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Abstract: The paper is devoted to the discrete Lyapunov equation X− A∗XA = C, where A and C are
given operators in a Hilbert spaceH and X should be found. We derive norm estimates for solutions
of that equation in the case of unstable operator A, as well as refine the previously-published estimates
for the equation with a stable operator. By the point estimates, we establish explicit conditions, under
which a linear nonautonomous difference equation in H is dichotomic. In addition, we suggest a
stability test for a class of nonlinear nonautonomous difference equations inH. Our results are based
on the norm estimates for powers and resolvents of non-self-adjoint operators.

Keywords: discrete Lyapunov equation; difference equations; Hilbert space; dichotomy; exponential
stability

1. Introduction and Notations

Let H be a complex separable Hilbert space with a scalar product (., .), the norm ‖.‖ =
√
(., .),

and unit operator I = IH. By B(H), we denote the set of all bounded linear operators inH. In addition,
Ω denotes the unit circle: Ω = {z ∈ C : |z| = 1}. An operator A is said to be Schur–Kohn stable,
or simply stable, if its spectrum σ(A) lies inside Ω. Otherwise, A will be called an unstable operator.

Consider the discrete Lyapunov equation:

X− A∗XA = C, (1)

where A, C ∈ B(H) are given operators and X should be found. That equation arises in various
applications, cf. [1]. Sharp norm estimates for solutions of (1) with Schur–Kohn stable finite
dimensional and some classes of infinite dimensional operators have been derived in [2,3]. At the
same time, to the best of our knowledge, norm estimates for solutions of (1) with unstable A have not
been obtained in the available literature.

Our aim in the present paper is to establish sharp norm estimates for solutions of Equation (1)
with an unstable operator A. In addition, we refine and complement estimates for (1) with stable
operator coefficients from [2,3].

The point estimates enable us to suggest new dichotomy conditions for nonautonomous linear
difference equations and explicit stability conditions for the nonautonomous nonlinear difference
equations in a Hilbert space.

The dichotomy of various abstract difference equations has been investigated by many
mathematicians, cf. [4] and [5–11] and the references therein. In particular, the main result of the
paper [8] gives a decomposition of the dichotomy spectrum considering the upper dichotomy spectrum,
lower dichotomy spectrum, and essential dichotomy spectrum. In addition, in [8], it is proven that
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the dichotomy spectrum is a disjoint union of closed intervals. In [9,11], an approach concerning
the characterization of the exponential dichotomy of difference equations by means of an admissible
pair of sequence Banach spaces has been developed. The paper [12] considers two general concepts
of dichotomy for noninvertible and nonautonomous linear discrete-time systems in Banach spaces.
These concepts use two types of dichotomy projection sequences and generalize some well-known
dichotomy concepts.

Certainly, we could not survey here all the papers in which in the general situation the dichotomy
conditions are formulated in terms of the original norm. We formulate the dichotomy conditions in
terms of solutions of Lyapunov’s equation. In appropriate situations, that fact enables us to derive
upper and lower solution estimates. In addition, traditionally, the existence of dichotomy projections
is assumed. We obtain the existence of these projections via perturbations of operators.

The stability theory for abstract nonautonomous difference equations has a long history, but
mainly linear equations have been investigated, cf. [13–15] and the references therein. Regarding the
stability of nonlinear autonomous difference equations in a Banach space, see [16]. The stability theory
for nonlinear nonautonomous difference equations in a Banach space is developed considerably less
than the one for linear and autonomous nonlinear equations. Here, we should point out the paper [17],
in which the author studied the local exponential stability of difference equations in a Banach space
with slowly-varying coefficients and nonlinear perturbations. Besides, he established the robustness
of the exponential stability. Regarding other results of the stability of nonlinear nonautonomous
difference equations in an infinite dimensional space, see for instance [2], Chapter 12.

In this paper, we investigate semilinear nonautonomous difference equations in a Hilbert space
and do not require that the coefficients are slowly varying.

Introduce the notations. For an A ∈ B(H), σ(A) is the spectrum; rs(A) is the (upper) spectral
radius; rl(A) = inf {|s| : s ∈ σ(A)} is the lower spectral radius; A∗ is adjoint to A; Rλ(A) = (A−
λI)−1 (λ 6∈ σ(A)) is the resolvent; ‖A‖B(H) = ‖A‖ := suph∈H ‖Ah‖/‖h‖; AI = =A = (A− A∗)/2i;

1.7em(A, λ) := inf
s∈σ(A)

|λ− s| (λ ∈ C).

The Schatten–von Neumann ideal of compact operators A in H with the finite Schatten–von
Neumann norm Np(A) := (trace (A∗A)p/2)1/p (1 ≤ p < ∞) is denoted by SNp. In particular, SN2 is
the Hilbert–Schmidt ideal and N2(.) is the Hilbert–Schmidt norm.

2. Auxiliary Results

In the present section, we have collected norm estimates for powers and resolvents of some classes
of operators and estimates for the powers of their inverses. They give us bounds for the solution of
Equation (1).

2.1. Operators in Finite Dimensional Spaces

Let H = Cn (n < ∞) be the complex n-dimensional Euclidean space and Cn×n be the set of
complex n× n matrices. In this subsection, A ∈ Cn×n; λk(A), k = 1, ..., n, are the eigenvalues of A,
counted with their multiplicities. Introduce the quantity (the departure from normality of A):

g(A) = [N2
2 (A)−

n

∑
k=1
|λk(A)|2 ]1/2.

The following relations are checked in [3], Section 3.1:

g2(A) ≤ N2
2 (A)(A)− |trace A2| and g2(A) ≤ N2(A− A∗)

2
= 2N2

2 (AI).

If A is a normal matrix: AA∗ = A∗A, then g(A) = 0.
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Due to Example 3.3 from [3]:

‖Am‖ ≤
n−1

∑
k=0

m!rm−k
s (A)gk(A)

(m− k)!(k!)3/2 (m = 1, 2, ...). (2)

Recall that 1
(m−k)! = 0 if k > m. Inequality (2) is sharp. It is attained for a normal operator A, since

g(A) = 0, 00 = 1, and ‖Am‖ = rm
s (A) in this case.

