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Abstract: We provide a canonical construction of the natural numbers in the universe of sets. Then,
the power set of the natural numbers is given the structure of the real number system. For this,
we prove the co-finite topology, Co f (N), is isomorphic to the natural numbers. Then, we prove the
power set of integers, 2Z, contains a subset isomorphic to the non-negative real numbers, with all its
defining structures of operations and order. We use these results to give the power set, 2N, the structure
of the real number system. We give simple rules for calculating addition, multiplication, subtraction,
division, powers and rational powers of real numbers, and logarithms. Supremum and infimum
functions are explicitly constructed, also. Section 6 contains the main results. We propose a new
axiomatic basis for analysis, which represents real numbers as sets of natural numbers. We answer
Benacerraf’s identification problem by giving a canonical representation of natural numbers, and then
real numbers, in the universe of sets. In the last section, we provide a series of graphic representations
and physical models of the real number system. We conclude that the system of real numbers is
completely defined by the order structure of natural numbers and the operations in the universe
of sets.

Keywords: general topology; axiomatic set theory; real analysis; continuum; graph theory;
benacerraf’s identification problem; mathematical structuralism

1. Introduction

In building the continuum, we make use of properties of integers and sets. Apart from this, we
assume the basic concepts of category theory. Mainly, the concept of isomorphism between categories.
Background knowledge on previous axiomatic constructions of the real numbers will be of help.
The more modern constructions of the real number system can be found in the references [1–5]. It is
notable that the real number system has been studied in detail through the generations, and still new
insights and more useful constructions are sought. The mathematical objects that have previously been
denominated as real numbers are objects of complex and illusive structure. The mathematician has
always had to recur to advanced tools and objects in building the real number structure. In the words
of Dr. K. Knopp [6] (p. 4)

“...these preliminary investigations are tedious and troublesome, and have actually, it must
be confessed, not yet reached any entirely satisfactory conclusion at all.”

That is why real numbers are usually presented axiomatically as a set satisfying certain
rules, without specifying the nature of the set nor proving its existence. In undergraduate school,
constructions of the real number system are rarely taught, even in advanced courses of analysis. This
leads to a certain gap in the learning of the student. This is one of our major motivations.

We are able to represent real numbers in terms of regular sets built upon the empty set, and in
Section 6 we give a canonical construction for natural numbers, and real numbers as an extension of
these. We also prove that the real number system is isomorphic in structure (not only cardinality) to 2N.
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The structure of 2N can be defined artificially in terms of any bijection with R, but that does not give us
any new information or computational advantages since such bijections usually lack interpretation.

Our work is to define a structure for 2N and prove this structure is equivalent to the real
number system as a totally ordered field with the property of the supremum element (completeness).
We provide order and operations <,⊕,� on the objects of 2N, so that Fa < Fb if and only if a < b,
and F(a + b) = Fa⊕ Fb and F(a · b) = Fa� Fb, for a bijection F : R→ 2N.

We first prove the closed sets of the cofinite topology of N are equivalent to the natural number
system. We symbolize this family of sets with Co f (N) = {A ∈ 2N|A is f inite}. Then, we apply the
same method to define order and operation on 2−N; the continuum [0, 1] is isomorphic in structure
to the power set of −N. These constructions are generalized to obtain R+, the set of non-negative
real numbers. Let Z− = {A ∈ 2Z|max(A) exist}. Order and operations for Z− are well defined.
The elements of Z− are called set numbers and the totality of set numbers is the totality of non-negative
real numbers. In particular, the elements of Co f (N) and 2−N are set numbers: Co f (N), 2−N ⊂ Z−.
The structures Co f (N), 2−N are naturally embedded into Z−.

2. Motivation

Every natural number has unique representation as a sum of natural powers of 2. This expression
is usually treated as a sequence of 0’s and 1’s. A 0 in the n-th place indicates that 2n is not a summand
in the expression. A digit 1 in that same place would indicate that 2n is indeed a summand. This is the
usual binary expression of natural numbers. Given the binary representation of a natural number x, we
can naturally assign it a set number X. The elements of the set number are the places in the sequence
with a digit 1. For example, the sequence 5 = (. . . , 0, 0, 0, 1, 0, 1) is assigned the set number {0, 2}
because the 0-th and 2-nd space are occupied by the digit 1. The sequence 13 = (. . . , 0, 0, 0, 1, 1, 0, 1)
will be mapped to the set number {0, 2, 3} and 17 = (. . . , 0, 0, 0, 1, 0, 0, 0, 1) is the set number {0, 4}.
Given set numbers A, B, we say A < B if max(A4B) ∈ B, where A4B = (A ∪ B)− (A ∩ B) is the
symmetric difference of the two sets. This order on Co f (N) is isomorphic to the order N≤.

Next, we define the sum of two set numbers in Co f (N); it takes the form of a recursive formula
that ends in finite steps. If X ∈ Z− is any set number, define the successor of X as s(X) = {i + 1}i∈X ; the
new set s(X) is the set of successors. The sum of A, B ∈ Co f (N) is the sum of two new set numbers
A′⊕ B′, where A′ = A4B and B′ = s(A∩ B). Intuitively, we add the powers of 2 that are not repeated,
with the powers of 2 that are repeated. We increase by 1 the powers that are repeated because, in terms
of natural numbers, it is equivalent to multiplication by 2. Thus, A⊕ B = (A4B)⊕ s(A ∩ B), where
the function s : 2N → 2N adds 1 to the elements of the argument, specifically s∅ = ∅ and s{0} = {1}.

To illustrate with an example, 13 + 5 = (20 + 22 + 23) + (20 + 22) = (23) + 2 ∗ (20 + 22) =

(23) + (21 + 23) = (21) + 2 ∗ (23) = (21) + (24) = 18. In terms of set numbers, {0, 2, 3} ⊕ {0, 2} =
{3} ⊕ {0 + 1, 2 + 1} = {3} ⊕ {1, 3} = {1} ⊕ {3 + 1} = {1} ⊕ {4} = {1, 4} ⊕∅ = {1, 4}. In general,
the process ends in finite steps. The sum of two sets, A, B, is equal to the sum of the sets A′ = A4B and
B′ = s(A ∩ B). The sum of these two is in turn equal to the sum of A′′ = A′4B′ and B′′ = s(A′ ∩ B′),
etc.... This process ends when B(n) becomes the empty set (after a finite number of iterations). We have
15 + 23 = {0, 1, 2, 3} ⊕ {0, 1, 2, 4} = {3, 4} ⊕ s{0, 1, 2} = {3, 4} ⊕ {1, 2, 3} = {1, 2, 4} ⊕ {4} = {1, 2} ⊕
{5} = {1, 2, 5} ⊕∅ = {1, 2, 5} = 38.

This process can be modeled with particles occupying energy levels. A set number will be
represented by a column with numbered energy levels, and any given arrangement of particles
occupying levels (with at most one particle on each level). To perform addition of two columns, we
give one rule: two particles in the same level are replaced by a single particle, one level up. Let us
describe this in detail. Given two columns A, B, we call the ordered pair S = (A, B) a state. Thus, a state
is determined by two columns with occupied levels. Call the levels of the left column Ai and the levels
of the right column Bj, so that A4 means the fourth level of the left column and B0 means the lowest (or
0-th) level of the right column.
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We provide a system that evolves discretely in time. To pass from a state tn to tn+1, we form two
new columns. The left column of state tn+1 is occupied in the energy levels that were not repeated in
the previous state tn. The right column of state tn+1 is occupied in the energy level Bj+1 if the energy
levels Aj and Bj were both occupied during the state tn. To find the set number sum of two set numbers,
we merge the two columns into a single column, by applying our sum formula. The right column
becomes the empty set in finite steps, and this guarantees our answer. We define X⊕∅ = ∅⊕ X = X.
See Figure 1.

