

Article The Laplacian Flow of Locally Conformal Calibrated G₂-Structures

Marisa Fernández^{1,*}, Victor Manero² and Jonatan Sánchez¹

- ¹ Departamento de Matemáticas, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain; jonatan.sanchez@ehu.eus
- ² Departamento de Matemáticas—IUMA, Facultad de Ciencias Humanas y de la Educación, Universidad de Zaragoza, 22003 Huesca, Spain; vmanero@unizar.es
- * Correspondence: marisa.fernandez@ehu.eus

Received: 8 November 2018; Accepted: 3 January 2019; Published: 11 January 2019

Abstract: We consider the Laplacian flow of locally conformal calibrated G₂-structures as a natural extension to these structures of the well-known Laplacian flow of calibrated G₂-structures. We study the Laplacian flow for two explicit examples of locally conformal calibrated G₂ manifolds and, in both cases, we obtain a flow of locally conformal calibrated G₂-structures, which are ancient solutions, that is they are defined on a time interval of the form $(-\infty, T)$, where T > 0 is a real number. Moreover, for each of these examples, we prove that the underlying metrics g(t) of the solution converge smoothly, up to pull-back by time-dependent diffeomorphisms, to a flat metric as t goes to $-\infty$, and they blow-up at a finite-time singularity.

Keywords: locally conformal calibrated G₂-structures; Laplacian flow; solvable Lie algebras

1. Introduction

A G₂-structure on a 7-manifold *M* can be characterized by the existence of a globally defined 3-form φ (the G₂ form) on *M*, which can be written at each point as

$$\varphi = e^{127} + e^{347} + e^{567} + e^{135} - e^{146} - e^{236} - e^{245},\tag{1}$$

with respect to some local coframe $\{e^1, \ldots, e^7\}$ on *M*. Here, e^{127} stands for $e^1 \wedge e^2 \wedge e^7$, and so on. A G₂-structure φ induces a Riemannian metric g_{φ} and a volume form $dV_{g_{\varphi}}$ on *M* given by

$$g_{\varphi}(X,Y) \, dV_{g_{\varphi}} = \frac{1}{6} \, i_X \varphi \wedge i_Y \varphi \wedge \varphi,$$

for any pair of vector fields *X*, *Y* on *M*, where i_X denotes the contraction by *X*.

The classes of G₂-structures can be described in terms of the exterior derivatives of the 3-form φ and the 4-form $\star_{\varphi}\varphi$ [1,2], where \star_{φ} is the Hodge operator defined from g_{φ} and $dV_{g_{\varphi}}$. If the 3-form φ is closed and coclosed, then the holonomy group of g_{φ} is a subgroup of the exceptional Lie group G₂ [2], and the metric g_{φ} is Ricci-flat [3]. When this happens, the G₂-structure is said to be *torsion-free* [4]. This condition has a variational formulation, due to Hitchin [5,6]. The first compact examples of Riemannian manifolds with holonomy G₂ were constructed first by Joyce [7,8], and then by Kovalev [9]. Recently, other examples of compact manifolds with holonomy G₂ were obtained in [10,11]. Explicit examples on solvable Lie groups were also constructed in [12]. A G₂-structure φ is called *locally conformal parallel* if φ satisfies the two following conditions

$$d\varphi = \theta \wedge \varphi, \qquad d(\star_{\varphi} \varphi) = \frac{4}{3} \theta \wedge \star_{\varphi} \varphi,$$
 (2)

for some closed non-vanishing 1-form θ , which is known as the *Lee form* of the G₂-structure. Such a G₂-structure is locally conformal to one which is torsion-free. Ivanov, Parton and Piccinni in [13] prove that a compact locally conformal parallel G₂ manifold is a mapping torus bundle over the circle S¹ with fibre a simply connected nearly Kähler manifold of dimension six and finite structure group.

We remind that a G₂-structure φ is called *closed* (or *calibrated* according to [14]) if $d\varphi = 0$. In this paper we will focus our attention on the class of locally conformal calibrated G₂-structures, which are characterized by the condition

