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Abstract: Given a dataset, we quantify the size of patterns that must always exist in the dataset. This
is done formally through the lens of Ramsey theory of graphs, and a quantitative bound known as
Goodman’s theorem. By combining statistical tools with Ramsey theory of graphs, we give a nuanced
understanding of how far away a dataset is from correlated, and what qualifies as a meaningful
pattern. This method is applicable to a wide range of datasets. As examples, we analyze two very
different datasets. The first is a dataset of repeated voters (n = 435) in the 1984 US congress, and we
quantify how homogeneous a subset of congressional voters is. We also measure how transitive a
subset of voters is. Statistical Ramsey theory is also used with global economic trading data (n = 214)
to provide evidence that global markets are quite transitive. While these datasets are small relative
to Big Data, they illustrate the new applications we are proposing. We end with specific calls to
strengthen the connections between Ramsey theory and statistical methods.

Keywords: statistics; data analysis; Ramsey theory; graph theory; transitivity

1. Introduction

In the realm of data science, the conventional wisdom is that “more data is always better”, but is
this the case? As a dataset D becomes larger, Ramsey theory describes the mathematical conditions
by which disorder becomes impossible. The impossibility of disorder is analogous to the existence of
unavoidable and spurious correlations in large datasets. This makes understanding and measuring
the extent of these spurious correlations essential in any attempt to glean meaningful information
about D. Ramsey theory is a productive area of mathematical research, and there are many types of
systems with Ramsey results, as explored in 2016 by Calude and Longo [1]. There, the authors asked
the question, how can Ramsey theory be used to understand spurious and unavoidable correlations in
data science?

For example, the pigeonhole principle is an extreme, basic version of the Ramsey statement, “if
a given person wears 8 different shirts in a given week and only has 7 shirts, then there must have
been a single shirt that was worn at least twice”. Here, the dataset is the collection of shirts, with each
shirt assigned a day. The unavoidable spurious correlation is that (at least) one shirt is worn twice. It
would be incorrect to conclude that the given person has a particular affinity for that repeated shirt.
However, in this case, there is no meaningful conclusion we can draw, despite the natural human
desire to attribute meaning to a pattern that is observed but forced to exist by the pigeonhole principle.

However, we might try to draw meaningful conclusions if we identify a shirt that the person
wore three times in the same week because the pigeonhole principle on its own cannot guarantee these
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beyond the base requirement that there is a single shirt that must be worn twice in a given week. This
leads to our major connection between Ramsey theory and statistical analysis:

Remark 1 (Spurious Correlations through Ramsey theory). Ramsey theory ensures that patterns and
correlations must always exist in a sufficiently large system. Meaningful correlations are measurements in that
system that are over and above the minimum amount guaranteed by Ramsey theory.

Goodman’s formula [2] provides a way to calculate the required number of certain relationships in
a relational database. We use Goodman’s formula to quantify how many correlations must be observed
to ensure that some of the correlations are not spurious. Put another way, we use Goodman’s formula
to test the null hypothesis H0 that a graph representing the relationships in a dataset is random.

Our major contributions include:

1. Making a relevant and usable connection between Ramsey theory of graphs and statistical
analysis datasets (Definition 1).

2. Giving a statistical measurement of deviation from randomness (Definition 4).
3. Translating the Ramsey theorem Goodman’s theorem to a measurement of transitivity of a system

(Theorem 2).

In order for these connections to be further used and explored, we take care to explain the Ramsey
theory we use in the language that an untrained data scientist will understand. Conversely, we take
care to explain the statistics and data science in a way that is accessible to researchers in Ramsey theory.

In Section 2, we present the relevant definitions and mathematical framework. In Section 3,
we introduce the needed Ramsey technology of Goodman’s formula. In Section 4, we apply this to
two real-life models: (1) similarity of voting records for the members of the 1984 US congress, and
(2) economic trading data between countries. In Section 5, we give an application of Goodman’s
formula to measuring the transitivity of a graph. Finally, in Section 6, we discuss further directions
for research.

2. Mathematical Framework

Here, we familiarize the reader with the notions related to graphs. If the reader is already familiar
with these concepts, they may safely move to Section 3.

Our main model is a graph G, which is a collection of data points V, called the vertices, and a
collection of connected (unordered) pairs of vertices E, called the edges, such that G = (V, E). An
edge a between vertices v1 and v2 represents that v1 and v2 are related (in an abstract sense). This
edge relationship will be intrinsic to each dataset and what it is trying to measure. For example, if the
vertices are points in a metric space, we might assign an edge when the distance between two points
is ≤1. Another example is when the vertices are people in a room, and we put an edge between two
people if they are mutual friends.