Figure 1. Graphic representation of 15 + 23 = 38.

The state stabilizes in a finite number of steps (we provide an upper bound on this number).
That is to say, there exists a state S(tn) such that S(tk) = S(tn) for all k ≥ n. Say An

i represents the
level Ai at time tn. Then, stability means for all i, j ≥ 0 and for all n ≥ k, it is true An

i = Ak
i and Bn

j = 0.
Notice, the same diagram is valid under vertical displacements. In Figure 2, we illustrate the fact that
the same system of states of Figure 1 holds under displacement of the energy levels (Figure 2).

Figure 2. Graphic representation of 1.875 + 2.875 = 4.75.

Real numbers in the unit interval are the sum of negative powers of 2. We adapt the same
rules of order and operation to arbitrary sets of negative integers. For example, 1

2 = 2−1 = {−1},
and 3

2 = {−1, 0} because 3
2 = 2−1 + 20. Adding these, 1

2 + 3
2 = {−1} ⊕ {−1, 0} = {0} ⊕ s{−1} =

{0} ⊕ {0} = ∅⊕ s{0} = s{0} = {1} = 21 (Figure 3).

Figure 3. Graphic representation of 0.5 + 1.5 = 2.

Rearranging the energy levels of Figure 3, so that a = {0} and b = {0, 1}, we get a graphic
representation of 1 + 3 = 4. Actually, in every diagram, we are representing denumerable sums
(under change of levels). Observe ∑i<k 2i = 2k, for every integer k. This is equivalent to defining
{i}k−1

i=−∞ = {k}. It comes from an iteration of Figure 3, and we will see why this is consistent (Figure 4).



Axioms 2019, 8, 31 4 of 20

Figure 4. Graphic representation of 4 = 2 + 2 = 2 + (1 + 1) = 2 + 1 + (0.5 + 0.5) = 2 + 1 + 0.5 +

(0.25 + 0.25) = 2 + 1 + 0.5 + 0.25 + (0.125 + 0.125) . . .

3. N ∼= Cof (N)

3.1. Order

We define an order relation < between set numbers; A < B if max(A4B) ∈ B. In the contrary
case, max(A4B) ∈ A and we define B < A. Every two set numbers are comparable because the
symmetric difference is non-empty and it has a maximum. It is not difficult to see that we have a total
order on the family of set numbers Z−. In particular, it is a well order on Co f (N), if we take Co f (N) as
substructure of Z−. We give three examples in Figure 5.

Figure 5. max(a4b) is in exactly one of the two sets. In each case we have a < b.

3.2. Addition

We define the sum of two set numbers as a recursive formula that ends in finite steps; to prove
our formula ends in finite steps, it is of crucial importance to suppose the cardinality of A, B is finite.
This formula is based on the following observation for adding powers, 2k+1 = 2k + 2k. We ask ⊕
obey {i} ⊕ {i} = {i + 1}, for every singleton {i} ∈ Co f (N). The operation of addition is defined by
A⊕ B = (A4B)⊕ s(A ∩ B). Successive applications yield

A⊕ B = (A4B)⊕ s(A ∩ B) = [(A4B)4s(A ∩ B)]⊕ s[(A4B) ∩ s(A ∩ B)]
= [((A4B)4s(A ∩ B))4s((A4B) ∩ s(A ∩ B))]⊕ s[((A4B)4s(A ∩ B)) ∩ s((A4B) ∩ s(A ∩ B))].

Before complicating things more, we stop here to see what is happening. Let Cn+1 = Cn4Dn and
Dn+1 = s(Cn ∩Dn), where C1 = A4B and D1 = s(A∩ B). The previous equalities can be rewritten as

A⊕ B = C1 ⊕ D1 = C2 ⊕ D2 = Ck ⊕ Dk

for all k ∈ N. We are calculating Ck ⊕ Dk as a sum Ck+1 ⊕ Dk+1, where the term Dk+1 is dependent on
the intersection. We call Dk+1 the remainder, and although it is not getting smaller in value (as natural
number), the cardinality (as set number) goes to 0. However, it can be the case that the cardinality of
the remainder does not get smaller. It may stay constant for finite iterations. It is guaranteed that, in a
finite number of steps, the remainder becomes the empty set, and our result is now obvious. We have
iterated the formula to obtain A⊕ B = Ck+1 ⊕ Dk+1, where Dk+1 = ∅. The system stabilizes when
Dk+1 = ∅, so that A⊕ B = Ck+1 = Ck+2 = · · · = Ck ∪ Dk. The cardinalities of the remainders satisfy
#(D1) ≥ #(D2) ≥ · · · ≥ #(Dk) > #(Dk+1) = #(Dk+2) = · · · = 0, for some natural number k.
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It is left to the reader to prove (1) #(Dk) = 0 in at most max(A ∪ B) + 1 steps. (2) A ⊕ B =

A⊕ {b1} ⊕ {b2} ⊕ · · · ⊕ {bk}, for any set numbers A, B where the bi are the elements of B. The proofs
of the algebraic properties are not all trivial. It is not trivial to prove the associative property for ⊕. The
best thing to do to avoid direct proofs is to prove F(a + b) = Fa⊕Fb and F−1(A⊕ B) = F−1 A +F−1B,
where F is the bijection N→ Co f (N) that acts by x = ∑i∈X 2i 7→ X.

3.3. Product

Multiplication by 2 is equivalent to adding 1 to the elements of the corresponding set number.
For example, 2 ∗ 14 = {1} � {1, 2, 3} = {1 + 1, 2 + 1, 3 + 1} = {2, 3, 4} = 28. In general, 2 · x = s(X),
where X is the set number corresponding to x ∈ N. Recall s(X) = {i + 1}i∈X. Multiplication by 4, is
equivalent to adding +2 to all the elements of X. In general, multiplication by 2k is equivalent to adding
k, to the elements of X. That is to say, 2k · x corresponds to the set number {k} � X = {i + k}i∈X.
The unit of this operation, �, is the set number {0}. To multiply numbers that are not powers
of 2, we use the distributive property. To multiply 7 · 9 = {0, 1, 2} � {0, 3}, form three new sets
(one for each element of 7). These are the sets {0 + 0, 3 + 0}, {0 + 1, 3 + 1}, {0 + 2, 3 + 2}. Add the
results, {0, 3} ⊕ {1, 4} ⊕ {2, 5} = {0, 1, 2, 3, 4, 5} = 63. Multiplication is defined by the addition of
sets that are displacements of an original set number, and a displacement of X is any natural power
sn(X) = (s ◦ s ◦ s · · · s ◦ s)(X). To define the product of two set numbers A� B, we will refer to A as
the pivot and B as the base. Then, A� B is a sum of set numbers that are displacements of the base.
Each displacement corresponds to an element of the pivot. This is illustrated in Figure 6.

Figure 6. We illustrate 7 · 9. The first and second columns are the pivot and base, respectively. The
next three columns correspond to the displacements of our base. The last column is the sum of the
displacements. The result is 63 = {0, 1, 2, 3, 4, 5}.

Take 32 = {5} as pivot and 12 = {2, 3} as base. Add 5 to the elements of {2, 3} to obtain the
displacement {7, 8}, which is indeed 384. If we chose 32 to be the base and 12 as the pivot, then we
would have to add the displacements of {5} to get {5 + 2} ⊕ {5 + 3} = {7} ⊕ {8} = {7, 8}. The
product is:

A� B =
⊕
a∈A
{a + b}b∈B.