$$d\varphi = \theta \wedge \varphi$$
,

where θ is a closed non-vanishing 1-form, which is also known as the *Lee form* of the G₂-structure. We will refer to a manifold equipped with such a structure as a *locally conformal calibrated* G_2 *manifold*. Each point of such a manifold has an open neighborhood U where $\theta = df$, for some $f \in \mathcal{F}(U)$ with $\mathcal{F}(U)$ being the algebra of the real differentiable functions on U, and the 3-form $e^{-f}\varphi$ defines a calibrated G₂-structure on U. Hence, locally conformal calibrated G₂-structures are locally conformal equivalent to calibrated G_2 -structures, and they can be considered analogous in dimension 7 to the locally conformal symplectic manifolds, which have been studied in [15–21] and the references therein. Some results of locally conformal calibrated G_2 manifolds were given in [22–25]. In fact, in [24] the first author and Ugarte introduced a differential complex for locally conformal calibrated G₂ manifolds, and such manifolds were characterized as the ones endowed with a G₂-structure φ for which the space of differential forms annihilated by φ becomes a differential subcomplex of the de Rham's complex. Moreover, in [23] it is proved that a similar result to that of Ivanov, Parton and Piccinni holds for compact 7-manifolds with a suitable locally conformal calibrated G₂-structure. More recently, a structure result for Lie algebras with an exact locally conformal calibrated G₂-structure was proved by Bazzoni and Raffero in [22], where it is also shown that none of the non-Abelian nilpotent Lie algebras with closed G₂-structures admits locally conformal calibrated G₂-structures.

Compact G_2 -calibrated manifolds have interesting curvature properties. As we mentioned before, a G_2 holonomy manifold is Ricci-flat or, equivalently, both Einstein and scalar-flat. But on a compact calibrated G_2 manifold, both the Einstein condition [26] and scalar-flatness [27] are equivalent to the holonomy being contained in G_2 . In fact, Bryant in [27] shows that the scalar curvature is always non-positive.

Locally conformal calibrated G₂-structures φ whose underlying Riemannian metric g_{φ} is Einstein have been studied in [25], where it was shown that in the compact case the scalar curvature of g_{φ} can not be positive. Then, Fino and Raffero in [25] show that a compact homogeneous 7-manifold cannot admit an invariant Einstein locally conformal calibrated G₂-structure φ unless the underlying metric g_{φ} is flat. However, in contrast to the compact homogeneous case, a non-compact example of homogeneous manifold *S* endowed with a locally conformal calibrated G₂-structure whose associated Riemannian metric is Einstein and non Ricci-flat was given in [25]. The manifold *S* is a simply connected solvable Lie group which is not unimodular (see Section 4.2 for details).

On the other hand, in [23] it is given an example of a compact manifold N with a locally conformal calibrated G_2 -structure. The manifold N is a compact solvmanifold, that is N is a compact quotient of a simply connected solvable Lie group K by a lattice, endowed with an invariant locally conformal calibrated G_2 -structure.

Since Hamilton introduced the Ricci flow in 1982 [28], geometric flows have been an important tool in studying geometric structures on manifolds. In G₂ geometry, geometric flows for different G₂-structures have been proposed. Let *M* be a 7-manifold endowed with a calibrated G₂-structure φ . The *Laplacian flow* starting from φ is the initial value problem

$$\begin{cases} \frac{d}{dt}\varphi(t) = \Delta_t \varphi(t) \\ d \varphi(t) = 0, \\ \varphi(0) = \varphi, \end{cases}$$

where $\varphi(t)$ is a closed G₂ form on *M*, and $\Delta_t = d d^* + d^* d$ is the Hodge Laplacian operator associated with the metric $g(t) = g_{\varphi(t)}$ induced by the 3-form $\varphi(t)$. This flow was introduced by Bryant in [27] as

a tool to find torsion-free G_2 -structures on compact manifolds. Short-time existence and uniqueness of the solution when M is compact were proved in [29]. The analytic and geometric properties of the Laplacian flow have been deeply investigated in the series of papers [30–32]. Non-compact examples where the flow converges to a flat G_2 -structure have been given in [33].

In [34], a flow evolving the 4-form $\psi = \star_{\varphi} \varphi$ in the direction of minus its Hodge Laplacian was introduced, and it is called *Laplacian coflow* of φ . This flow preserves the condition of the G₂-structure φ being coclosed, that is $\psi(t)$ is closed for any t, and it was studied in [34] for two explicit examples of coclosed G₂-structures. But no general result is known about the short time existence of the coflow. A *modified Laplacian coflow* was introduced by Grigorian in [35] (see also [36]). There it was proved that for compact manifolds, the modified Laplacian coflow has a unique solution $\psi(t)$ for the short time period $t \in [0, \epsilon]$, for some $\epsilon > 0$. Geometric properties of both coflows on the 7-dimensional Heisenberg group and on 7-dimensional almost-abelian Lie groups were proved in [37,38], respectively.

Some work has also been done on other related flows of G_2 -structures—such as the *Laplacian flow* and the *Laplacian coflow*, for locally conformal parallel G_2 -structures. These flows has been originally proposed by the second author with Otal and Villacampa in [39], and the first examples of long time solutions of the flows are given in [39].

