1)2 − v2)((n + 3)2 − v2), {v, 0, n}]

and have I4,2 > 0 but I3,2 < 0. In the same way, we can use Mathematica and check that I3,m < 0 for
m ≤ 7 but I3,8 > 0.

We denote the corresponding manifolds by Mn,m. Therefore, we have in Part II [3] the following:

Proposition 3. The manifolds Mn,0 are homogeneous Kähler–Einstein manifolds.

M3,1, M4,1, M3,2, M3,3, M3,4, M3,5, M3,6, M3,7

are nonhomogeneous Kähler–Einstein manifolds. Other Mn,m are Fano manifolds without any
Kähler–Einstein metric.

Next, we consider the case in which S = SO(n + 1, C), G = SO(2m + n + 1, C), and S1 in
Section 3 of [1] is maximal. In this case, we have positive roots in ∆+ − ∆Pm+1,k , e.g., when n = 2k− 1,
ei ± ej, i ≤ m < j, ei + el , i < l ≤ m. For each i, there are only ei ± em+1, which are nontrivial by em+1.
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(qG/P, ei ± em+1) = 2k + m− i + i− 1 = 2k + m− 1 = n + 1 + m− 1 = n + m. Altogether there are m
choices of i. Therefore,

Q1(v) = ((n + m)2 − v2)m

with m > 1. When m > 1, they are all Fano. The integral is

Jn,m =
∫ n+1

0
(n− 1− v)vn−1((n + m)2 − v2)mdv

if F = CPn or
J′n,m =

∫ n

0
(n− 1− v)vn−1((n + m)2 − v2)mdv

if F = Qn, and when m tends to +∞

m−2m Jn,m → e2(n−1)Cn < 0

or
m−2m J′n,m → e2(n−1)C′n.

Therefore, Jn.m < 0 (or J′n,m < 0) when m is high enough.
Additionally, we can compare the change rate of the factor

h(v) = ((n + m)2 − v2)m

for different m and n values. We let

t(m) = (log h)′ = m(
1

n + m + v
− 1

n + m− v
) =

−2mv
(n + m)2 − v2 .

Then

t(m + 1)− t(m) =
−2v[n2 −m(m + 1)− v2]

((n + m)2 − v2)((n + m + 1)2 − v2)
> 0

if m ≥ n. Therefore, if Jn,m ≤ 0 with m ≥ n, then Jn,m+1 < 0. The same thing is also true for J′n,m.
Now, we can use Mathematica to check J′n,n with

Integrate[(n-1-v) v^(n-1) ((2n)^2 -v^2 )^(n) , {v, 0, n}]

and obtain J′n,n < 0 when n = 3, 4 but J′5,5 > 0.
We then use Mathematica to check J′5,10 with

Integrate[(5-1-v)v^4 (225 -v^2 )^(10) , {v, 0, 5}]

and have J′5,10 > 0.
Similarly, by using Mathematica we have J′5,20 < 0 and J′5,m > 0 if 2 ≤ m ≤ 13 and J′5,14 < 0.

Therefore, when m ≥ 14, J′5,m < 0; otherwise, J′5,m > 0. We can also check that J5,m < 0 for m > 1.
Similarly, we use Mathematica to check J′4,m for m = 2, 3 and J′3,m for m = 2. We find that all of

them < 0. Therefore, J′3,k, J′4,k < 0 if 2 ≤ k, as are J3,k, J4,k.
In general, we expect that, if

m >
n2(n− 1)

e
,

then J′n,m < 0. For example, if n = 6 we expect J′6,60 < 0. We check it with Mathematica and get

J′6,60, J′6,30, J′6,27 < 0, J′6,20, J′6,25, J′6,26 > 0.
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In the same way, we find J′6,k > 0 for 2 ≤ k ≤ 5. Therefore, J′6,k > 0 if k ≤ 26; otherwise, J′6,k < 0.
We can also check that J6,k < 0 for all k > 1. One might expect that, in all cases, Jn,m < 0. However, we
have Jn,n > 0 for n = 101, 51, 26, 25, Jn,n < 0 for n = 11, 21, 24. Thus, one might expect that Jn,m < 0
for n ≤ 24. However, we have Jn,m > 0 for (n, m) = (24, 12), (18, 9), (16, 8), etc. One can check that
Jn,m < 0 for n ≤ 15. Moreover, J16,m > 0 if 5 ≤ m ≤ 8; otherwise, J16,m < 0. We can also check that
Jn,2 < 0. Furthermore,