Let a1 < a2 < · · · < an be the elements of A, and b1 < b2 < · · · < bm the elements of B. Then,
A� B = {a1 + b}b∈B⊕{a2 + b}b∈B⊕ · · · ⊕ {an + b}b∈B, where {ai + b}b∈B = {ai + b1, ai + b2, . . . , ai +

bm}. Developing the expression, we get

A� B = {a1 + b1, a1 + b2, . . . , a1 + bm} ⊕ {a2 + b1, a2 + b2, . . . , a2 + bm} ⊕ · · · ⊕ {an + b1, an + b2, . . . , an + bm}.

The reader can prove F(a · b) = Fa� Fb, which will be useful in proving commutativity and
associativity of product. Commutativity can be rewritten as

⊕
a∈A
{a + b}b∈B = {a1 + b1, . . . , an + b1} ⊕ {a1 + b2, . . . , an + b2} ⊕ · · · ⊕ {a1 + bm, . . . , an + bm}

= {a1 + b1, . . . , a1 + bm} ⊕ {a2 + b1, . . . , a2 + bm} ⊕ · · · ⊕ {an + b1, . . . , an + bm}
=

⊕
b∈B

{a + b}a∈A.
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Direct proofs (in terms of sets) of the set sum are difficult, but direct proofs of the product for set
numbers seem to be almost impossible. For instance, in proving commutativity, we have to prove that
the set number sum of n sets (each with cardinal number m), is equal to a set number sum of m sets
(each with cardinal number n). Again, the only easy way out of this is to use the bijection F.

Figure 7 illustrates that the product formula is also valid for negative integers.

Figure 7. Graphic representation of 4.6875 · 45.5 = 213.28125.

3.4. Subtraction

We wish to give forms of inverse operating elements. In this section, we will concentrate on
finding an algorithm (and, ultimately, a well defined formula) for subtraction. Before defining the
general case, let us begin with two set numbers subject to the relation A ⊂ B. Then, the subtraction is
defined by B	 A = B− A, where B− A is the usual set difference, so that, if we put the two columns
side by side, the result B	 A is obtained by taking away the particles in the column of B that also
appear in A. For example, 45 = {0, 2, 3, 5} and 9 = {0, 3} is a subset of 45, so that we can easily
find 45− 9 = {0, 2, 3, 5} − {0, 3} = {2, 5} = 36. Now, consider two set numbers A < B such that
max A < max B (strictly less than). We must use our basic rule of addition, now in reverse order, so
that we can take away particles from any level of the column B. Rewriting B, we have

B = (B− {k})⊕ ({k− 1} ⊕ {k− 2} ⊕ · · · ⊕ {1} ⊕ {0} ⊕ {0}) (1)

for any set number B and any k ∈ B. To find B	 A such that A⊕ (B	 A) = B, we use (1):

B	 A = [(B− {N})⊕ ({N − 1} ⊕ {N − 2} ⊕ · · · ⊕ {1} ⊕ {0} ⊕ {0})]	 A,

where N = max B. We know A ⊆ {i}N−1
i=0 = {0, 1, 2, . . . , N − 1}. Thus,

B	 A = (B− {N})⊕ C⊕ {0}, (2)

where C(N, A) = {0, 1, 2, . . . , N − 1} − A. To find 42-21, we make B 	 A = {1, 3, 5} 	 {0, 2, 4} =

({1, 3, 5} − {5})⊕ ({0, 1, 2, 3, 4} − A)⊕ {0} = {1, 3} ⊕ {1, 3} ⊕ {0} = {0, 2, 4} (see Figures 8–10).

Figure 8. Graphic representation of 42− 21 = 21.
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Figure 9. Graphic representation of 36− 27 = 19.

Figure 10. Graphic representation of 53− 11 = 42.

Let A < B be two set numbers (with no additional restriction), and let N0 = max(A4B) ∈ B.
We observe B 	 A = B′ 	 A′ where A′ = A ∩ {0, 1, . . . , N0} and B′ = B ∩ {0, 1, . . . , N0}. The
subtraction B	 A is treated as in the last paragraph, max A′ < N0 = max B′. This defines subtraction
in the most general case (Figures 11–13).

Figure 11. Graphic representation of 725− 697 = 28.

Figure 12. Graphic representation of 546− 517 = 29.

Figure 13. Graphic representation of 738− 22 = 716.
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4. Continuum

We will investigate if elements of Co f (N) can be multiplied by some set number (outside of
the cofinite topology) to obtain {0}; it is easy to see {0} < A � B if A, B ∈ Co f (N). We include
sets that represent reciprocals of natural numbers, by extending our definitions to sets of negative
integers. The definitions of order and operation remain the same. Every element of 2−N is smaller than
every element of Co f (N). We will prove that, for every X ∈ Co f (N), there exists 1

X ∈ 2−N such that
1
X � X = −N = {0}. In this section, we prove that the continuum [0, 1] is isomorphic to 2−N. First, we
prove that every subset of 2−N has supremum and infimum. In particular, sup(2−N) = −N < {0}, and
{0} is the smallest set number larger than−N. We define {0} = −N without fear of contradiction. This
translates to ∑−∞

i=−1 2i = 20(= 1). In general, ∑i<k 2i = 2k, or equivalently, {k} = {i}i<k, for any integer
k. This means a bounded (above and below) subset of Z has two representations. After describing the
unit interval, we prove Z− ∼= R+. If x ∈ R+ and X ∈ Z− is its corresponding set number, the integer
part of x is (X ∩N) ∈ Co f (N), and its fractional part is (X ∩−N) ∈ 2−N.

4.1. [0, 1] ∼= 2−N

Supremum and Infimum. We define a supremum function for 2−N. The order is defined
as before, two sets relate A < B if and only if max(A4B) ∈ B. Let X ⊆ 2−N, so that A ⊆ −N
for every A ∈ X. The well ordering principle implies the existence of x1 := max

⋃
X. Define

Y1 := {A ∈ X|x1 ∈ A}, and X1 := (
⋃
Y1) − {x1}, and x2 := max(X1) < x1. Then, define

Y2 := {A ∈ Y1|x2 ∈ A}, and X2 := (
⋃
Y2) − {x1, x2}, and x3 := max(X2). Continue in this

manner, so that xn+1 := max(Xn), where Xn :=
⋃
Yn − {xi}n

i=1 and Yn := {A ∈ Yn−1|xn ∈ A}.
In denumerable steps, we have determined a unique set of integers x1 > x2 > x3 > · · · . Define
supX = {xi}i, which is, by construction, the smallest set number greater than every set in X (Figure 14).

Figure 14. We illustrate the process for finding the supremum of a family X. It is left to the reader to
the complete the procedure and find sup(X) = B.

22−N represents the power set, of the power set of −N. The supremum function is a function of
the form sup : 22−N → 2−N. If sup(X) ∈ X, we say sup(X) = max(X). In particular, this is true if
X is finite. There is also an infimum function of the form inf : 22−N → 2−N, where the image of the
family is its greatest lower bound. Given a family X ⊆ 2−N, define X∗ as the family of set numbers
that are smaller than or equal to all the elements of X. In other words, X ⊆ −N is in X∗ if and only
if X < A, for all A ∈ X. Then, X∗ 6= ∅ because ∅ ∈ X∗, so that we can define inf(X) = sup(X∗). If
X∗ = {∅}, then inf(X) = ∅. In particular, this implies inf[0, 1] = 0. To calculate the infimum, find
the largest integer x1 such that {x1} < X, for all X ∈ X. If there is no such integer (the elements of⋃
X are arbitrarily small) define inf(X) = ∅. If x1 exists and {x1} ∈ X, then inf(X) = {x1}. If x1

exists and {x1} /∈ X, then we compare {x1, x1 − 1} with the elements of X. If {x1, x1 − 1} ∈ X, then
inf(X) = {x1, x1 − 1}. If {x1, x1 − 1} < X for every X ∈ X, then x2 := x1 − 1 ∈ inf(X). The last
possible case is {x1, x1 − 1} > X for some X ∈ X, so that x1 − 1 /∈ inf(X), and we would then have to
verify if x1 − 2 ∈ inf(X). This process ends in denumerable steps, with a set inf(X) = {xi}i ⊆ −N.
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Reciprocals. If we want to multiply A ⊂ N by B ⊆ −N, we proceed as before. The definition is
the same. Refer to Figure 7. The unit of product, which should be {0}, which is a bounded subset
of Z and therefore has a second representation, which is −N. We use this representation to provide
a well-defined algorithm for finding the reciprocal of a natural number. To find the reciprocal of
137 = {0, 3, 7}, we seek out a set number 1

N = {x1, x2, . . . } ⊂ −N such that

−N = {x1 + 0, x2 + 0, . . . } ⊕ {x1 + 3, x2 + 3, . . . } ⊕ {x1 + 7, x2 + 7, . . . }.