By Theorem 3.2 from [3]:

‖(A− λI)−1‖ ≤
n−1

∑
k=0

gk(A)

(1.7em(A, λ))k+1
√

k!
(λ 6∈ σ(A)). (3)

This inequality is also attained for a normal operator.
Now, let rl > 0. Then, by Corollary 3.6 from [3],

‖A−m‖ ≤
n−1

∑
k=0

gk(Am)

rmk
l (A)(k!)1/2

(A ∈ Cn×n; m = 1, 2, ...). (4)

Inequality (4) is equality if A is a normal operator. In addition, by Theorem 3.3 of [3] for any
invertible A ∈ Cn×n and 1 ≤ p < ∞, one has:

‖A−1 det A‖ ≤
Nn−1

p (A)

(n− 1)(n−1)/p

and:
‖A−1 det A‖ ≤ ‖A‖n−1.

Hence,

‖A−m‖ ≤
Nn−1

p (Am)

(n− 1)(n−1)/p|det A|m
(5)

and:

‖A−m‖ ≤ ‖Am‖n−1

|det A|m .

Now, (2) and (5) imply:

‖A−m‖ ≤ 1
|det A|m

(
n−1

∑
k=0

m!rm−k
s (A)gk(A)

(m− k)!(k!)3/2

)n−1

(m = 1, 2, ...). (6)

2.2. Hilbert–Schmidt Operators

In the sequel,H is infinite dimensional. In this subsection, A is in SN2 and:

g(A) = [N2
2 (A)−

∞

∑
k=1
|λk(A)|2 ]1/2,

where λk(A) (k = 1, 2, ...) are the eigenvalues of A ∈ B(H), counted with their multiplicities and
enumerated in the nonincreasing order of their absolute values.

Since:
∞

∑
k=1
|λk(A)|2 ≥ |

∞

∑
k=1

λ2
k(A)| = |trace A2|,

one can write:
g2(A) ≤ N2

2 (A)− |trace A2|.
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If A is a normal Hilbert–Schmidt operator, then g(A) = 0, since:

N2
2 (A) =

∞

∑
k=1
|λk(A)|2

in this case. Moreover,

g2(A) ≤
N2

2 (A− A∗)
2

= 2N2
2 (AI), (7)

cf. [3], Section 7.1. Due to Corollary 7.4 from [3], for any A ∈ SN2, we have:

‖Am‖ ≤
m

∑
k=0

m!rm−k
s (A)gk(A)

(m− k)!(k!)3/2 (m = 1, 2, ...). (8)

This inequality and Inequality (9) below are attained for a normal operator.
Furthermore, by Theorem 7.1 from [3], for any A ∈ SN2, we have:

‖Rλ(A)‖ ≤
∞

∑
k=0

gk(A)

(1.7em(A, λ))k+1
√

k!
(λ 6∈ σ(A)). (9)

By the Schwarz inequality:(
∞

∑
j=0

(cg(A))j

cj
√

j!xj

)2

≤
∞

∑
k=0

c2k
∞

∑
j=0

g2j(A)

c2j j!x2j

=
1

1− c2 exp [
g2(A)

c2x2 ] (x > 0, c ∈ (0, 1)).

Taking c2 = 1/2, from (9), we arrive at the inequality:

‖Rλ(A)‖ ≤
√

2
1.7em(A, λ)

exp
[

g2(A)

(1.7em(A, λ))2

]
(λ 6∈ σ(A)). (10)

2.3. Schatten–von Neumann Operators

In this subsection, A ∈ SN2p for an integer p ≥ 1. Making use of Theorems 7.2 and 7.3 from [3],
we have:

‖Rλ(A)‖ ≤
p−1

∑
m=0

∞

∑
k=0

(2N2p(A))pk+m

(1.7em(A, λ))pk+m+1
√

k!
(λ 6∈ σ(A)) (11)

and:

‖Rλ(A)‖ ≤
√

e
p−1

∑
m=0

(2N2p(A))m

(1.7em(A, λ))m+1 exp

[
(2N2p(A))2p

2(1.7em(A, λ))2p

]
(λ 6∈ σ(A)). (12)

Since, the condition A ∈ SN2p implies A− A∗ ∈ SN2p, and one can use estimates for the resolvent
presented in the next two subsections.

Furthermore, if A ∈ SN2p, then Ap ∈ SN2. For any m = pν + i (i = 1, ..., p − 1; ν = 1, 2, ...),
we have:

‖Am‖ ≤ ‖Ai‖‖(Ap)ν‖.

Now, (8) implies:

‖Apν+i‖ ≤ ‖Ai‖
ν

∑
k=0

ν!rp(ν−k)
s (A)gk(Ap)

(ν− k)!(k!)3/2 (ν = 1, 2, ...; i = 1, ..., p− 1). (13)
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2.4. Noncompact Operators with Hilbert–Schmidt Hermitian Components

In this subsection, we suppose that:

AI = (A− A∗)/(2i) ∈ SN2. (14)

To this end, introduce the quantity:

gI(A) :=
√

2

[
N2

2 (AI)−
∞

∑
k=1

(= λk(A))2

]1/2

.

Obviously, gI(A) ≤
√

2N2(AI). If A is normal, then gI(A) = 0 by Lemma 9.3 of [3]. Due to
Example 10.2 [3],

‖Am‖ ≤
m

∑
k=0

m!rm−k
s (A)gk

I (A)

(m− k)!(k!)3/2 (m = 1, 2, ...). (15)

Furthermore, by Theorem 9.1 from [3], under Condition (14), we have,

‖Rλ(A)‖ ≤
∞

∑
k=0

gk
I (A)

(1.7em(A, λ))k+1
√

k!
(16)

and:

‖Rλ(A)‖ ≤
√

e
1.7em(A, λ)

exp [
g2

I (A)

2(1.7em(A, λ))2 ] (λ 6∈ σ(A)). (17)

Now, let rl > 0. Then, by (16):

‖A−1‖ ≤
∞

∑
k=0

gk
I (A)

rk+1
l (A)(k!)1/2

. (18)

Similarly, by (17):

‖A−1‖ ≤
√

e
rl(A)

exp [
g2

I (A)

2r2
l (A)

]. (19)

Let us point out an additional estimate for ‖A−m‖.

Lemma 1. Let Condition (14) hold and A be invertible. Then:

‖A−m‖ ≤
m

∑
k=0

m!(‖A−1‖2N2(A− A∗))k

2k/2rm−k
l (A)(m− k)!(k!)3/2

(m = 1, 2, ...). (20)

Proof. Put B = A−1. By (15):

‖Bm‖ ≤
m

∑
k=0

m!rm−k
s (B)gk

I (B)
(m− k)!(k!)3/2 (m = 1, 2, ...).

However,

N2(B− B∗) = N2(A−1 − (A−1)∗) = N2(A−1(A− (A)∗)(A−1)∗) ≤ ‖A−1‖2N2(A− (A−1)∗).