We insist that a vertex cannot be related to itself (a so-called loop) and that it can be described as
an adjacency matrix by explicitly listing out which vertices have an edge between them:

A(G6) =



v1 v2 v3 v4 v5 v6

v1 0 a b c d e
v2 a 0 f g h i
v3 b f 0 j k l
v4 c g j 0 m n
v5 d h k m 0 o
v6 e i l n o 0


.
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A matrix A = [aij]1≤i,j≤N is an adjacency matrix if it is symmetric with entries of 0, 1 with 0 s
along the diagonal. An adjacency matrix can be thought of as a graph on vertices {1, . . . , N}, where
there is an edge between i and j iff aij = 1. This perspective is useful for the following reason:

Lemma 1. Let A be an N × N adjacency matrix, and k ≥ 1. In the matrix Ak = A · A · . . . · A (k-times) the
ijth entry is the number of paths in A from i to j of length exactly k.

In other words, if the first power (k = 1) of the adjacency matrix A represents an edge (path
length = 1) between two vertices v1 and v2, higher powers of the adjacency matrix give us insight into
the number of paths between v1 and v2 of length k. A graph with N vertices where all (N

2 ) (pairwise)
possible edges are included is called a complete graph, and is denoted by KN . In the case N = 3, we
call K3 a triangle.

Corollary 1. Let A be an N × N adjacency matrix. The ii-th diagonal entry of A3 is the number of triangles

in A containing the vertex i. The number of triangles in A is Trace(A3)
6 , the sum of the diagonal entries of A3,

taking into account over-counting.

Example of Corollary 1: Suppose we have a dataset with size N = 6. The number of triangles that
exist in the complete K6 graph is

Trace(A(G6)
3)

6
= ab f + acg + adh + aei + bcj

+ f gj + bdk + f hk + bel + f il

+ cdm + ghm + jkm + cen + gin

+ jln + deo + hio + klo + mno,

where each triplet (ei, ej, ek) is a triplet of edges that create a triangle (K3). Depending on whether or
not each edge has a value of 1 or 0 in the adjacency matrix A will determine if these triangles exist.

Suppose only the edges a, b, c, and d exist, as in Figure 1. Then, no triangles exist because when
we replace the edges a, b, c, and d with 1 and everything else with 0, no triplet of edges is complete:

Trace(A(G6)
3)

6
= (1)(1)(0) + (1)(1)(0) + (1)(1)(0) + (1)(0)(0) + (1)(1)(0)

+ (0)(0)(0) + (1)(1)(0) + (0)(0)(0) + (1)(1)(0) + (0)(0)(0)

+ (1)(1)(0) + (0)(0)(0) + (0)(0)(0) + (1)(0)(0) + (0)(0)(0)

+ (0)(0)(0) + (1)(0)(0) + (0)(0)(0) + (0)(0)(0) + (0)(0)(0)

= 0.

In this framework, if a triangle exists in the adjacency matrix A, then all three points (vi, vj, vk)

are connected to each other based on how the predetermined relationship is defined (whether it be
geographic distance or some measurement of friendship, for example). In this way, a K3 represents the
simplest non-trivial emergent “pattern” that can be observed in a graph connecting data points in D,
so it is the natural starting point for asking the question, “Which patterns are forced to exist in D given
how we’ve connected its data points in the adjacency matrix A?”.

This framework is good in black-and-white, binary situations where any pair of vertices is either
(strongly) related or not related (at all). In non-binary relationships, it can be useful to think about
graphs whose edges are classified by multiple colors. This can be represented as a partition of the
edge set E into r-many disjoint sets E = Ec1 t Ec2 t . . . t Ecr , where c1, ..., cr represent a total of r-colors
or classifications.
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Figure 1. A graph where only the edges a, b, c and d exist. The dashed lines are used to indicate a lack
of edge.

In the case of two colors, we will often just refer to red (R) and blue (B) edges. In the framework
of adjacency matrices, a complete graph A with an edge-coloring using two colors is represented by an
adjacency matrix B indicating a relationship exists or does not R:

R(G6) =



v1 v2 v3 v4 v5 v6

v1 0 a b c d e
v2 a 0 f g h i
v3 b f 0 j k l
v4 c g j 0 m n
v5 d h k m 0 o
v6 e i l n o 0


,

B(G6) =



v1 v2 v3 v4 v5 v6

v1 0 1− a 1− b 1− c d 1− e
v2 1− a 0 1− f 1− g 1− h 1− i
v3 1− b 1− f 0 1− j 1− k 1− l
v4 1− c 1− g 1− j 0 1−m 1− n
v5 1− d 1− h 1− k 1−m 0 1− o
v6 1− e 1− i 1− l 1− n 1− o 0


.

∴ R(G6) + B(G6) =



v1 v2 v3 v4 v5 v6

v1 0 1 1 1 1 1
v2 1 0 1 1 1 1
v3 1 1 0 1 1 1
v4 1 1 1 0 1 1
v5 1 1 1 1 0 1
v6 1 1 1 1 1 0


.
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Take the edge a between v1 and v2 in R and set it equal to a = 1. Since the edge is colored red, it
necessarily has to have an entry equal to zero (a− 1 = 1− 1 = 0) in the blue edge adjacency graph B.
In this case, R + B must be the matrix of all ones, except on the diagonal where it has zeros. Counting
monochromatic triangles in A is particularly simple:

Corollary 2. Let A be an N × N adjacency matrix whose edges are colored using two colors. The number of

monochromatic triangles in A is Trace(B3)+Trace(R3)
6 .