If we propose 1
N = {−7}, we find we "go over" because:

{0, 3, 7} � {−7} = {−7 + 0} ⊕ {−7 + 3} ⊕ {−7 + 7} = {−7,−4, 0} > −N.

Now, we try 1
N = {−8} and we see that we do not go over:

{0, 3, 7} � {−8} = {−8 + 0} ⊕ {−8 + 3} ⊕ {−8 + 7} = {−8,−5,−1} < −N. (3)

Naturally, proceed to approximate 1
N = {−8,−9} and find

{0, 3, 7} � {−8,−9} = {−1,−2,−5,−6,−8,−9} < −N.

The reader can easily verify {0, 3, 7} � {−8,−9,−10} = {−1,−2,−3,−5,−6,−7,−8,−9,−10}. It is
equally easy to prove {0, 3, 7} � {−8,−9,−10,−11} > −N. Continue and verify Figure 15:

{0, 3, 7} � {−8,−9,−10,−12} = {−1,−2,−3,−4,−5,−10,−12} < −N.

Figure 15. We find the reciprocal of N = 137 = {0, 3, 7}. Column A1 is the sum of three negative
displacements of N, and it is a set number less than 1 = −N. We try adding another displacement to
A1, without going over −N. We find A3 works, and continue in this manner. The number 1

N is the set
of negative integers that indicate the valid displacements.

Let us describe the procedure for finding the reciprocal of a set number N = {x1, x2, . . . , xn} ⊂ N,
with x1 > x2 > · · · > xn. We wish to find a set number 1

N ⊂ −N such that N � 1
N = −N. The

reciprocal 1
N = {y1, y2, . . . } ⊂ −N will be found in denumerable steps, as follows. First, make

y1 = −(x1 + 1) so that

N�{−(x1+1)} = {x1− (x1+1), x2− (x1+1), . . . , xn− (x1+1)} = {−1, x2− (x1+1), . . . , xn− (x1+1)}.
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Next, find the largest negative integer y2 such that

{−1, x2 − (x1 + 1), . . . , xn − (x1 + 1)} ⊕ {x1 + y2, x2 + y2, . . . , xn + y2} < −N.

We know that there is at least one negative integer that satisifes this inequality. By the well ordering
principle, we can find the maximum of such a set of solutions. This maximum is our integer y2. The
finitude of #(N) plays a fundamental role in allowing us to guarantee such y2 exists. Now, to find y3,
we look for the largest negative integer such that

({−1, x2 − (x1 + 1), . . . , xn − (x1 + 1)} ⊕ {x1 + y2, x2 + y2, . . . , xn + y2})⊕ {x1 + y3, x2 + y3, . . . , xn + y3} < −N.

If we continue in this manner, we have well defined 1
N .

4.2. R+ ∼= Z−

Topology of Bounded Subsets of Z. A set X ∈ Z− will correspond to a unique number in R+.
We do not need to make any modifications to the basic rules and relations of order and operation
already used. We extend the same relations to the closed sets of the topology Z−. For example, given a
binary representation 110101.001011, the set number is {5, 4, 2, 0,−3,−5}.

The positive real line is constructed by piecing together copies of [0, 1]. Let X ⊂ −N be the
corresponding set number to x ∈ [0, 1), so that x = ∑i∈X 2i. Then, X ∪ {0} is the set number
corresponding to 1+ x = 20 +∑i∈X 2i. More generally, let N ⊂ N be the set number corresponding to a
natural number n ∈ N; this means n = ∑i∈N 2i. Now, we have n+ x = ∑i∈N 2i +∑i∈X 2i = ∑i∈(X∪N) 2i.
We can summarize our work as follows:

i. N ∼= Co f (N) where the cofinite topology uses the order and operations of set numbers.
ii. [0, 1] ∼= 2−N, with ∅ = 0 and −N = 1, and the same definitions for set order and operations.
iii. The continuum of non-negative real numbers is built as a natural generalization of both Co f (N)

and 2−N. We piece together [0, 1], [1, 2], [2, 3], . . . , into a single continuum R+. This is done by
considering the upper bounded sets of Z and a proper extension of the set number relations.

Let us generalize the previous methods into a single structure isomorphic to R+.
Supremum. In the previous sub section, we provided a well defined algorithm for finding the

supremum of a family X ⊆ [0, 1], where the elements of X are arbitrary subsets of −N. Now, we
generalize this process to define the supremum of a bounded set of positive real numbers.

Let X be a bounded set of objects in Z−, then max
⋃
X exists. In other words, if there exists

A ∈ Z− such that X < A for every X ∈ X, then max
⋃
X exists. Notice that it is not the same as saying

"X is a set of bounded above subsets of Z". We need to guarantee the existence of max
⋃
X in order to find

the supremum of X. This is done by asking that X be bounded above in the order of Z−. For example,
there is no max

⋃
X for

X = {{1, 0,−1,−2, . . . }, {2, 1, 0,−1, . . . }, {3, 2, 1, 0, . . . }, {4, 3, 2, 1, . . . }, . . . },

although X ⊂ Z−. This is due to the fact that X is not bounded in the order of set numbers.
Once the reader verifies the existence of x1 = max

⋃
X, it is easy to follow the same algorithm

we provided for finding the supremum of subfamilies of 2−N. Let us find the supremum of a
finite list of set numbers; obviously, the result should be the maximum of the list. These are
A = {4, 2, 1,−1,−3,−5,−7, . . . }, B = {4, 3,−1,−3,−5,−7, . . . }, C = {4, 2, 1, 0,−2,−4,−6, . . . },
D = {4, 3, 0,−2,−4,−6, . . . }, E = {4, 3, 0,−1,−2,−4,−6, . . . }. We wish to find sup(X), where
X = {A, B, C, D, E}. First, we find the maximum of

⋃
X; the maximum integer that appears in

our set numbers is x1 = 4. Then, we define the family Y1 ⊆ X of those set numbers that have
4 as an element. In this case A, B, C, D, E all have 4 as element so that Y1 = X. Now, we find
the maximum of X1 = (

⋃
Y1)− {x1}; the second largest number that appears in the family Y1 is
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x2 = 3. Now, Y2 = {B, D, E} because these are the only set numbers of Y1 that contain x2 = 3.
The maximum of X2 = (

⋃
Y2)− {x1, x2} is the third largest number that appears in the family Y2.