Jn,3 = C(n)(8n8 + 6n7 − 1534n6 − 16019n5

− 75163n4 − 194786n3 − 263486n2 − 216981n− 76545) < 0

if and only if n ≤ 17. We can check that J17,m < 0 if and only if m ≤ 3 or ≥ 11.
Therefore, we obtained in Part II [3] that, if we denote the corresponding manifolds by Nn,m

(or N′n.m), then the following holds:

Proposition 4. Nn,m 3 ≤ n ≤ 15, and N′3,m, N′4,m admit a Kähler–Einstein metric for all m > 1. N′5,m admit
a Kähler–Einstein metric if and only if m > 13. N′6,m admit a Kähler–Einstein metric if and only if m > 26.
N16,m admit a Kähler–Einstein metric if and only if m > 8 or 2 ≤ m < 5. N17,m admit a Kähler–Einstein
metric if and only if m > 10 or 2 ≤ m < 4. Nn,2 admit a Kähler–Einstein metric for any n. Nn,3 admit a
Kähler–Einstein metric if and only if n ≤ 17. In general, Nn,m (or N′n,m) admit a Kähler–Einstein metric when
m is large enough, i.e., there is an integer N(n) (or N′(n)) such that if m > N(n) (or > N′(n)) then Nn,m

(or N′n,m) admit a Kähler–Einstein metric. Moreover, if m ≥ n and Nn,m (or N′n,m) admit a Kähler–Einstein
metric, so does Nn,m+1 (or so does N′n,m+1).

Now, what would happen if n is large? We used a computer to test the smallest possible N(n)
and N′(n) in Proposition 4. We obtain the following new results:

Theorem 1. N(n) is equal to the following:
1. 2n− 24 if 15 < n < 24;
2. 2n− 25 if 23 < n < 31;
3. 2n− 26 if 30 < n < 42;
4. 2n− 27 if 41 < n < 57;
5. 2n− 28 if 56 < n < 82;
6. 2n− 29 if 81 < n < 133;
7. 2n− 30 if 132 < n < 287;
8. 2n− 31 if 286 < n < 2601 (at least).

We also have the following:

1. Mn,2 is Einstein iff n < 27;
2. Mn,3 is Einstein iff n < 18;
3. Mn,4 is Einstein iff n < 17.

We conjecture that N(n) has an asymptotic line 2n − a. Since all function points and values
are integers, if there is truly an asymptotic line 2n − a, then we have N(n) = 2n − a eventually.
More precisely, one might have the following:

Conjecture 1. The manifolds Mm,n are Kähler–Einstein if and only if m > N(n) or m is that in the last part of
Theorem 1. Moreover, N(n) = 2n− 31 whenever n > 286.

We obtain Theorem 1 by a direct calculation with the help of a computer. Using a different method,
we are able to extend Item 8 in Theorem 1 to n = 6000. It seems to us that it is true at least up to
n = 200,000.
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This is an undergraduate project taken by the second author in the University of California at
Riverside. We believe that it is worth publishing at this stage so far.

One might think that the same would be true for N′(n). However, we have

Theorem 2. N′(n) = 2n2 − 10n + b(n), where b(n) is equal to the following:
1. 13 if n = 5;
2. 14 if n = 6;
3. 15 if 6 < n < 9;
4. 16 if 8 < n < 11;
5. 17 if 10 < n < 17;
6. 18 if 16 < n < 32;
7. 19 if 31 < n < 101 (at least).

Although N′(n) will not be asymptotic when n is large enough, if b(n) has a limit, then again,
because everything are integers, we would obtain N′(n) when n is large enough.

We should get further calculation later on. However, we could have the following conjecture now:

Conjecture 2. There is a high N and an integer B such that whenever n > N, we have b(n) = B.
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