Therefore, the total number of triangles in the dataset D is equal to the sum of red and blue
triangles present in the adjacency matrices R and B. Notably, it only takes polynomial time to compute
the number of single-colored (monochromatic) triangles in a graph.

3. The Ramsey Perspective

Classical Ramsey theory asks: “For given nonnegative integers m, r, does every edge coloring of a
KN complete graph with r colors contain a sub-collection Km, all of whose edges have the same color?”
In other words, how big does a multi-colored, complete graph need to be to force the existence of a
smaller single-colored, complete graph?

In 1930, Ramsey [3] showed that if the size of the dataset D was N ≥ 6, and the number of ways
the data points could be related to each other was m = 2 (either related or unrelated), then unavoidable
subgraphs of mutually related or unrelated data points are forced to exist.

In 1959, Goodman quantified how many single-colored (monochromatic) triangles must be present
in a two-colored KN . Because a K3 represents the simplest object that describes how data points relate
to each other beyond a simple edge, it will form the basis of our application of Ramsey theory.

Theorem 1 (Goodman 1959, [2]). Let G be a graph with N vertices and edge-colored with red and blue. The
quantity of monochromatic triangles in G is at least:

• m(m−1)(m−2)
3 , if N = 2m,

• 2m(m−1)(4m+1)
3 , if N = 4m + 1,

• 2m(m+1)(4m−1)
3 , if N = 4m + 3.

Since the total number of triangles in KN is (N
3 ) = N(N−1)(N−2)

6 , Goodman’s formula may be
reinterpreted as a percentage.

Corollary 3 (Goodman 1959, [2]). Let G be a graph with N vertices and edge-colored with red and blue. The
percentage of triangles in G that are monochromatic is asymptotically at least N−3

4N → 1
4 .

This can be shown directly by dividing the quantities in Theorem 1 by (N
3 ). Alternatively, by

applying Schwenk’s reformulation of Goodman’s formula [4], we can easily prove this:

Proof. For N number of data points, the forced number F(N) of monochromatic red (R) and blue (B)
triangles is:

F(N) =

(
N
3

)
−
⌊

1
2

N
⌊

1
4
(N − 1)2

⌋⌋
,

and, since the number of triangles present in any complete graph is (N
3 ), the following ratio describes

the percentage of triangles in G that are monochromatic:

1−

⌊
1
2 N
⌊

1
4 (N − 1)2

⌋⌋
(N

3 )
= 1−

6
⌊

1
2 N
⌊

1
4 (N − 1)2

⌋⌋
(N − 2)(N − 1)N

.
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The Floor Function of f (x) is equivalent to the function of f (x) with discontinuities at non-integer
values x, therefore describing the asymptotic nature of the above ratio can be done without taking the
floor functions into consideration:

1−
6 1

2 N( 1
4 (N − 1)2)

(N − 2)(N − 1)N
=

1
4
− 3

4(N − 2)
∴ lim

n→∞

1
4
− 3

4(N − 2)
=

1
4

.

From this, we can establish a threshold for when a two-colored graph can be interpreted to have
meaningful correlations.

Definition 1. Let G be a graph with n vertices and edge-colored with red and blue. Let Mono(G) be the
percentage of triangles in G that are monochromatic, among all possible (N

3 ) triangles in G. Let Goodman(N)

be the minimum percentage of monochromatic triangles in G guaranteed by Corollary 3, which has been shown
to approach 0.25 as N → ∞. If Mono(G) > Goodman(N), then we say that G has potentially meaningful
correlations, which we explore further in Section 4.2.

If Mono(G) is much larger than Goodman(N), then we might say that G obeys a triangle
dichotomy, which means that we expect a lot of triangles to be either completely one color, or
completely the other. This is a relative term, and the larger Mono(G) is the more that this resembles a
true dichotomy. If one color is more heavily represented in G than another, then we might say that
G has a triangle bias. When triangle bias exists, this is at odds with the expectation, in a randomly
colored graph, that the ratio of the number of color R triangles to color B triangles should be 1:1, and is
therefore a further indication that the correlations in G are meaningful.

How can this be used in a dataset? In Section 4.2, we discuss a best-fit approach in order to test
the null-hypothesis that a dataset is indeed random. In the next section, we show how diverse datasets
can be modeled by graphs.

4. Models

Many datasets come naturally as tuples of variables of data, not as a graph. Here, we give a
meaningful way to capture information about similarity in the data using a graph. At the most basic
level, any measurement of how similar two variables are translates into a measurement of how similar
two tuples of variables are (such as by taking an average, or a weighted average).