Thus,

gI(A−1) ≤ 1√
2

N2(A−1 − (A−1)∗) ≤ 1√
2
‖A−1‖2N2(A− (A−1)∗).

This proves the lemma.
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Note that ‖A−1‖ can be estimated by (18) and (19).

2.5. Noncompact Operators with Schatten–von Neumann Hermitian Components

In this subsection, it is assumed that:

AI = (A− A∗)/2i ∈ SN2p for an integer p ≥ 2. (21)

By Theorem 9.5 of [3], for any quasinilpotent operator V ∈ SNp, there is a constant bp dependent
on p only, such that Np(V + V∗) ≤ bpNp(V −V∗). According to Lemma 9.5 from [3], bp ≤ p

2 e1/3. Put:

τp(A) = (1 + b2p)(N2p(AI) + N2p(DI)).

Therefore,

τp(A) ≤ (1 + pe1/3)(N2p(AI) + N2p(DI)) ≤ (1 + 2p)(N2p(AI) + N2p(DI)).

From the Weyl inequalities ([3], Lemma 8.7), we have N2p(DI) ≤ N2p(AI). Thus:

τp(A) ≤ 2(1 + 2p)N2p(AI). (22)

If A has a real spectrum, then:

τp(A) ≤ (1 + 2p)N2p(AI). (23)

We need the following result ([3], Theorem 9.5).

Theorem 1. Let Condition (21) hold. Then:

‖Rλ(A)‖ ≤
p−1

∑
m=0

∞

∑
k=0

τ
pk+m
p (A)

(1.7em(A, λ))pk+m+1
√

k!
(24)

and:

‖Rλ(A)‖ ≤
√

e
p−1

∑
m=0

τm
p (A)

(1.7em(A, λ))m+1 exp

[
τ

2p
p (A)

2(1.7em(A, λ))2p

]
(λ 6∈ σ(A)). (25)

If A is self-adjoint, then Inequality (24) takes the form ‖Rλ(A)‖= 1
1.7em(A,λ) .

2.6. Applications of the Integral Representation for Powers

For an arbitrary A ∈ B(H) and an r0 > rs(A), we have:

Am = − 1
2πi

∫
|λ|=r0

λmRλ(A)dλ (m = 1, 2, ...). (26)

Let there be a monotonically-increasing nonnegative continuous function F(x) (x ≥ 0), such that
F(0) = 0, F(∞) = ∞, and:

‖(λI − A)−1‖ ≤ F(1/1.7em(A, λ)) (λ 6∈ σ(A)). (27)

Obviously, 1.7em(A, z) ≥ ε = r0 − rs(A) (|z| = r0) by (26):

‖Am‖ ≤ rm+1
0 F(1/ε) (r0 = rs(A) + ε; m = 1, 2, ...).
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All the above estimates for the resolvent satisfy Condition (27). For example, under Condition (14),
due to (17), we have (27) with:

F(x) = F2(x) := x
√

e exp [
x2g2

I (A)

2
]. (28)

Under Condition (21), due to (25), we have (27) with:

F(x) = F̂p(x) :=
√

e
p−1

∑
m=0

xm+1τm
p (A) exp

[
1
2

x2pτ2p(A)

]
. (29)

Similarly, (24) can be taken.
Furthermore, let A be invertible. With a constant sl > 1/rl(A) = rs(A−1), we can write:

A−m = − 1
2πi

∫
|λ|=sl

λmRλ(A−1)dλ.

Hence:

A−m−1 = − 1
2πi

∫
|λ|=sl

λm A−1Rλ(A−1)dλ =
1

2πi

∫
|λ|=sl

λm(Aλ− I)−1dλ.

Under Condition (27), we get ‖I − λA‖ ≤ F(1/1.7em(λA, 1)), and therefore,

‖(I − λA)−1‖ ≤ F(1/1.7em(λA, 1)) (
1
λ
6∈ σ(A)). (30)

With sl = ε + 1/rl(A), we have 1.7em(λA, 1) ≥ rl(A)ε (|λ| = sl). Therefore, the inequalities:

‖A−m‖ ≤ sm−1
l

1
2π

∫
|λ|=sl

‖(I − λA)−1‖|dλ| ≤ sm
l sup
|λ|=sl

‖(I − λA)−1‖

hold and (30) implies:

‖A−m‖ ≤ (ε +
1

rl(A)
)mF(1/(rl(A)ε) (ε > 0; m = 1, 2, ...). (31)

Note that the analogous results can be found in the book [18] (see the Exercises at the end of
Chapter 1).

3. The Discrete Lyapunov Equation with a Stable Operator Coefficient

Theorem 2. Let A ∈ B(H) and rs(A) < 1. Then, for any C ∈ B(H), there exists a linear operator
X = X(A, C), such that:

X− A∗XA = C. (32)

Moreover,

X(A, C) =
∞

∑
k=0

(A∗)kCAk. (33)

and:

X(A, C) =
1

2π

∫ 2π

0
(Ie−iω − A∗)−1C(Ieiω − A)−1dω. (34)

Thus, if C is strongly positive definite, then X(A, C) is strongly positive definite.

For the proof of this theorem and the next lemma, for instance see [1] ([2], Section 7.1).



Axioms 2019, 8, 20 8 of 22

Lemma 2. If Equation (32) with C = C∗ > 0 has a solution X(A, C) > 0, then the spectrum of A is located
inside the unit disk.

Due to Representations (33) and (34), we have:

‖X(A, C)‖ ≤ ‖C‖
∞

∑
k=0
‖Ak‖2 (35)

and:

‖X(A, C)‖ ≤ ‖C‖
2π

∫ 2π

0
‖(eit I − A)−1‖2dt,

respectively. From the latter inequality, it follows

‖X(A, C)‖ ≤ ‖C‖ sup
|z|=1
‖(zI − A)−1‖2 (36)

Similar results can be found in the Exercises of Chapter 1 from [18].
Again, assume that Condition (27) holds. Then, for |z| = 1, 1.7em(A, z) ≥ 1− rs(A); therefore,

‖(Iz− A)−1‖ ≤ F(1/(1− rs(A))). Now, (36) implies:

‖X(A, C)‖ ≤ ‖C‖F2
(

1
1− rs(A)

)
. (37)

If A is normal, then ‖Ak‖ = rk
s (A), and (35) yields:

‖X(A, C)‖ ≤ ‖C‖ 1
1− r2

s (A)
. (38)

Example 1. Let A ∈ Cn×n. Then, (2) and (35) yield:

‖X(A, C)‖ ≤ ‖C‖
∞

∑
m=0

(
n−1

∑
k=0

m!rm−k
s (A)gk(A)

(m− k)!(k!)3/2

)2

.