It is x3 = 0, and the only elements of Y2 that contain 0 are D, E so that Y3 = {D, E}. We find
x4 = max((

⋃
Y3)− {4, 3, 0}) = −1 and −1 is not an element of D, but it is an element of E; then,

Y4 = {E}. We find x5 = −2, x6 = −4, x7 = −6,. . . . We conclude sup(X) = max(X) = E.
Division. We now describe division and rational numbers. Let us find the rational representation

of the set number {5, 0,−2,−4,−5} = 33.34375. If we apply s5 to the set number, the result is
{10, 5, 3, 1, 0} = 1067. The action of adding 5 to the elements of a set number is equivalent to
multiplication by 25. In our example, {5} � {5, 0,−2,−4,−5} = {10, 5, 3, 1, 0}. If A ∈ Z−, we define
A = {X ∈ Co f (N)|X � A ∈ Co f (N)}. If A = ∅, we say the set number A is irrational, and if A 6= ∅,
then A is rational. A fraction representing A is an ordered pair (M, N), where N ∈ Co f (N) is an element
of A and M = N � A. If A is rational, the well ordering principle implies the existence of min(A), and
the corresponding fraction is said to be the irreducible fraction of A. In our example, ({10, 5, 3, 1, 0}, {5})
is the irreducible fraction of {5, 0,−2,−4,−5}. This can be expressed as 33.34375 = 1067

32 . Given a finite
set number A ∈ Z−, we can give infinite, but equivalent, representations of an irreducible fraction m

n .
Consider the inverse problem of finding the set number corresponding to an ordered pair m

n .
Let M, N be the set numbers corresponding to m, n, respectively. Then, A = M� 1

N . Approximate
51

137 by multiplying 1
137 ≈ {−8,−9,−10,−12} with 51 = {5, 4, 1, 0}, to obtain 0.361083984375 =

{−2,−4,−5,−6,−10,−11,−12}. For more precision, we must give a better approximation to the
number 1

137 . For example, 1
137 ≈ {−8,−9,−10,−12,−13,−14,−17}. Approximate 137

51 by two
methods. Find the product of 1/51 and {7, 2, 0}; we have to find the set number corresponding to 1

51 .
The second method consists of approximating B such that {−2,−4,−5,−6,−10,−11,−12} � B = −N.

We can fully describe the set of rational and irrational numbers. Let A ∈ Z− be a set number with
A ∩−N finite. Then, A is a rational number. If A ∩−N is infinite, then A is irrational, with one crucial
exception. If the set A ∩−N is infinite and periodic, then A 6= ∅ and A is rational.

Sum and Product of Infinite Sets. We must define the set number sum of two sets A, B ∈ Z−
each with perhaps infinite elements. A, is the set of integers a1 > a2 > a3 > · · · , and B the set of
integers b1 > b2 > b3 > · · · . Define An = {ai}n

i=1, and in a similar manner Bm = {bm}m
j=1. The sum

is defined as A⊕ B := supn,m(An ⊕ Bm) for all n, m ∈ N. The reader can define the multiplication of
two infinite set numbers.

Powers. To take powers of set numbers AB, we start by defining AB, where A, B ⊂ N. In
this case, X = AB is the result of carrying out successive products of set numbers. The empty set
is representing the integer 0, so we define the power A∅ = {0}. We define the power A{0} = A
because {0} = 1. With this, we are able to give a recursive formula AB = A� AB	{0}. To find the
power of 1274 = {0, 1, 2, 3, 4, 5, 6}{2}, we first reduce the expression. We know A{2} = A� A{2}	{0}.
We know, from the subtraction of set numbers, that {2} 	 {0} = {0, 1}, then A{2} = A � A{0,1}.
Then, we find A{0,1} = A� A{0,1}	{0} = A� A{1} = A� (A� A{1}	{0}) = A� (A� A). Finally,
A{2} = A� (A� (A� A)), as we expect since {2} = 4.

127 · 127 = {0, 1, 2, 3, 4, 5, 6} � {0, 1, 2, 3, 4, 5, 6}
=

⊕
a∈127

{a + b}b∈127

= {0, 8, 9, 10, 11, 12, 13}.

Now, we take {0, 8, 9, 10, 11, 12, 13} as base and use {0, 1, 2, 3, 4, 5, 6} as pivot so that

1273 = {0, 1, 2, 3, 4, 5, 6} � {0, 8, 9, 10, 11, 12, 13}
=

⊕
a∈127

{a + b}b∈16,129

= {0, 1, 2, 3, 4, 5, 6, 8, 14, 16, 17, 18, 19, 20}.
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The reader can verify the final result, carrying out the following addition of set numbers.

1274 = {0, 1, 2, 3, 4, 5, 6} � {0, 1, 2, 3, 4, 5, 6, 8, 14, 16, 17, 18, 19, 20}
=

⊕
a∈127

{a + b}b∈1273 .

If the set number A ∈ Z− has infinite elements a1 > a2 > a3 > · · · , we define the power
AB = sup

n
AB

n , where An = {ai}n
i=1. There are two cases: (1) if A < {0}, then AX is a decreasing

function, and (2) if A > {0}, then AX is an increasing function. Proving this is not difficult but requires
some labor. Before proving it for arbitrary set numbers X, it has to be proven for X ∈ Co f (N) and 1/X.
Taking negative powers is notation for the reciprocal of a power; A−3 := 1/A3 which corresponds to
the set number 1/A{0,1}. In addition, {0}X = {0}, for every set number X ∈ Co f (N).

Roots. The process of finding a root is finding a reciprocal power, that is to say A
1
B , for some set

B ∈ Co f (N). To find X = A
1
B , we must find a set X ∈ Z− such that XB = A. The set P(A, B) of all

set numbers X such that XB < A is bounded above. Define A
1
B = sup P(A, B). We have three cases;

A > {0}, A = {0}, and A < {0}. In the first case, A
1
B < A, while in the last case A

1
B > A. The roots of

{0} are {0} 1
B = {0}, for every B ∈ Co f (N). We give an example, 31/4 = {0, 1}1/{2}. The fourth power

of {0,−1} is greater than {0, 1}. We find that {0,−2}4 < {0, 1}, and {0,−2,−3} > {0, 1}. Then, we
find {0,−2,−4} < {0, 1}. We continue in this manner, with trial and error; finding the fourth power
of sets such that the fourth power is less than {0,1}. We are finding a number whose fourth power is
equal to the natural number 3 = {0, 1}.

To take rational powers AB, with B a rational number, we find the irreducible fraction B = m
n .

Now, AB = (Am)
1
n is well defined because it can be proven (Am)

1
n = (A

1
n )m. Consider next the

general case where B is not rational. Let A, B ∈ Z− arbitrary set numbers, and b1 > b2 > b3 · · ·
are the elements of B. Let Bk = {bi}k

i=1; then, to every Bk, there corresponds an irreducible fraction
Qk = mk

nk
. We define AB = sup

k
AQk . Of course, for this definition to be justified, we have to prove

the set {AQk}∞
k=1 is bounded above. Hint: prove the power function AX is increasing with X, then it

suffices to show {Bk}∞
k=1 is bounded above; {b1 + 1} > Bk for all k.

Logarithms. In the last section, we extended the definition of powers to include rational numbers
and, finally, irrational powers as well. Now, we explore the inverse function. To find X = logB A, we
find a set number X such that BX = A. It is not difficult to prove the following statements.

If {0} < A < B, then there exists a positive real number {0} > X ∈ Z− such that BX = A.
If {0} < B < A, then there exists a positive real number {0} < X ∈ Z− such that BX = A. If
B < A < {0} then X < {0}. If A < B < {0}, then {0} < X.

Let us calculate log2.53.125 which is the logarithm base 2.5 of 3.125. The numerical value is≈ 1.24353.
We have B = {−1, 1} and A = {−3, 0, 1}, and we wish to find a fraction X = m

m such that (Bm)
1
n = A.

Begin by calculating 2.52, to see if we go over 3.125 or not. Multiplying {−1, 1} by itself is equal to the
set sum {−2, 0} ⊕ {0, 2} = {−2, 1, 2}. The result is a set number larger than {−3, 0, 1}. Next, we try
{0} < Y < {1} because 2.5{0} = 2.5. Use {0,−1} = 3

2 ; first, we find the third power of 2.5 and then
we find the square root.