We will focus our analysis on two datasets: (1) voting records of members of the US congress
in 1984, and (2) economic partnership among countries. In the first dataset, we are able to vary our
way of combining the information about how the individual variables are similar using what we call
threshold graphs. These variations give us a way to very closely compare how far the dataset deviates
from truly random. In the second dataset, we do not have complete information, but we are still able
to give a more limited measurement of this deviation.

4.1. Similarity in Voting Records

We now look at a set of people that have voted multiple times, specifically the 1984 United States
Congressional Voting Records [5]. There is no special motivation for picking this specific dataset, or
year, other than it was available to the public. We translate this dataset into a graph with 435 nodes
and (435

2 ) labeled edges.
Goodman’s formula can quantify how strong the triangle dichotomy and triangle bias are; that is,

the percentage of three person cliques (B) and independent triples (R) and their deviation from the
expected 1:1 color ratio. We will use the Hamming distance to measure how similar two voting records
are for the 435 congress members of the 1984 US congress.
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Definition 2. The Hamming distance of two strings of the same length is the total number of positions where
the entries are different.

For example, the Hamming distance between 00010 and 01001 is 3. These strings differ in the
second, fourth and fifth spots.

In this session, there were 16 separate votes, and to each voter we assign the string of length
16 with entries ‘N’ (voted nay), ‘Y’ (voted yea) or ‘A’ (some other action, such as abstaining). The
minimum Hamming distance is 0, which indicates two identical voting records, and the maximum
distance is 16, meaning the two voters always voted differently. See Table 1 for sample data.

Table 1. The voting entries of the first six voters in the 1984 US congress dataset.

Voter Party Voting String

v1 R NYNY YYNN NYAY YYNY
v2 R NYNY YYNN NNNY YYNA
v3 D AYYA YYNN NNYN YYNN
v4 D NYYN AYNN NNYA YNNY
v5 D YYYN YYNN NNYA YYYY
v6 D NYYN YYNN NNNN YYYY

Applying this notion of distance to the data from Table 1 gives the following adjacency matrix
and graph (Figure 2):



v1 v2 v3 v4 v5 v6

v1 0 3 7 7 7 6
v2 3 0 6 7 7 5
v3 7 6 0 5 5 5
v4 7 7 5 0 5 4
v5 7 7 5 5 0 3
v6 6 5 5 4 3 0


,

3

7

7
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6 7

7

5

5

5
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1

2

3

4

5

6

.
Figure 2. The graph that corresponds to the first six voting records in the 1984 US Congress dataset.

How do we turn this into a binary adjacency matrix for classification purposes? In other words,
how do we decide what constitutes “similar” voting and “dissimilar” voting, and where do we make
that cut off?
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Definition 3. Let (M, d) be a metric space with vertex set M and distance d. Let t ≥ 0. Define the two-colored
threshold graph G(t) in the space (M, d) by coloring an edge between two vertices vi, vj blue B iff d(vi, vj) > t,
and red R iff d(vi, vj) ≤ t.

Therefore, when for example t = 5, the following graph G(t = 5) maps to the binary case:



v1 v2 v3 v4 v5 v6

v1 0 3 7 7 7 6
v2 3 0 6 7 7 5
v3 7 6 0 5 5 5
v4 7 7 5 0 5 4
v5 7 7 5 5 0 3
v6 6 5 5 4 3 0


→ B(G6) =



v1 v2 v3 v4 v5 v6

v1 0 0 1 1 1 1
v2 0 0 1 1 1 0
v3 1 1 0 0 0 0
v4 1 1 0 0 0 0
v5 1 1 0 0 0 0
v6 1 0 0 0 0 0





v1 v2 v3 v4 v5 v6

v1 0 3 7 7 7 6
v2 3 0 6 7 7 5
v3 7 6 0 5 5 5
v4 7 7 5 0 5 4
v5 7 7 5 5 0 3
v6 6 5 5 4 3 0


→ R(G6) =



v1 v2 v3 v4 v5 v6

v1 0 1 0 0 0 0
v2 1 0 0 0 0 1
v3 0 0 0 1 1 1
v4 0 0 1 0 1 1
v5 0 0 1 1 0 1
v6 0 1 1 1 1 0


.

For example, taking the sample Congressional voting data from Table 1, we get the following
threshold graphs in Figures 3 and 4.
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Figure 3. The graphs G(t = 0), G(1), G(2) (left), G(3) (center), and G(4) (right).
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Figure 4. The graphs G(5), G(6) and G(7), . . . , G(17).