Note that if A is normal, then g(A) = 0, and Example 3.3 gives us Inequality (38). Let us point to
the more compact, but less sharper estimate for X(A, C). Making use of (3) and (37), we can assert that:

‖X(A, C)‖ ≤ ‖C‖
(

n−1

∑
k=0

gk(A)√
k!(1− rs(A))k+1

)2

(A ∈ Cn×n). (39)

Example 2. Let A ∈ SN2. Then, (8) and (35) yield:

‖X(A, C)‖ ≤ ‖C‖
∞

∑
m=0

(
m

∑
k=0

m!rm−k
s (A)gk(A)

(m− k)!(k!)3/2

)2

.

If A is normal, then this example gives us Inequality (38). Furthermore, (37) and (10) imply:

‖X(A, C)‖ ≤ 2‖C‖
(1− rs(A))2 exp [

2g2(A)

(1− rs(A))2 ] (A ∈ SN2).

Example 3. Assume that AI ∈ SN2. Then, (4) and (35) yield:
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‖X(A, C)‖ ≤ ‖C‖
∞

∑
m=0

(
m

∑
k=0

m!rm−k
s (A)gk

I (A)

(m− k)!(k!)3/2

)2

.

If A is normal, hence we get (38). Inequality (37) along with (16) and (17) give us the inequalities:

‖X(A, C)‖ ≤ ‖C‖
(

∞

∑
j=0

gj
I(A)√

j!(1− rs(A))j+1

)2

and:

‖X(A, C)‖ ≤ ‖C‖ e
(1− rs(A))2 exp [

g2
I (A)

(1− rs(A))2 ] (AI ∈ SN2),

respectively. For a self-adjoint operator S, we write S ≥ 0 (S > 0) if it is positive definite (strongly
positive definite). The inequalities S ≤ 0 and S < 0 have a similar sense.

Note that (33) gives a lower bound for X(A, C) with C = C∗ ≥ 0. Indeed,

(X(A, C)x, x) ≥
∞

∑
k=0

(CAkx, Akx) ≥ rl(C)
∞

∑
k=0

(Akx, Akx)

≥ rl(C)
∞

∑
k=0

rl((A∗)k Ak)(x, x) (x ∈ H). (40)

If C is noninvertible, then rl(C) = 0, and:

rl(C) =
1

‖C−1‖ and rl((Ak)∗Ak) =
1

‖A−k‖2 ,

if the corresponding operator is invertible. Therefore, we arrive at

Lemma 3. Let X(A, I) = X(A) be a solution of (32) with C = I and rs(A) < 1. Then:

‖X−1(A)‖ ≤ (
∞

∑
k=0

1
‖A−k‖2 )

−1 if A is invertible .

Therefore, ‖X−1(A)‖ ≤ 1 in the general case.

4. Discrete Lyapunov’s Equation with rl(A) > 1

Theorem 3. If:
rl(A) > 1, (41)

then for any C ∈ B(H), there exists a linear operator X = X(A, C), satisfying (32). Moreover,

X(A, C) = −
∞

∑
k=0

(A∗)−k−1CA−k−1 (42)

and:

X(A, C) = − 1
2π

∫ 2π

0
(Ie−iω − A∗)−1C(Ieiω − A)−1dω. (43)

Proof. Rewrite (32) as the equation:

X− (A−1)∗XA−1 = −(A−1)∗CA−1. (44)
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Due to (41), rs(A−1) < 1; from (33), we obtain (42), and from (34), it follows:

X(A, C) = − 1
2π

∫ 2π

0
(Ie−iω − (A∗)−1)−1(A∗)−1CA−1(Ieiω − A−1)−1dω

= − 1
2π

∫ 2π

0
(e−iω A∗ − I)−1C(eiω A− I)−1dω

= − 1
2π

∫ 2π

0
(A∗ − e−iω I)−1C(A− eiω I)−1dω,

as claimed.

Lemma 4. If Equation (32) with C = C∗ > 0 has a solution X < 0, then the spectrum of A is located outside
the unit disk.

Proof. According to Lemma 3.2 and (43), one has rs(A−1) < 1, since −X > 0 and (A−1)∗CA−1 > 0.
Now, the required result follows from the equality rl(A) = 1/rs(A−1).

Due Representations (41) and (42), we have:

‖X(A, C)‖ ≤ ‖C‖
∞

∑
k=0
‖A−k−1‖2 (45)

and:

‖X(A, C)‖ ≤ ‖C‖
2π

∫ 2π

0
‖(eit I − A)−1‖2dt, (46)

respectively. From the latter inequality, it follows:

‖X(A, C)‖ ≤ ‖C‖ sup
|z|=1
‖(zI − A)−1‖2. (47)

Let Condition (27) hold. If |z| = 1, then 1.7em(A, z) ≥ rl(A)− 1, and therefore, ‖(Iz− A)−1‖ ≤
F(1/(rl(A)− 1)). Hence, (43) implies:

‖X(A, C)‖ ≤ ‖C‖F2
(

1
rl(A)− 1

)
. (48)

Now, we can apply estimates for resolvents from Section 2. Moreover, from (42) with positive
definite C and Y = −X(A, C), we get:

(Yx, x) ≥ rl(C)
∞

∑
k=0

rl((A∗)−k−1 A−k−1)(x, x) (x ∈ H).

Hence:

(Yx, x) = −(X(A, C)x, x) ≥ rl(C)
∞

∑
k=1

1
‖Ak‖2 (x, x) (x ∈ H). (49)

Now, we can apply estimates for powers of operators from Section 2. From (49), it follows:

Lemma 5. Let X(A, I) = X(A) be a solution of (32) with C = I and rl(A) > 1. Then:

‖X−1(A)‖ ≤ (
∞

∑
k=1

1
‖Ak‖2 )

−1.
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5. Operators with Dichotomic Spectra

In this section, it is assumed that σ(A) is dichotomic. Namely,

σ(A) = σins ∪ σout, (50)

where σins and σout are nonempty nonintersecting sets lying inside and outside Ω, respectively:
sup |σins| < 1 and inf |σout| > 1. Put:

P =
1

2πi

∫
Ω
(zI − A)−1dz. (51)

Therefore, P is the Riesz projection of A, such that σ(AP) = σins and σ(A(I− P)) = σout. We have
A = Ains + Aout, where Ains = AP = PA, Aout = (I − P)A = A(I − P).