2.53 = 2.52 · 2.5

= {−2, 1, 2} � {−1, 1}
= {−3,−1, 0, 1, 2, 3}.

Next, we find the square root of {−3,−1, 0, 1, 2, 3}. {−1, 0, 1} ⊂ {−3,−1, 0, 1, 2, 3} 1
2 , so

that 2.5
3
2 > {−3, 0, 1}. Our next candidate for Y is {0,−2, } = 5

4 . The fifth power of 2.5 is
equal to {−1, 1}5 = {−5,−3 − 1, 0, 5, 6}. Searching the fourth root of this last set number gives
{−6,−3, 0, 1} ⊂ {−5,−3 − 1, 0, 5, 6} 1

4 . Our next approximation for Y is {−3, 0} = 9
8 . We find
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{−1, 1}{−3,0} < {−3, 0, 1}. Then, we find {−1, 1}{−4,−3,0} < {−3, 0, 1} and {−1, 1}{−5,−4,−3,0} <

{−3, 0, 1} so that we approximate log2.5 3.125 ≈ 1.21875. Taking another step gives log2.5 3.125 ≈
{−6,−5,−4,−3, 0} = 1.234375.

The logarithm base B of A can be approximated by rational numbers, as follows. Find two set
numbers M, N ∈ Co f (N) such that AN

BM ≈ 1. The rational approximation is logB A ≈ M
N .

Properties of Operation. The axiomatic properties of the field of real numbers hold, taking
into account that we have not yet described negative real numbers. The identity for addition is ∅,
while the identity for product is {0}. The commutative property of addition is trivial because of the
commutative properties of4 and ∩. It is not easy to give a direct proof of the associative property for
set number addition. We first have to show {n} ⊕ (A⊕ {m}) = ({n} ⊕ A)⊕ {m}, for any singletons
{n}, {m} ⊂ Z. Let N = {x1, x2, . . . , xn}, M = {y,12, . . . , ym} and A = {a1, a2, . . . , ap} three finite
subsets of Z. The sum of these can be written

N ⊕ (A⊕M) = ({x1} ⊕ {x2} · · · {xn})⊕ [A⊕ ({y1} ⊕ {y2} · · · {ym})]
= {x1} ⊕ ({x2} ⊕ · · · ⊕ ({xn} ⊕ (((A⊕ {y1})⊕ {y2})⊕ · · · ⊕ {ym}))).

From this, it is possible to prove N⊕ (A⊕M) = (N⊕ A)⊕M. The commutative and associative
properties of product are much more difficult to prove. The same can be said of distributive property;
the proof does not seem to be trivial. It is easy, however, to prove that {n} commutes with any set
number X, under product. Then, distributivity implies commutativity of product in Co f (N).

5. Construction of R

We provide two constructions of the real number system. The first method consists of fitting
all the real numbers into the unit interval; we use this to define an explicit isomorphism between
the set of real numbers and 2−N ∼= [0, 1]. We want to build the structure of real numbers
which is a union of intervals R = (I1 ∪ I2 ∪ · · · ) ∪ (−I1 ∪ −I2 ∪ · · · ), where Ik = [k − 1, k) and
−Ik = (−k,−k + 1]. That is to say, R = · · · (−2,−1] ∪ (−1, 0] ∪ [0, 1) ∪ [1, 2) ∪ · · · . The intervals
−Ik will be the intervals (1/4, 1/2], (1/8, 1/4], (1/16, 1/8] · · · ⊂ [0, 1/2], while the Ik will be
[1/2, 3/4), [3/4, 7/8), [15/16, 7/8), · · · ⊂ [1/2, 1]. The number 0 ∈ R is identified with 1/2 in
the unit interval, and +∞,−∞ are 0 and 1, respectively. See Figure 16.

Figure 16. The power set 2−N will be given the structure of the real number system through our
bijection R→ [0, 1].

Our second method consists of building the real numbers as a space of functions. Positive real
numbers are functions +x so that +x(a) = a+ x. The negative real numbers are their inverse functions,
and 0 is the identity function Id : R+ → R+.

Unit Interval. The real numbers of I1 are set numbers of the form {−1, x1, x2, x3, . . . }, with
xi ≤ −3. Next, we define I2 as the collection of set numbers of the form {−1,−2, x1, x2, x3, . . . }, with
xi ≤ −4. The interval I3 is the collection of set numbers {−1,−2,−3, x1, x2, x3, . . . }, with xi ≤ −5.
The negative interval −I1 = [−1, 0) is the collection of set numbers of the form {−2, x1, x2, x3, . . . }
with xi ≤ −3. The real number −1 ∈ R is identified with 1

4 = {−2}, and − 1
2 ∈ R is the set number

{−2,−3}. The interval −I2 is defined as the family of sets {−3, x1, x2, x3, . . . }, with xi ≤ −4
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There are two types of set numbers: 1) If −1 ∈ X, then we say X is a positive set
number 2). If −1 /∈ X, then X is a negative set number. Positive set numbers are of the form
{−1,−2,−3, . . . ,−n, x1, x2, x3, . . . }with−2 ≥ −n− 1 > x1 > x2 > x3 > · · · , while negative numbers
are sets of the form {−n, x1, x2, x3, . . . } with −1 > −n > x1 > x2 > x3 > · · · . Let X ∈ Z− a
set number with {a1, a2, a3, . . . } = X ∩ −N and a finite set of natural numbers N = X ∩N. Define
n = ∑i∈N 2i, then X′ = {−1,−2,−3, . . . ,−n, a1 − (n + 1), a2 − (n + 1), a3 − (n + 1), . . . } is the new
representation of the set number X. The set number X can also be identified with another set we will
call the negative of X′, and it is −X′ = {−(n + 1), a1 − (n + 1), a2 − (n + 1), a3 − (n + 1), . . . }.

Let X = 7.28125 = {−5,−2, 0, 1, 2}, then the new representation is

X′ = {−1,−2,−3,−4,−5,−6,−7,−8,−2− (8 + 1),−5− (8 + 1)} = {−1,−2,−3,−4,−5,−6,−7,−8,−11,−14}

because the integer part is 7 and therefore n = 8. The negative is −X′ = {−9,−2− 9,−5− 9} =

{−9,−11,−14}. It is left as an exercise to prove every subset of −N corresponds to a unique real
number, and vice versa. We can obviously identify every real number with a unique subset of N, now
that we can identify it with a unique subset of −N. The main idea behind this construction is that we
use the first n natural numbers of a set number to determine the sign and the integer part.

In this paragraph, we have proven that there is a way of defining an order relation for 2N, and
that this order is isomorphic to the order of the extender real number line R. The operations can be
meticulously defined case by case, but we will not unnecessarily extend our discussion.

Function Space. Our second construction, of negative real numbers, involves inverse functions.
Every positive real number X ∈ Z− can be associated a unique isomorphism ⊕X : Z− → RX , where
RX ⊂ Z− is the collection of positive real numbers that are greater than or equal to X. In other
words, an isomorphism R+ → {⊕X} is given and ⊕X : Z− → RX is the bijection that acts by
⊕X(A) = A⊕ X. Let R∗ = {⊕X} ∪ {(⊕X)−1} ∪ {Id}. We have two classes of functions in R∗, as far
as domain and range—the objects we call negative real numbers, and the positive real numbers.