In this note, for any locally conformal calibrated G_2 -structure φ on a manifold M, we consider the Laplacian flow of φ given by

$$\begin{cases} \frac{d}{dt}\varphi(t) = \Delta_t \,\varphi(t), \\ d \,\varphi(t) = \theta(t) \wedge \varphi(t) \\ \varphi(0) = \varphi. \end{cases}$$

We do not known any general result on the short time existence of solution for this flow. Nevertheless, in Section 4 (Theorems 1 and 2), for each of the aforementioned examples of solvable Lie groups *K* and *S* with a locally conformal calibrated G₂-structure, we show that the solution of the before Laplacian flow is *ancient*, that is it is defined on a time interval of the form $(-\infty, T)$, where T > 0is a real number. Moreover, for each of the two examples *K* and *S*, we show that the underlying metrics $g(t) = g_{\varphi(t)}$ of the solution converge smoothly, up to pull-back by time-dependent diffeomorphisms, to a flat metric as *t* goes to $-\infty$, and they blow-up in finite-time. As we mentioned before, the Lie group *S* has a locally conformal calibrated G₂-structure inducing an Einstein metric. We prove that the solution $\varphi(t)$ of the flow on *S* induces an Einstein metric for all time *t* where $\varphi(t)$ is defined.

2. G₂-Structures

Let *M* be a 7-dimensional manifold with a G₂-structure defined by a 3-form φ . Denote by ψ the 4-form $\psi = \star_{\varphi} \varphi$, where \star_{φ} is the Hodge star operator of the metric g_{φ} induced by φ . Let $(\Omega^*(M), d)$ be the de Rham complex of differential forms on *M*. Then, Bryant in [27] proved that the forms $d\varphi$ and $d\psi$ are such that

$$\begin{cases} d\varphi = \tau_0 \psi + 3 \tau_1 \wedge \varphi + \star_{\varphi} \tau_3, \\ d\psi = 4\tau_1 \wedge \psi - \star_{\varphi} \tau_2, \end{cases}$$
(3)

where $\tau_0 \in \Omega^0(M)$, $\tau_1 \in \Omega^1(M)$, $\tau_2 \in \Omega^2_{14}(M)$ and $\tau_3 \in \Omega^3_{27}(M)$. Here $\Omega^2_{14}(M)$ and $\Omega^3_{27}(M)$ are the spaces

$$\Omega_{14}^2(M) = \{ \alpha \in \Omega^2(M) \mid \alpha \land \varphi = -\star_{\varphi} \alpha \},$$

$$\Omega_{27}^3(M) = \{ \beta \in \Omega^3(M) \mid \beta \land \varphi = 0 = \beta \land \star_{\varphi} \varphi \}.$$

The differential forms τ_i (i = 0, 1, 2, 3) that appear in (3), are called the *intrinsic torsion forms* of φ . In terms of the torsion forms, some classes of G₂-structures with the defining conditions are recalled in the Table 1.

Note that if a manifold *M* has a locally conformal calibrated G_2 -structure φ , then

$$d\varphi = \theta \wedge \varphi$$
,

Table 1. Some classes of G₂-structures.

Class	Туре	Conditions
\mathcal{X}_0	parallel	$\tau_0, \tau_1, \tau_2, \tau_3 = 0$
\mathcal{X}_2	closed, calibrated	$\tau_0, \tau_1, \tau_3 = 0$
\mathcal{X}_4	locally conformal parallel	$\tau_0, \tau_2, \tau_3 = 0$
$\mathcal{X}_2\oplus\mathcal{X}_4$	locally conformal calibrated	$ au_0, au_3 = 0$

with θ the Lee form of φ . Thus, taking into account (3), the torsion form τ_1 of the G₂ form φ can be expressed in terms of the Lee form θ as $\tau_1 = \frac{1}{3}\theta$. Moreover (see [24]), the torsion forms τ_1 and τ_2 of φ can be obtained as follows:

$$\tau_{1} = -\frac{1}{12} \star_{\varphi} \left(\star_{\varphi} d\varphi \wedge \varphi \right),$$

$$\tau_{2} = \star_{\varphi} \left(4\tau_{1} \wedge \left(\star_{\varphi} \varphi \right) - d \star_{\varphi} \varphi \right).$$
(4)

3. The Laplacian Flow of Locally Conformal Calibrated G₂-Structures

In this section, we introduce the Laplacian flow of a locally conformal calibrated G_2 -structure on a manifold M and, for its equations, we show some properties that help us solve the flow when M is a Lie group.

Definition 1. Let *M* be a 7-manifold with a locally conformal calibrated G₂-structure φ . We say that a time-dependent G₂-structure $\varphi(t)$ on *M*, defined for *t* in some real open interval, satisfies the Laplacian flow system of φ if, for all times *t* for which $\varphi(t)$ is defined, we have

$$\begin{cases} \frac{d}{dt}\varphi(t) = \Delta_t \,\varphi(t), \\ d\,\varphi(t) = \theta(t) \wedge \varphi(t), \\ \varphi(0) = \varphi, \end{cases}$$
(5)

where $\theta(t)$ is the Lee form of $\varphi(t)$, and $\Delta_t = d d^* + d^* d$ is the Hodge Laplacian operator associated with the metric $g(t) = g_{\varphi(t)}$ induced by the 3-form $\varphi(t)$.