In the sequel, (λP− Ains)
−1 means that:

(λP− Ains)(λP− Ains)
−1 = (λP− Ains)

−1(λP− Ains) = P.

The same sense has (λ(I − P)− Aout)−1. Obviously,

(P− zAins)(A− z)−1P = (A− z)−1P(P− zAins) = P (z 6∈ σ(A)).

Therefore,
(zP− Ains)

−1 = P(Iz− A)−1.

Similarly, (z(I − P)− Aout)−1 = (I − P)(Iz− A)−1 (z 6∈ σ(A)).

Lemma 6. Let Conditions (50) and (27) hold. Then:

sup
|z|=1
‖(zP− Ains)

−1‖ ≤ F2(1/d(A)) (52)

and:
sup
|z|=1
‖(z(I − P)− Aout)

−1‖ ≤ (1 + F(1/d(A))F(1/d(A)), (53)

where:
d(A) := min{1− rs(Ains), rl(Aout)− 1}.

Proof. We have 1.7em(A, z) ≥ d(A) (|z| = 1). Since (27) holds,

‖P‖ ≤ sup
|z|=1
‖(zI − A)−1‖ ≤ F(1/d(A)). (54)

Hence, ‖I − P‖ ≤ 1 + ‖P‖ ≤ 1 + F(1/d(A)), and

sup
|z|=1
‖(zP− Ains)

−1‖ = sup
|z|=1
‖(zI − A)−1P‖ ≤ F2(1/d(A)).

Therefore, (52) is valid. Similarly,

sup
|z|=1
‖(z(I − P)− Aout)

−1‖ ≤ ‖I − P‖ sup
|z|=1
‖(zI − A)−1‖ ≤ (1 + F(1/d(A)))F(1/d(A)).

This finishes the proof. �

The analogous results can be found in ([18], Exercises of Chapter 1).



Axioms 2019, 8, 20 12 of 22

6. The Lyapunov Equation with a Dichotomic Spectrum

Assume that Condition (50) holds and P is defined by (51). Multiplying Equation (32) from the
left by P∗ and from the right by P, we have:

P∗CP = P∗XP− P∗A∗P∗XPAP = P∗XP− A∗insP∗XPAins.

Similarly,

(I − P∗)C(I − P) = (I − P∗)X(I − P)− A∗out(I − P∗)X(I − P)Aout.

Therefore, with the notations Xins = P∗XP, Xout = (I − P∗)X(I − P), we obtain the equations:

Xins − A∗insXins Ains = P∗CP (55)

and:
Xout − A∗outXout Aout = (I − P∗)C(I − P). (56)

Lemma 7. Let Conditions (50) and (27) be fulfilled. Then:

‖Xins‖ ≤ ‖C‖F4(1/d(A)). (57)

and:
‖Xout‖ ≤ ‖C‖F2(1/d(A))(1 + F(1/d(A)))2. (58)

Proof. According to (34) and (55):

Xins =
1

2π

∫ 2π

0
(Pe−iω − A∗ins)

−1PCP(Peiω − Ains)
−1dω

=
1

2π

∫ 2π

0
(Pe−iω − A∗ins)

−1C(Peiω − Ains)
−1dω. (59)

and:

Xout =
1

2π

∫ 2π

0
((I − P)e−iω − A∗out)

−1C((I − P)(eiω − Aout)
−1dω. (60)

Now, (59) and (52) imply:

‖Xins‖ ≤ ‖C‖ sup
|z|=1
‖(zP− Ains)

−1‖2 ≤ F4(1/d(A)).

Therefore, (57) is proven. From (60) and (53), it follows:

‖Xout‖ ≤ ‖C‖ sup
|z|=1
‖(z(I − P)− Ains)

−1‖2 ≤ ‖C‖F2(1/d(A))(1 + F(1/d(A)))2.

Therefore, (58) is also valid.

7. Linear Autonomous Difference Equation

In this section, we illustrate the importance of solution estimates for (32) in the simple case. To this
end, consider the equation:

uk+1 = Auk (k = 0, 1, 2, ...); u0 ∈ H is given . (61)
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Let X = X(A) be a solution of the equation:

X− A∗XA = I (62)

First consider the case rs(A) < 1. For any x ∈ H, we have:

(XAx, Ax) = (Xx, x)− (x, x) ≤ (Xx, x)− 1
‖X‖ (Xx, x).

Hence,

(XAkx, Akx) ≤ (1− 1
‖X‖ )

k(Xx, x)

and consequently,

(Xuk, uk) ≤ (1− 1
‖X‖ )

k(Xu0, u0) (rs(A) < 1). (63)

Now, let rl(A) > 1 and Y = −X. Then, A∗YA = Y + I,

(YAx, Ax) = ((Y + I)x, x) ≥ (1 +
1
‖X‖ )(Yx, x).

Therefore,

(YAkx, Ax) ≥ (1 +
1
‖X‖ )

k(Yx, x).

Consequently,

(Yuk, uk) ≥ (1 +
1
‖X‖ )

k(Yu0, u0) (Y = −X, rl(A) > 1). (64)

Now, assume that A has a dichotomic spectrum, i.e., (50) holds. Then, uk = wk + vk where wk
and vk are solutions of the equations:

wk+1 = Ainswk (w0 ∈ PH)

and:
vk+1 = Aoutvk (k = 0, 1, 2, ...; v0 ∈ (I − P)H).

Making use of (63) and (64), we have:

(Xinswk, wk) ≤ (1− 1
‖Xins‖

)k(Xinsw0, w0). (65)

and:
(Youtvk, vk) ≥ (1 +

1
‖Xout‖

)k(Youtv0, v0), (66)

where Yout = −Xout. However, as is shown in Section 6, Yout and Xins are upper and lower bounded.
Now, (65) and (66) imply:

‖wk‖2 ≤ const (1− 1
‖Xins‖

)k‖w0‖2

and:
‖vk‖2 ≥ const (1 +

1
‖Xout‖

)k‖v0‖2.

Definition 1. We will say the equation:

uk+1 = Akuk (Ak ∈ B(H); k = 0, 1, 2, ...)
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is dichotomic, if there exist a projection P 6= 0, P 6= I and constants ν ∈ (0, 1), µ > 1 and a, b > 0 such that
‖uk‖ ≤ aνk‖u0‖ if u0 ∈ PH and ‖uk‖ ≥ mµk‖u0‖ if u0 ∈ (I − P)H.

Therefore, Equation (61) is dichotomic, if σ(A) is dichotomic.