We define an operation for elements of R∗. The operation of two positive real numbers is defined
to be the composition ⊕X ◦ ⊕Y : Z− → RX⊕Y, where X and Y are the set numbers corresponding to
⊕X,⊕Y, respectively. It is natural to define the sum of two negative elements, (⊕X)−1, (⊕Y)−1, by
(⊕X)−1 ◦ (⊕Y)−1 := (⊕X ◦⊕Y)−1 ∈ R∗. Now, we must find a suitable definition for⊕X ◦ (⊕Y)−1. If
Y < X, then we can find the set number X	Y > 0 and its function⊕(X	Y) : Z− → RX	Y ∈ R∗; this
function is defined to be the result of ⊕Y−1 ◦ ⊕X = ⊕X ◦ ⊕Y−1. If X < Y, then define ⊕Y−1 ◦ ⊕X =

⊕X ◦ ⊕Y−1 = (⊕Y ◦ ⊕X−1)−1 ∈ R∗. This operation ◦ : R∗ ×R∗ → R∗ is addition of real numbers.
Denote the elements of R∗ with bold letters, X, Y, · · · ∈ R∗. We can build an isomorphism

+ : R∗ → R∗∗, where R∗∗ is a collection of bijections of the form R∗ → R∗. The isomoprphism
+X : R∗ → R∗ is defined by Y 7→+X Y ◦X. The elements of R∗ are functions on Z−. The elements of R∗∗
are bijective functions of the form R∗ → R∗. In conclusion, R ∼= R∗ ∼= R∗∗, and R∗∗ gives a complete
description of addition for real numbers.

6. Universe of Finite Sets

Previous expositions of axiomatic set theory for analysis begin with a description of the natural
numbers in two main forms [7] (pp. 21–22). These are known as Zermelo ordinals, and Neumann
ordinals. The first is the set {∅, {∅}, {{∅}}, {{{∅}}}, . . . }. That is to say, natural numbers have
been characterized as 0 = ∅, 1 = {0}, 2 = {1}, and in general n + 1 := {n} (Zermelo, 1908). The
second way, due to von Neumann, is N = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, . . . } and, in this
case, every natural number is the set of its predecessors, so that x + 1 := x ∪ {x}. These constructions
assign natural numbers to sets that are obtainable from the empty set in finite steps. However, in both
cases, some sets are left out. For example, the sets {∅, {{∅}}} and {∅, {{∅}, {{∅}}}} are not natural
numbers in either ordinal family. This is part of Benacerraf’s identification problem.
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One of our results is that the set U0, of objects constructed from the empty set with finite steps,
is equivalent to Co f (N). In this sense, we don’t leave out any sets of U0 when identifying them with
natural numbers. Indeed, all elements of U0 represent a unique natural number in Co f (N). In defining
the structure of Co f (N), we defined:

0 = ∅

1 = {0} = {∅}
2 = {1} = {{∅}}
3 = {0, 1} = {∅, {∅}}
4 = {2} = {{{∅}}}
5 = {0, 2} = {∅, {{∅}}}
6 = {1, 2} = {{∅}, {{∅}}}
7 = {0, 1, 2} = {∅, {∅}, {{∅}}}
8 = {3} = {{∅, {∅}}}
9 = {0, 3} = {∅, {∅, {∅}}}
...

...

Definition 1. Define a universe of sets U0.

1. ∅ ∈ U0

2. x1, x2, x3, . . . , xn ∈ U0, then {x1, x2, x3, . . . , xn} ∈ U0

3. U0 is the set of objects that satisfy 1. or 2.

Definition 2. For any ∅ 6= X ∈ U0, define X⊕ {∅} = (X4{∅})⊕ R, where R = {x⊕ {∅}}x∈(X∩{∅}).
For the empty set, we define ∅⊕ {∅} = {∅} ⊕ ∅ = {∅}. For any two A, B ∈ U0, we define the operation
A⊕ B = (A4B)⊕ {x⊕ {∅}}x∈(A∩B). In particular, define A⊕∅ = ∅⊕ A = A.

Axiom 1. Definition 2. Provides a bijection ⊕{∅} : U0 → (U0 − {∅}) that serves as successor function; the
successor of X being ⊕{∅}(X) = X⊕ {∅}.

The function ⊕{∅} is different than s(X), which added 1 to the elements of X. This function is
equivalent to the successor function that defines natural numbers.

Axiom 2. The definition of A⊕ B defines the operation of addition for natural numbers. We can always find
the set A⊕ B in finite steps, and this operation is isomorphic to the usual addition of natural numbers.

Let x ∈ N and X ∈ Co f (N) be its set number. It is left as an exercise for the reader to prove
⊕{∅}(X) is the set number corresponding to x + 1, for every 0 ≤ x ≤ 8, and compare the results:

{∅} ⊕ {∅} = ∅⊕ {s(x)}x∈{∅}

= {s(x)}x∈{∅}

= {s(∅)}
= {{∅}}

{{∅}} ⊕ {∅} = {∅, {∅}} ⊕ {s(x)}y∈∅

= {∅, {∅}} ⊕∅

= {∅, {∅}}
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{∅, {∅}} ⊕ {∅} = {{∅}} ⊕ {s(x)}x∈{∅}

= {{∅}} ⊕ {s(∅)}
= {{∅}} ⊕ {{∅}}
= ∅⊕ {s(x)}x∈{{∅}}

= {s({∅})}
= {{{∅}}}.

{{{∅}}} ⊕ {∅} = {∅, {{∅}}} ⊕ {s(x)}x∈∅

= {∅, {{∅}}} ⊕∅

= {∅, {{∅}}}.

Now, we can build the system of integer numbers, using the method of function spaces we
used in defining negative real numbers. Every element x ∈ U0 is associated with a bijective function
+x : U0 → Ux

0 , where Ux
0 is the set of elements of U0 that are greater than x. In particular, ∅ is the

identity function, and {∅} is associated to the successor function ⊕{∅}. If x is associated the function
+x, then x + 1 is associated the function +x ◦ ⊕{∅}; the functions are powers of composition. We
can build a relation order isomorphic to the integers. The objects are the powers of composition for
the successor function ⊕{∅}, and their inverse functions. The order of these objects is well defined.
Subsets of this space of ordered functions are the elements of R+.

It is also possible to define real numbers as subsets of 2U0 , due to our first construction of R→ 2N.

Theorem 1. The set of real numbers is U1 = 2U0 , the power set of U0. The suitable functions of addition,
product and order exist and are well defined in this universe. Natural numbers are finite subsets of U0. Real
numbers are identified with arbitrary subsets of U0.

Our axioms state that every set in U0 − {∅} is the successor of a set in U0, and that every set in
U0 has a successor in U0 − {∅}. Furthermore, there is a general procedure for finding the successor of
any set in U0; the successor of X is (X4{∅})⊕ {x⊕ {∅}}x∈(X∩{∅}). Our axioms assure us every set
in U0 is of the form (⊕{∅} ◦ ⊕{∅} ◦ · · · ◦ ⊕{∅})(∅), and that every composition (⊕{∅} ◦ ⊕{∅} ◦
· · · ◦ ⊕{∅})(∅) is an element of U0. We have an identification between 2−N and the continuum [0, 1].
Therefore, we have an identification of [0, 1] with 2U0 . Since we can again identify each number of the
unit interval with the extended real number line, we conclude that there is a natural identification of the
extended real number line with the set 2U0 . A more general question than Benacerraf’s identification
problem has been answered. We have provided a canonical set theory for natural numbers, which can
be extended to a canonical identification of 2U0 with the continuum [0, 1] and R.

7. Graphic Representations

We can give several graphic interpretations of our constructions to model numerical systems.
Collections of Arrows. In developing General Theory of Systems, we have to classify a system by

its objects and its relations. Binary relations are collections of arrows. Every number 0 ≤ a ≤ 31 is the
collection of arrows {x → a}, for all 0 ≤ x < a. For example, 23 = {0→ 23, 1→ 23, 2→ 23, 4→ 23}.
This means we provide an isomorphism that sends X ∈ N to the set of arrows {x → X}, for all x
element of the set number X. For example, 6 is represented by the collection of arrows {1→ 6, 2→ 6}
and 13 is the collection of arrows {0→ 13, 2→ 13, 3→ 13} (Figure 17).