Consider the complete graph G(t), the subgraph composed entirely of Democrat Congress votes
D(t), and the subgraph composed entirely of Republican Congress votes R(t). Applied to the total
voting records available in the dataset at various thresholds t, the following table (Table 2) and figure
(Figure 5) show the ratio of Mono(G(t)) to the total number of triangles KN :
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Table 2. The percentage of monochromatic triangles for various threshold graphs. The minimum
values are boxed.

t G(t) D(t) R(t) t G(t) D(t) R(t)

0 1.000 1.000 1.000 9 0.271 0.496 0.770
1 0.993 0.933 0.972 10 0.299 0.586 0.842
2 0.953 0.953 0.829 11 0.370 0.688 0.891
3 0.858 0.850 0.603 12 0.471 0.783 0.932
4 0.727 0.699 0.475 13 0.597 0.871 0.954
5 0.590 0.549 0.461 14 0.743 0.943 0.964
6 0.462 0.440 0.506 15 0.888 0.979 0.977
7 0.359 0.399 0.581 16 0.970 0.997 0.984
8 0.291 0.423 0.672 17 1.000 1.000 1.000

Goodman 0.248 0.247 0.246 Goodman 0.248 0.247 0.246

0 5 10 15
0.2

0.4

0.6

0.8

1

All Monochromatic Triangles in G( t )
Democrats D( t )

Republicans R( t )
Goodman

0 5 10 15

0

0.2

0.4

0.6

0.8

1

All Monochromatic Triangles in G( t )
Red Triangles in G( t )
Blue Triangles in G( t )

Goodman

0 5 10 15

0

0.2

0.4

0.6

0.8

1

All Monochromatic Triangles in D( t )
Red Triangles in D( t )
Blue Triangles in D( t )

Goodman

0 5 10 15

0

0.2

0.4

0.6

0.8

1

All Monochromatic Triangles in R( t )
Red Triangles in R( t )
Blue Triangles in R( t )

Goodman

Figure 5. Data from Table 2 visualized.

In Section 5, we give another natural interpretation of these results by giving a measure of how
transitive these graphs are. This is maybe a more intuitive interpretation of the data since it gives us a
direct measurement of cooperation and independence.

4.2. How to Measure the Deviation Away from a Random Graph

Goodman’s formula tells us how many monochromatic triangles are forced to exist for a dataset
D of size N, but what would the threshold graph of a truly random coloring of GN look like?
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4.2.1. Theoretical Construction

Supposing that we have a random graph G(N, t) of related to N data points in D and probability
t that an edge between two vertices ni, nj exists, the Erdos–Renyi model tells us that the expected
number of edges in G(N, t) is (N

2 )t. The parameter t can be thought of as the threshold parameter
introduced in Section 4.1 as it ranges from 0 → 1 (assuming tmin and tmax have been normalized to
[0, 1]). Therefore, the expected number of red (R) and blue (B) triangles T in D is:

E[TR] =

(
N
3

)
(t3),E[TB] =

(
N
3

)
(1− t)3,

where (N
3 ) represents the total possible number of triangles, and t3 represents the probability that all

three edges are red (R); likewise, (1− t)3 represents the probability of all three edges being blue (B).
This information can be used to calculate the number of monochromatic triangles.

Corollary 4. The expected number of monochromatic triangles in GN is 2(N
3 )(

1
2 )

3.

Proof. The probability that three adjacent edges are the same color in a 2-colored graph is ( 1
2 )

3, there
are (N

3 ) number of triangles, and we multiply by 2 to account for the symmetry of how the edges can
be colored with equal probability.

This creates the following threshold plot (Figure 6) for any randomly colored graph G(N, t).

Figure 6. An example of a G(N, t) using N = 20.

4.2.2. Defining Deviation

Definition 4. Deviation is a combination of the degree of (A): the triangle dichotomy and (B): the triangle bias.

Deviation away from the expected distribution can allow us to determine the likelihood that the
null hypothesis H0 (that GN is actually random) is accepted or rejected. This can be done with a simple
χ2 test:

χ2
R =

tmax

∑
i=tmin

(R(i)O − E[R]i)2

E[R]i
, χ2

B =
tmax

∑
i=tmin

(B(i)O − E[B]i)2

E[B]i
.

The average of χ2
R, χ2

B and their resulting p-value can be used to determine with some significance
level whether to accept or reject H0.

While the expected value is a good benchmark, it still doesn’t answer the more fundamental
question of how many monochromatic triangles are present in GN versus how many are required by
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Ramsey theory. This creates a stricter χ2 calculation, but one that’s better suited to our needs and is a
measurement of the triangle dichotomy and triangle bias:

χ2
G =

tmax

∑
i=tmin

(G(i)O − F(N))2

F(N)
,

χ2
R =

tmax

∑
i=tmin

(R(i)O − F(N)
2 )2

F(N)
2

, χ2
B =

tmax

∑
i=tmin

(B(i)O − F(N)
2 )2

F(N)
2

.

4.2.3. Applied to Voting Threshold Graphs

We are now faced with applying the χ2 method from Section 4.2.2 to the Congressional voting
threshold graphs. What is the likelihood that these are random, or, equivalently, what is the likelihood
that there is a bias in the congressional voting record? This is answered in Tables 3 and 4.

Table 3. The χ2 fit for the overall voting record G(t), Democrats D(t), and Republicans R(t). This
demonstrates the degree of the triangle dichotomy for each pre-defined classification.