8. Perturbations of Operators

To investigate nonautonomous equations, in this section, we consider some perturbations
of operators.

8.1. Stable Operators

Lemma 8. Let A, Ã ∈ B(H), rs(A) < 1, and X = X(A) be a solution of (62). If:

‖X‖(2‖A− Ã‖‖A‖+ ‖A− Ã‖2) < 1, (67)

then:
(XÃx, Ãx) ≤ (1− c0

‖X‖ )(Xx, x) (x ∈ H),

where:
c0 := 1− ‖X‖(2‖A− Ã‖‖A‖+ ‖A− Ã‖2).

Proof. Put Z = Ã− A. Then:

X− Ã∗XÃ = X− (Z + A)∗X(Z + A) = X− A∗XA− Z∗XA− A∗XZ− Z∗XZ

= I − Z∗XA− A∗XZ− Z∗XZ.

By (67):

‖I − Z∗XA− A∗XZ− ZXZ‖ ≥ 1− ‖Z∗XA + A∗XZ + Z∗XZ‖ ≥ c0.

Therefore, X− Ã∗XÃ ≥ c0 I and:

(Xx, x)− (XÃx, Ãx) ≥ c0(x, x) ≥ c0(
X
‖X‖ x, x) =

c0

‖X‖ (Xx, x),

as claimed. �

8.2. The Case rl(A) > 1

Lemma 9. Let A, Ã ∈ B(H), rl(A) > 1, and X = X(A) be the solution of (62). If, in addition,

2‖X‖‖A− Ã‖‖A‖ < 1, (68)

then with Y = −X(A), one has:

(YÃx, Ãx) ≥ (1 +
m̃
‖X‖ )(Yx, x) (x ∈ H),

where m̃ = 1− 2‖X‖‖A− Ã‖‖A‖.

Proof. With Z = Ã− A, one has:

Ã∗YÃ = (Z + A)∗Y(Z + A) = A∗YA + Z∗YA + A∗YZ + Z∗YZ
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= Y + I + Z∗Y + A∗YZ + Z∗YZ.

Since Y is positive definite, hence, by (68),

(YÃx, Ãx) ≥ (Yx, x) + (x, x) + (Z∗YZx, x) + (YZx, Ax)

≥ (Yx, x) + (x, x)(1− 2‖Y‖‖Z‖) = (Yx, x) + (x, x)m̃ ≥ (Yx, x)(1 +
m̃
‖Y‖ ),

as claimed. �

8.3. Perturbation of Operators with Dichotomic Spectra

Let Condition (50) hold, and:

‖A− Ã‖ sup
|z|=1
‖Rz(A)‖ < 1,

then by the Hilbert identity Rz(Ã)− Rz(A) = Rz(Ã)(A− Ã)Rz(Ã), the inequality:

‖Rz(Ã)‖ ≤ ψ(A) := sup
|z|=1
‖Rz(A)‖(1− ‖A− Ã‖‖Rz(A)‖)−1 (|z| = 1)

is fulfilled and:
‖Rz(Ã)− Rz(A)‖ ≤ qψ(A) sup

|z|=1
‖Rz(A)‖ (|z| = 1). (69)

Therefore, Ω ∩ σ(Ã) = ∅. Moreover, Ã has a dichotomic spectrum:

σ(Ã) = σ̃ins ∪ σ̃out (70)

where σ̃ins and σ̃out are nonempty nonintersecting sets lying inside and outside Ω, respectively. Indeed,
let At = A + t(Ã− A) (0 ≤ t ≤ 1). For each t, Ω ∩ σ(At) = ∅, since ‖A− At‖ sup|z|=1 ‖Rz(A)‖ < 1.
Hence, (70) follows from (50) and the semi-continuity of the spectrum. Put:

P̃ =
1

2πi

∫
Ω
(zI − Ã)−1dz,

Ãins = P̃Ã and Ãout = (I − P̃)Ã. With the notations of Section 5,
Ains − Ãins

=
1

2πi

∫
Ω

z[(zI − A)−1 − (zI − Ã)−1]dz = − 1
2πi

∫
Ω

z[(zI − A)−1(A− Ã)(zI − Ã)−1]dz.

According to (69) with q = ‖A− Ã‖, we obtain:

qins := ‖Ains − Ãins‖ ≤ qψ(A) sup
|z|=1
‖Rz(A)‖.

Since Aout − Ãout = A− Ã− (Ains − Ãins), one has:

qout := ‖Aout − Ãout‖ ≤ q + qins.

In this section, Xins and Xout are solutions of the equations of (55), (56), respectively, with C = I; i.e.,

Xins− A∗insXinsPAins = P∗P (71)
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and:
Xout− A∗outXoutPAout = (I− P∗)(I− P).

Lemma 8.1 yields:

Corollary 1. If
‖Xins‖(2qins‖Ains‖+ q2

ins) < 1,

then:
(XinsÃinsx, Ãinsx) ≤ (1− cins

‖Xins‖
)(Xinsx, x) (x ∈ H),

where:
cins := 1−‖Xins‖(2qins‖Ains‖+ q2

ins).

Making use of Lemma 8.2, we get:

Corollary 2. If
2‖Xout‖qout‖Aout‖ < 1,

then with Yout = −Xout, one has:

(YoutÃout, Ãoutx, x) ≥ (1+
mout

‖Xout‖
)(Youtx, x) (x ∈ H),

where mout = 1− 2‖Xout‖qout‖Aout‖.

9. Nonautonomous Linear Difference Equations

9.1. Stability

Consider the equation:

uk+1 = Akuk (Ak ∈ B(H); k = 0, 1, 2, ...) (72)

with given u0 ∈ H. For some A ∈ B(H), define the norms:

‖x‖X =
√
(Xx, x) (x ∈ H) and ‖A‖X = sup

x∈H

‖Ax‖X
‖x‖X

.

where X = X(A) is the solution of (62).
Throughout this section and the next one, it is assumed that supk ‖Ak‖ < ∞ and denoted q0 :=

supk ‖A− Ak‖.

Theorem 4. Let there be an A ∈ B(H) with rs(A) < 1, such that:

sup
k=0,1,2,...

‖X(A)‖(2q0‖A‖+ q2
0) < 1. (73)

Then, for any solution of uk of (72), one has:

‖uk‖X ≤ (1− a0

‖X‖ )
k/2‖u0‖X (k = 1, 2, ...) (74)

where a0 := 1− (2q0‖X‖+ q2
0).