We are showing a diagram of objects and arrows to describe the structure of the natural numbers.
The objects are the natural numbers 0, 1, 2, 3 . . . , and the arrows are 0→ 1, 0→ 3, 0→ 5, . . . ; 1→ 2,
1 → 3, 1 → 6, 1 → 7,. . . ; 2 → 4, 2 → 5, 2 → 6, 2 → 7, 2 → 12,. . . ; 3 → 8, 3 → 9, 3 → 10, 3 → 11,
3 → 12,. . . ; ... (see Figure 18). The pattern that these relations follow is obvious 0 ∈ {1 + 2i}i∈N,
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1 ∈ {2+ 4i, 3+ 4i}i∈N, 2 ∈ {4+ 8i, 5+ 8i, 6+ 8i, 7+ 8i}i∈N, 3 ∈ {8+ 16i, 9+ 16i, 10+ 16i, 11+ 16i, 12+
16i, 13 + 16i, 14 + 16i, 15 + 16i}i∈N, etc. In Figure 18, we represent the natural numbers from 0 to 31.
We arrange the objects along a circumference, and start adding the arrows to obtain Figure 18:

Figure 17. We represent the natural numbers from 0 to 15. Every number is connected to its elements.

Figure 18. We can represent several numbers in a single diagram. We label 32 points on the
circumference, and start adding arrows. Here we see the representation of numbers 0− 31.

Let us transform the real number line into a circumference. The integers correspond to the
discrete points (in red) of Figure 19. These have been determined by successive bisections of the
circumference. Given an arbitrary point (blue) on the continuum of the circumference, we have a
unique number x ∈ R. At the same time, |x| is a set of integers. Every real number is identified with a
subset of the red points. We draw arrows from the red points, corresponding to the elements of |x|,
into the blue point that corresponds to x.
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Figure 19. Graphic representation of three real numbers. Graph (a) is an approximation of π. The
second graph (b) is an approximation of −e, and (c) represents −4.375.

Trees. A tree is a graph of nodes and edges such that (1) We can identify a trunk: a principle edge
with a finite number of branches attached to one of the nodes. All branches are attached to the same
node of the trunk. (2) Each branch on the tree is a tree. (3) A single edge is a tree; we call it the 0-tree.
The successor of a tree is obtained by adding a single edge to the trunk. Adding an edge to the trunk
of the 0-tree gives its successor, the 1-tree, which is two edges joined together at one node. Adding an
edge to the 1-tree, we find its successor, the 2-tree. If two branches are repeated on the same trunk,
we substitute the two repeated branches with a single branch; the successor of these. This is called
reduction. If one tree can be reduced to obtain another tree, they are in the same equivalence class.
An irreducible tree is said to be in canonical form. Reducing the 2-tree, we find the canonical form
(Figure 20). Adding a single edge to that, we obtain the canonical form of the 3-tree. If we add an
edge to the 3-tree we have to reduce and obtain the canonical form of the 4-tree, etc. Every natural
number is associated an equivalence class of trees. Every branch on the canonical tree of a set number
X corresponds to a natural number k ∈ X. Every tree is made up of smaller trees, and we give a well
defined method of building trees. The canonical tree corresponding to the set number X has #(X)

branches. Each branch is defined in the same way.

Figure 20. Canonical trees can be built easily, given a set number. The canonical tree for 7 = {0, 1, 2}
has three branches. One branch is the 0-tree, the second branch is the 1-tree and the third branch is the
2-tree. The canonical tree of 8 = {3} is a trunk with one branch, which is the 3-tree.

We can represent non-negative real numbers if we define an orientation, and allow the tree to
have denumerable roots. A root would be a downward branch attached to the trunk. Roots represent the
negative elements of a set number.

Rings. A ring, R, is a circumference passing through the center of a denumerable number of rings
Ri. The central circumference R is said to have degree 0. The circumferences Ri are rings themselves;
we say they have degree 1. Each Ri is a circumference passing through the center of a denumerable set
Rji

i of circumferences of degree 2, and so on. A natural number n, with set number N, is represented
by an equivalence class of rings. To build the canonical ring corresponding to a natural number, we
draw an Ri, for each element of the set number N = {a1, a2, a3, . . . }. That is to say, the central ring is a
circumference going through #(N) circumferences; each of these a ring Ri. Then, Ri is a circumference
going through the center of #(ai) circumferences. We apply this recursively, until we bottom out.
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The equivalence relation between rings is defined similarly to trees. If we have a ring with two
identical rings, we substitute these both with a single ring; the successor ring of the repeated rings.
This process is called reduction. The successor ring of R is found by adding a single ring to the central
circumference of R, and then finding its irreducible ring (Figure 21).

Figure 21. The construction of rings is carried out similarly to the recursive construction of trees. The
canonical form of 8 = {3} is a ring R with one object a1. The ring a1 is the ring for 3. The ring for 3 is
itself a ring with two subrings a1,1 and a1,2 which are the rings for 0 and 1, respectively.

Consider the ring of the number 27 = {4, 3, 1, 0}. Then, R is a circumference passing through the
center of four rings R1, R2, R3, R4, each representing a number of the set {4, 3, 1, 0} (Figure 22).

Figure 22. Here we present the canonical ring of 27. Each of the rings of degree 1, correspond to an
elment of 27 = {4, 3, 1, 0}.

Giving a degree of freedom to the rings of degree 0 and 1, we are able to represent the set of real
numbers. If the number is negative, we paint the degree 0 ring red; if it is positive, the degree 0 ring is
blue. The degree 1 rings are allowed to be red or blue in order to represent negative integers; a red
degree 1 ring means we have a negative power in the binary representation. A 0 ring of degree 1 is
neither red nor blue because 20 = 1 is its own reciprocal (Figure 23).

Figure 23. Rings of degree greater than or equal to 2 are colorless. All 0 rings are colorless. Red
indicates negative and blue, positive. If the degree 0 ring is blue, x is positive real number. If the degree
0 ring is red, then x is a negative number. Each of the degree 1 rings (except for the 0 ring) are colored
red or blue because the powers of 2 that represent our set number are positive and negative integers.
No more coloring is needed to represent x.
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8. Conclusions

These methods and definitions are elementary, and the presentation may seem trivial and in plain
sight, but constructions and proofs are not apparent. The real number system has been revisited on
many occasions but has never had simple solution. The initial purpose of this investigation was to find
a system theoretic treatment of numbers, as opposed to the set theoretic foundations of the classical
axiomatic systems. The main goal was to propose a model of the relations of numerical systems, which
reflected their true nature in the universe of sets. This work comes after an initial attempt was made
in [8]. Our construction of real numbers has provided (1) New algorithms for calculating operations
of real numbers; (2) Graphic representations of real numbers—we can associate numbers to certain
classes of physical models. (3) We have provided a canonical set theory for arithmetic of natural
numbers, and for analysis, one set being the power set of the other. We have answered Benacerraf’s
identification problem [9] by giving these canonical set representations of numbers, thus proving that
there is an intrinsic connection between the universe of sets and the universe of arithmetic and analysis.
An extended version of these results and methods is under way. Several topics are treated in the same
way. The topics include a calculus defined in terms of the order of N. A computing device that operates
using radio frequency signals emitted back and forth between two stations is tempting. Station A emits
two sets of signals to station B, which then emits two signals back to station A. This process continues
until the signal stabilizes (we can use this physical process to model addition, using the interpretation
of energy levels). Other applications may be explored based on the graphic representations.
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