Quantity G(t) D(t) R(t)

Goodman 0.248 0.247 0.246
χ2 17.448 22.552 25.206

Table 4. The χ2 fit for the overall voting record G(t), Democrats D(t), and Republicans R(t) by color
(R,B). This demonstrates the degree of the triangle bias for each pre-defined classification.

Subset Blue χ2 Red χ2 Total χ2

Total G(t) 18.7782 22.864 17.448
Democrats D(t) 28.536 22.596 22.552

Republicans R(t) 22.705 38.028 25.206

These χ2 values have p-values that are very, very small. A way to place these in context is
to compare them to the expected value’s deviation from what’s required by Ramsey theory. See
Tables 5–7.

Table 5. The χ2 fit for the overall expected value of forced monochromatic triangles.

Quantity Blue χ2 Red χ2 Total χ2

Expectation 16.384 16.384 10.076

Table 6. The deviation of χ2 of G(t), D(t), and R(t) from their respective expected χ2 values.

Subset Blue χ2 Red χ2 Total χ2

Total |18.7782− 16.384| = 2.394 6.48 |17.448− 10.076| = 7.372
Democrats 12.152 6.212 12.476

Republicans 6.321 21.644 15.130

Table 7. The p-value associated with each of these is based on the cumulative distribution function (CDF),
namely p = 1− CDF. At a significance level of 0.01, the non-significant deviations are underlined.

Subset Blue χ2 Red χ2 Total χ2

Total 0.121802 0.010909 0.006625
Democrats 0.00049 0.012689 0.000412

Republicans 0.011932 <0.00001 0.0001
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We can say a p-value is significant if it is sufficiently different from how the expectation value
differs from what is required from Ramsey theory. At a significance level of 0.01, the non-significant
deviations in Table 7 are underlined. (The significance level selected depends on the cost function of
the particular model. For instance, the significance level would scale with the cost associated with
being wrong.). The furthest deviation can be attributed to the Republican congressional voters and is
an indication that a strong bias exists in their voting records.

4.3. Collaboration Model

Suppose we have a collection of people V, working together on a communal project.
As an example, we look at economic trading data [6,7]. Every country is represented by a node,

and we add a blue edge from a country to its five largest importers and exporters by volume. See
Figure 7 for a visulaization. In this way, two countries are connected by a blue edge if their countries
are historically economically connected and by a red edge if they are smaller trading partners. There is
an asymmetry in the way edges are added, as, for example, China only adds at most 10 blue edges to
other countries, but many countries add blue edges to China. In this way, it is possible for a country to
have a blue degree much higher than 10. This graph is best described as an Interaction Graph similar
to the “friends at a party”.

Figure 7. Countries are arranged alphabetically starting at the top and going counterclockwise. The
green nodes are the G7 and G20 countries. The graph has 214 vertices, 1363 blue edges, the average
blue degree is 12.7, the five highest blue degrees are 162 (China), 125 (United States), 96 (Germany),
66 (France) and Italy (61). The largest complete subgraph has eight vertices: Algeria, China, France,
Germany, Italy, Spain, United Kingdom, and the United States, forming a K8. The largest independent
set has 70 vertices, forming an I70.

For N = 214 countries, the number of monochromatic triangles equals 85.0% of the total number
(N

3 ) of triangles in a K214. These monochromatic triangles are almost entirely red, representing a lack
of strong trade relations. This is significantly more than the required number of triangles given by
Goodman’s formula, which at N = 214 is 24.7%. See Table 8.

Table 8. Percentages of monochromatic triangles for the country graph.

Quantity Percentage

Percentage of red K3 84.8%
Percentage of blue K3 0.2%

Percentage of mono-chromatic triangles 85.0%
Goodman-type lower bound 24.7%
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Since this graph has a threshold of only the top five trading partners for each country, it can be seen
as a discrete sample of the threshold graph that would exist on the scale (tmin = top trading partner to
tmax = all trading partners). In order to determine if the percentage of monochromatic triangles in this
graph can be interpreted as meaningful evidence that the global economy connected with a strong
dichotomy, we need to measure its p-value. For n = 214 countries, a threshold of t = 5 corresponds
to t = 0.0234 on a normalized scale of [0, 1]. When t = 0.0234, the expected deviation for the total
number of monochromatic triangles from those required by Ramsey theory has a χ2 = 4.236, whereas
the trading graph has a χ2 = 2.907. The difference between these is 1.329, which corresponds to a
p-value of 0.248983, which is not statistically significant. We can therefore not reject the null-hypothesis
that this trade graph is random.

While we cannot reject H0 based on the number of superfluous monochromatic K3’s in the trading
data, the presence of higher dimensional complete subgraphs might provide sufficient evidence.

We can compute the percentage of monochromatic K4, and the percentage of monochromatic K5.
This is computationally complex, so we computed these percentages (Table 9) for only small N.