Axioms 2019, 8, 20 17 of 22

Proof. Due to Lemma 8.1 and (73), we have:

‖Ak‖X ≤
√

1− a0

‖X‖ (k = 0, 1, 2, ...). (75)

Since:
uk+1 = AkAk−1 · · · A1A0u0, (76)

we arrive at the required result.

Certainly, we can take A = Ak for some index k.
Equation (72) is said to be exponentially stable, if there are constants m1 ≥ 1, m2 ∈ [0, 1), such that

‖uk‖ ≤ m1mk
2‖u0‖ (k = 1, 2, ...).

Note that X = I + A∗XA ≥ I. Since a0 < 1, one has a0
‖X‖ < 1. In addition, the upper and lower

bounds for X presented in Section 3 show that the norms ‖ · ‖ and ‖ · ‖X are equivalent. Consequently,
under the hypothesis of Theorem 9.1, Equation (72) is exponentially stable.

Now, we can apply the results of Section 3 to concrete operators.

9.2. Lower Bounds for Solutions

Lemma 10. For some A ∈ B(H), let the condition rl(A) > 1 hold and X = X(A) be a solution of (62). If,
in addition,

2q0‖X‖‖A‖ < 1, (77)

then solution uk of (72) is subject to the inequality:

(Yuk, uk) ≥ (1+
m0

‖X‖ )
k(Yu0, u0) (k = 1, 2, ...), (78)

where Y = −X and m0 = 1− 2‖X‖‖A‖q0.

Proof. Due to Lemma 8.2, we have:

(YAkx, Akx) ≥ (1+
m0

‖X‖ )(Yx, x).

Hence,

(Yuk+1, uk+1) ≥ (1+
d̂0

‖X‖ )(uk, uk) ≥ (1+
d̂0

‖X‖ )
2(uk−1, uk−1). (79)

Continuing this process, we get the required result.

9.3. Dichotomic Equations

For an A ∈ B(H), let Condition (50) hold, and the inequality:

q0 sup
|z|=1
‖Rz(A)‖ < 1 (80)

is fulfilled. Then, Ω∩ σ(Ak) = ∅ for all k ≥ 0, and by the Hilbert identity:

sup
k=0,1,...;|z|=1

‖Rz(Ak)‖ ≤ ψ0 := sup
|z|=1
‖Rz(A)‖(1− q0‖Rz(A)‖)−1 (81)

and:
sup

k=0,1,...;|z|=1
‖Rz(Ak)− Rz(A)‖ ≤ q0ψ0 sup

|z|=1
‖Rz(A)‖. (82)
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Hence, each Ak has a dichotomic spectrum:

σ(Ak) = σins(Ak)∪ σout(Ak),

where σins(Ak) and σout(Ak) are nonempty nonintersecting sets lying inside and outside Ω,
respectively. Put:

Pk =
1

2πi

∫
Ω
(zI− Ak)

−1dz,

Ak,ins = PkAk and Ak,out = (I− Pk)Ak. With Ains defined as Section 5,

Ains− Ak,ins =
1

2πi

∫
Ω

z[(zI− A)−1− (zI− Ak)
−1]dz.

According to (82):

q0,ins := sup
k
‖Ains− Ak,ins‖ ≤ q0ψ0 sup

|z|=1
‖Rz(A)‖. (83)

Since Aout− Ak,out = A− Ak − (Ains− Ak,ins), one has:

q0,out := sup
k
‖Aout− Ak,out‖ ≤ q0 + q0,ins ≤ q0(1+ ψ0 sup

|z|=1
‖Rz(A)‖). (84)

In this section, Xins and Xout are solutions of Equation (71) and the equation Xout −
A∗outXoutPAout = (I− P∗)(I− P), respectively. If:

‖Xins‖(2q0,ins‖Ains‖+ q2
0,ins) < 1, (85)

then Corollary 8.3 implies:

(XinsAk,insx, Ak,insx) ≤ (1− c0,ins

‖Xins‖
)(Xinsx, x) (x ∈ H), (86)

where:
c0,ins := 1−‖Xins‖(2q0,ins‖Ains‖+ q2

0,ins).

Furthermore, if:
2‖Xout‖q0,out‖Aout‖ < 1, (87)

then with Yout = −Xout, Corollary 8.4 implies:

(YoutAk,out, Ak,outx, x) ≥ (1+
m0,out

‖Xout‖
)(Youtx, x) (x ∈ H), (88)

where m0,out = 1− 2‖Xout‖q0,out‖Aout‖.
Put wk = PkAk, wk = (I− Pk)Ak. Then, uk = wk + vk, where wk and vk are solutions of the equations:

wk+1 = Ak,inswk (w0 ∈ P0H) (89)

and:
vk+1 = Ak,outvk (k = 0, 1, 2, ...; v0 ∈ (I− P0)H). (90)

Making use of (86), under Condition (85), we have:

(Xinswk+1, wk+1) = (XinsAk,inswk, Ak,inswk)(1−
c0,ins

‖Xins‖
)(Xinswk, wk) ≤ ...
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≤ (1− c0,ins

‖Xins‖
)k(Xinsw0, w0). (91)

Furthermore, if (87) holds, then by: (88)

(Youtvk+1, vk+1) = (YoutAk,outvk, Ak,out) ≥ (1+
d0,out

‖Xout‖
)(Youtvk, vk) ≥

... ≥ (1+
d0,out

‖Xout‖
)k(Youtv0, v0). (92)

We thus have proven:

Lemma 11. For some A ∈ B(H), let Conditions (50), (85), and (87) hold. Then, (72) is a dichotomic equation.
Moreover, its solution satisfies Inequalities (91) and (92).

Let Condition (27) hold and d(A) be defined as in Section 5. For brevity, put d(A) = d. Then, as is
shown in Section 5, sup|z|=1 ‖Rz(A)‖ ≤ F(1/d), ‖P‖ ≤ F(1/d), ‖I − P‖ ≤ 1+ F(1/d). By Lemma 6.1,
‖Xins‖ ≤ F4(1/d) and ‖Xout‖ ≤ F2(1/d)(1+ F(1/d))2. Condition (80) takes the form:

q0F(1/d) < 1. (93)

Therefore,
ψ0 ≤ ψ1 := F(1/d)(1− q0F(1/d))−1

and q0,ins ≤ q0ψ1F(1/d). In addition, by (84) q0,out ≤ q0(1+ ψ1F(1/d)). Condition (85) is provided by:

F4(1/d)(2q0ψ1F(1/d))‖AP‖+ q2
0ψ2

1F2(1/d)) ≤ F6(1/d)q0ψ1(2‖A‖+ q0ψ1) < 1.