Table 9. Data for the country graph in Section 4.3.

N Percentage of Mono-Chromatic KN (%) Goodman-Type Lower Bound

3 85 25
4 74 3
5 62 <1

It is natural to then ask what happens when we consider larger substructures, that is, K4, K5, ..., KN
instead of triangles.

χ2 for Higher Dimensions

For higher dimensions, there is no analogue of Goodman’s formula, which we would expect to
give us a percentage of 1

32 for K4, 1
16384 for K5, etc. using the same methods described in Corollary 4.

See Figure 8. In [8], Thomason has shown that an upper bound for the corresponding percentage of
monochromatic K4 is 1

33 , although it is not known if this is tight. In the same work, he gave an upper
bound on the number of monochromatic Km, as 0.936 · 21−(m

2 ).

Figure 8. The expected number of monochromatic K4 and K5s as a function of t. The Goodman-type
upper bound for K4 is 0.0295, and 0.00183 for K5.

For the χ2’s related to larger substructures, Thomason’s upper bound can be used in the same
way that Goodman’s is used for K3, with the understanding that this will give us an upper bound on a
graph’s deviation from what is required by Ramsey theory. Our new χ̄2 is an average of each Km’s
associated χ2 and can include up to N-dimensional substructures:

χ̄2 =
1

N − 3

N

∑
i=3

χ2
Ki

.

If instead we increase the number of colors and therefore allow for more than two classifications,
a perfect answer for three colors and triangles is given by [9].
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4.4. Applications to Other Datasets

We end this section with a more general discussion about using these methods on
different datasets.

The relevant part of the voting dataset was that each data point (voter) was a list of variables
(votes), and we had a measurement of what it means for two entries of the same variable to be similar.
In the case of voting records, our measurement of similarity was very blunt: either they were the same
or they were different.

This method of analysis could be applied to datasets where the variables have different measures
of similarities, such as comparing the background of two potential clients for an insurance company.
In this case, for example, our measurement for similarity in age might be simply a difference of the
two ages, but the measurement of similarity of education levels would be more subtle.

The methods presented here give a measurement of how far a dataset deviates from random. If,
for example, a company wishes to build a diverse, nearly random roster of clients, this can be used to
quantify how close to that goal the company is.

5. Applications to Transitivity

When we have sufficient evidence to reject H0, we define a non-random graph in terms of its
transitivity. Transitivity can be thought of as the likelihood that a relationship in a dataset is meaningful
and therefore not spurious. Let’s again consider the model for the party problem: the nodes are people
at a party and we assign a blue (B) edge between two people if they are friends (and red (R) if they are
not friends).

Definition 5. A binary relation R on D is transitive if ∀vi, vj, vk ∈ D if viRvj and vjRvk then viRvk.

In this setting, we first remark that the blue “friend” relation is not by-default transitive, and
neither is the red “not friend” relation. For example, I am friends with someone who does not know
my brother.

It is easy to see that the only way for the red relation to be transitive is if all edges are red in a
particular subgraph. Similarly, the blue relation is transitive only if all edges are blue. Typically, such a
graph will not be transitive in both relations.

Transitivity can be described in terms of monochromatic triangles, specifically three vertices
vi, vj, vk are members of a graph that is not transitive when the edges between them are not
monochromatic. In this way, the percentage of monochromatic triangles in a graph is a measure
of how transitive a graph is. In the context of uncolored graphs, this has been studied as the clustering
coefficient. However, by looking at two colored graphs, Goodman’s formula implies that there is a
lower limit on how non-transitive a graph can be. We know that least 0.25 of its triangles must be
monochromatic in the case of a two colored graph. The higher the observed percentage is than 0.25,
the more transitive the graph is, and this can be measured in terms of χ2.

Let’s use this to interpret the results from Section 4.1. Suppose we have three democrats vi, vj, vk
and we know that viRvj iff vjRvk; that is, the relationship between vi and vj is the exact same as the
one between vj and vk (although we don’t necessarily know if both have an edge or not).

We ask: how likely is it that the relationship between vi and vj is the same as the one between vi
and vk, i.e., that the triangle is transitive?
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Theorem 2. Let G be a complete graph with N vertices whose edges are colored red (R) or blue (B). The
percentage of monochromatic paths of length 2 that complete to a monochromatic triangle is measured by

3 f (G)

(N
3 ) + 2 f (G)

,

where f (G) is the number of monochromatic triangles in G.

Proof. This quantity comes from the observation that every monochromatic triangle contains
three monochromatic paths of length 2, but each non-monochromatic triangle contains precisely
one monochromatic path of length 2. For ease of computation, we use that (the number of
non-monochromatic triangles) + 3×(the number of monochromatic triangles) is ((N

3 ) − f (G)) +

(3 f (G)) = (N
3 ) + 2 f (G), since (N

3 ) is the total number of triangles. Thus, (N
3 ) + 2 f (G) is the total

number of monochromatic paths of length 2 in G, since this counts every non-monochromatic triangle
once and counts every monochromatic triangle three times.