Condition (87) is provided by:

2F2(1/d)(1 + F(1/d))2q0(1 + ψ1F(1/d))‖A(I − P)‖ ≤ 2F2(1/d)(1 + F(1/d))3q0(1 + ψ1F(1/d))‖A‖ < 1,

Now, Lemma 9.3 yields:

Theorem 5. For some A ∈ B(H), let the Conditions (50), (27), (93), and:

q0F2(1/d)max{F4(1/d)ψ1(2‖A‖+ q0ψ1), 2(1 + F(1/d))3 (̂1 + ψ1F(1/d))‖A‖} < 1

be fulfilled. Then, (72) is a dichotomic equation. Moreover, its solution satisfies Inequalities (91) and (92).

Similar results for the periodic equations in the finite-dimensional space were established in the
article [19].

10. Nonlinear Nonautonomous Equations

For a positive $ ≤ ∞, put ω($) = {x ∈ H : ‖x‖ ≤ $}.
Let Ak ∈ B(H) and Gk : ω($)→ H. Consider the equation:

uk+1 = Akuk + Gk(uk) (k = 0, 1, 2, ...) (94)

with given u0 ∈ H, assuming that:

‖Gk(x)‖ ≤ νk‖x‖ (x ∈ ω($); k = 0, 1, 2, ...) (95)

with nonnegative constants νk.
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Lemma 12. Let Condition (95) hold with $ = ∞. Let there be an A ∈ B(H) with rs(A) < 1 and:

γ := ‖X‖ sup
k
[2‖A‖‖A− Ak‖+ ‖A− Ak‖2 + 2‖Ak‖νk + ν2

k ] < 1, (96)

where X is the solution of (62). Then:

(Xuk, uk) ≤ (1− 1− γ

‖X‖ )
k(Xu0, u0) (k = 1, 2, ...) (97)

for any solution uk of (94).

Proof. Multiplying (94) by X and doing the scalar product, we have.

(Xuk+1, uk+1) = (X(Akuk + Gk(uk)), Akuk + Gk(uk)) = (XAkuk, Akuk) + Φk(uk), (98)

where:
Φk(x) = (XGk(x), Akx) + (XAkx, Gk(x)) + (XGk(x), Gk(x)) (x ∈ H).

However,
A∗k XAk = (A + Zk)

∗X(A + Zk) = A∗XA + Wk = X− I + Wk,

where Zk = Ak − A and Wk = Z∗k XA + A∗k XZ + Z∗k XZk. Thus,

(Xuk+1, uk+1) = (Xuk, uk)− (uk, uk) + (Wkuk, Akuk) + Φk

≤ (Xuk, uk)− ‖uk‖2(1− ‖Wk‖)− ‖Φk‖.

According to (95):

‖Φk(x)‖ ≤ ‖X‖(2‖Ak‖‖Gk(x)‖‖x‖+ ‖Gk(x)‖2 ≤ ‖X‖(2‖Ak‖νk + ν2
k )‖x‖

2)

and:
‖Wk‖ ≤ ‖X‖(2‖A‖‖A− Ak‖+ ‖A− Ak‖2).

Consequently,

‖Φk(x)‖+ ‖Wkx‖ ≤ ‖X‖(2‖A‖‖A− Ak‖+ ‖A− Ak‖2 + νk‖Ak‖+ ν2
k )‖x‖

2 ≤ γ‖x‖2.

From (98), it follows:

(Xuk+1, uk+1) ≤ (Xuk, uk)− γ(uk, uk) ≤ (Xuk, uk)(1−
γ

‖X‖ ).

Hence, (97) follows, as claimed. �

Since X ≥ I, X is invertible and:

1
‖X−1‖ (uk, uk) =

1
‖X−1‖ (X−1Xuk, uk) ≤ (Xuk, uk).

From the latter lemma with $ = ∞, we have:

(uk, uk) ≤ ‖X−1‖‖X‖(1− 1− γ

‖X‖ )
k(u0, u0) (u0 ∈ H),
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and thus:
‖uk‖ ≤ (‖X−1‖‖X‖)1/2(1− 1− γ

‖X‖ )
k/2‖u0‖ (k = 1, 2, ...). (99)

Theorem 6. Let Condition (95) and there be an A ∈ B(H) with rs(A) < 1 satisfying (96). In addition, let:

‖u0‖ <
$

(‖X−1‖‖X‖)1/2 . (100)

Then, the solution to (94) admits the estimate (99).

Proof. In the case $ = ∞, the result is due to the latter lemma. Let $ < ∞. By the Urysohn
theorem ([20], p. 15), there is a scalar-valued function ψ$ defined onH, such that:

ψ$(w) = 1 (w ∈ H, ‖w‖ < $) and ψ$(w) = 0 (‖w‖ ≥ $).

Put Gk($, w) = ψ$(w)Gk(w) and consider the equation:

vk+1 = Akvk + Gk($, vk), v0 = u0. (101)

Besides, (95) yields the condition:

‖Gk($, w))‖ ≤ νk‖w‖ (w ∈ H; k ≥ 0).

Thanks to the latter lemma, a solution vk of Equation (101) satisfies (99). According to (100),
‖vk‖ ≤ (‖X−1‖‖X‖)1/2‖u0‖ < $ (k = 1, 2, ...). Therefore, solutions of (101) and (94) under (102)
coincide. This proves the required result.

Definition 2. The zero solution to (94) is said to be exponentially stable if there are constants m0 > 0, m1 > 0
and m2 ∈ (0, 1), such that the solution uk to (94) satisfies the inequality, ‖uk‖ ≤m1mk

2‖u0‖ (k = 1, 2, ...),
provided ‖u0‖ < m0.

Corollary 3. Under the hypothesis of Theorem 10.1, the zero solution to (94) is exponentially stable.

Definition 3. We will say that Equation (1) is quasi-linear, if:

lim
w→0
‖Gj(w)‖/‖w‖ = 0 (102)

uniformly in j ≥ 0.

Corollary 4. Let (94) be quasi-linear and there be an A ∈ B(H) with rs(A) < 1 satisfying the inequality:

‖X‖[2‖A‖‖A− Aj‖+ ‖A− Aj‖2] < 1 (j = 0, 1, 2...).

Then, the zero solution to (94) is exponentially stable.

Indeed, according to (102),

‖Gj(w)‖ ≤ ν̂($)‖w‖ (w ∈ ω($))

with a ν̂($) → 0 as $ → 0. Therefore, for a sufficiently small $, we have Condition (95) with ν̂(.)
instead of νk. Now, Theorem 10.1 yields the required result.
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