By using Goodman’s formula, this observation above translates to the following (completely
expected) result:

Proposition 1. Let G be a graph with N vertices and edge-colored with red and blue. The ratio of monochromatic
paths in G that are part of a monochromatic triangle is asymptotically at least 0.5.

The observation above provides an efficient way to compute the ratio of monochromatic paths
in G that are part of a monochromatic triangle. We, for example, don’t need to count the number of
monochromatic paths directly.

5.1. Application to Previous Examples

5.1.1. Application to Voting Records

In the case of the threshold graphs from Section 4.1, the threshold graph G(t) with the minimum
“transitivity percentage” is precisely the threshold graph with the minimum number of monochromatic
triangles, namely t = 9 (52.7%). Analogously, for D(t), this occurs at t = 7 (66.6%) and for R(t) this
occurs at t = 5 (72.0%). See Table 10 and Figure 9.

Table 10. Transitivity numbers for the threshold graphs. The minimum values are boxed.

t G(t) D(t) R(t) t G(t) D(t) R(t)

0 1.000 1.000 1.000 9 0.526 0.747 0.909
1 0.997 0.997 0.990 10 0.561 0.809 0.941
2 0.984 0.983 0.935 11 0.637 0.868 0.960
3 0.947 0.944 0.819 12 0.727 0.915 0.976
4 0.888 0.874 0.730 13 0.816 0.952 0.984
5 0.811 0.785 0.719 14 0.896 0.980 0.987
6 0.719 0.701 0.754 15 0.959 0.993 0.992
7 0.626 0.665 0.806 16 0.989 0.998 0.994
8 0.552 0.687 0.859 17 1.000 1.000 1.000
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Figure 9. Transitivity percentages for the graphs G(t), D(t) and R(t), with 0 ≤ t ≤ 17.

5.1.2. Application to Global Trading Data

China provides an interesting example of a country that is part of many non-monochromatic
triangles because China has an edge to 162 of the 213 other countries, and of those 162 countries
only 6.9% of edges are present among China’s neighbors. Thus, only a small percentage of China’s
neighbors are themselves directly connected. This contributes to slightly lowering the percentage of
transitivity in the larger graph.

In total, using all countries, 94.4% of all monochromatic paths complete to an edge of the same
color. This is well above the 50% guaranteed by Proposition 1. Again, a complication is introduced by
only looking at one threshold level rather than calculating the entire χ2.

6. Conclusions and Questions

We now make two major calls to use these methods: applications and development of related theory.

6.1. Theory Building

This use of Goodman’s formula suggests the need for other quantitative Ramsey statements.
For higher dimensional objects, we mention a couple that already exist and some that have yet to
be developed.

A recent survey of Ramsey bounds for hypergraphs is a useful place to see the current best known
bounds for various Ramsey numbers [10]. This survey also goes through proof sketches, many of
which contain a weak Goodman-style lower bound. These bounds typically come from a use of the
probabilistic method (see, for example, [11]).

In general, the probabilistic bounds provide a first non-trivial upper bound on the percentage
of monochromatic structures, and improving them can be difficult. In order to use Ramsey theory in
a generalized way, a closed form analogous to Goodman’s formula needs to be developed for all Kn

subgraphs and all Cn-colored graphs.

6.2. Further Applications

The case of triangles is simple, but still captures the quantitative notion of transitivity of a relation.
Additionally, counting the number of monochromatic triangles in a graph is computationally efficient.

Further progress could be motivated by finding interpretations for other quantitative Ramsey
statements. For example, a quantitative version of Van der Waerden’s theorem for a fixed length. That
is, given a 2-coloring of the points {1, 2, . . . , 9}, it is known that there must be at least one arithmetic
progression of length 3 (i.e., a0, a0 + m, a0 + 2m) where all points are the same color. The following
question has a reasonable answer in [12], which has serious mathematical content:
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Remark 2 (Question). For N sufficiently large. Give reasonable lower-bounds and upper bounds on the
percentage of monochromatic 3-term progressions that must exist for any 2-coloring of {0, 1, 2, . . . , n}.

In [12], it is shown that, asymptotically, at least 25% of all 3-term such arithmetic progressions must
be monochromatic. This extended results of [13]. In their setting, arithmetic progressions are allowed
to “wrap around”. That is, in {0, 1, 2, 3, 4, 5, 6, 7}, the triple {5, 7, 1} is considered a 3-term progression.

For 4-term progressions, see [14] and the strengthening [15]. Both of these are non-trivial results.
The next step is to interpret 3-term progressions (or 4-term progressions) in a data-set in a

meaningful, physical way.

6.3. Closing Remarks

We believe that the connections between data science and Ramsey theory are still largely unmade
and will prove to be profound. We have shown that Ramsey theory can be used to rigorously
define spurious correlations in datasets, and how deviations from the number of required spurious
correlations might be meaningful in terms of transitivity.
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