In order to solve the first equation of the flow (5) for our examples, we follow the approach of [39]. Let *G* be a simply connected solvable Lie group of dimension 7 with Lie algebra *g*. Let $\{e^1, \ldots, e^7\}$ be a basis of the dual space g^* of *g*, and let $f_i = f_i(t)$ $(i = 1, \ldots, 7)$ be some differentiable real functions depending on a parameter $t \in I \subset \mathbb{R}$ such that $f_i(0) = 1$ and $f_i(t) \neq 0$, for any $t \in I$, where *I* is a real open interval. For each $t \in I$, we consider the basis $\{x^1, \ldots, x^7\}$ of g^* defined by

$$x^{i} = x^{i}(t) = f_{i}(t)e^{i}, \quad 1 \le i \le 7.$$

We consider the one-parameter family of left invariant G₂-structures $\varphi(t)$ on *G* given by

$$\begin{aligned} \varphi(t) &= x^{127} + x^{347} + x^{567} + x^{135} - x^{146} - x^{236} - x^{245} \\ &= f_{127}e^{127} + f_{347}e^{347} + f_{567}e^{567} + f_{135}e^{135} - f_{146}e^{146} - f_{236}e^{236} - f_{245}e^{245}, \end{aligned}$$
(6)

where $f_{ijk} = f_{ijk}(t)$ stands for the product $f_i(t)f_j(t)f_k(t)$.

Now, we introduce the function $\varepsilon(i, j, k)$ on ordered indices (i, j, k) as follows:

$$\varepsilon(i,j,k) = \begin{cases} 1 & \text{if } (i,j,k) \in A = \{(1,2,7), (1,3,5), (3,4,7), (5,6,7)\}; \\ -1 & \text{if } (i,j,k) \in B = \{(1,4,6), (2,3,6), (2,4,5)\}; \\ 0 & \text{otherwise.} \end{cases}$$

Axioms 2019, 8, 7

Thus, the G₂ form φ defined in (1), can be rexpressed as $\varphi = \sum_{(i,j,k) \in A \cup B} \varepsilon(i,j,k) e^{ijk}$, and the G₂ form $\varphi(t)$ given by (6) becomes

$$\varphi(t) = \sum_{(i,j,k) \in A \cup B} \varepsilon(i,j,k) x^{ijk}$$

Therefore,

$$\begin{aligned} \frac{d}{dt}\varphi(t) &= \sum_{(i,j,k)\in A\cup B} \varepsilon(i,j,k) \frac{df_{ijk}}{dt} e^{ijk} \\ &= \sum_{(i,j,k)\in A\cup B} \varepsilon(i,j,k) \frac{(f_{ijk})'}{f_{ijk}} x^{ijk} \\ &= \sum_{(i,j,k)\in A\cup B} \varepsilon(i,j,k) \frac{d}{dt} \left(\ln f_{ijk}\right) x^{ijk}. \end{aligned}$$

Moreover, we have

$$\Delta_t \varphi(t) = \sum_{(i,j,k) \in A \cup B} \varepsilon(i,j,k) \Delta_{ijk} x^{ijk} + \sum_{1 \le l < m < n \le 7, (l,m,n) \notin A \cup B} \Delta_{lmn} x^{lmn}$$

where $\varepsilon(i, j, k)\Delta_{ijk}$ is the coefficient in x^{ijk} of $\Delta_t \varphi(t)$ if $(i, j, k) \in A \cup B$ (i.e., if $\varepsilon(i, j, k) \neq 0$), and Δ_{lmn} is the coefficient in x^{lmn} of $\Delta_t \varphi(t)$ if $1 \leq l < m < n \leq 7$ and $\varepsilon(l, m, n) = 0$. Consequently, the first equation of the flow (5) is equivalent to the system of differential equations

$$\begin{cases} \Delta_{ijk} = \frac{(f_{ijk})'}{f_{ijk}} & \text{if } (i,j,k) \in A \cup B, \\ \Delta_{lmn} = 0 & \text{if } 1 \le l < m < n \le 7 \text{ and } (l,m,n) \notin A \cup B, \end{cases}$$

$$\tag{7}$$

that is,

$$\begin{cases} \Delta_{ijk} = \frac{d}{dt} \ln(f_{ijk}) & \text{if } (i, j, k) \in A \cup B, \\ \Delta_{lmn} = 0 & \text{if } 1 \le l < m < n \le 7 \text{ and } (l, m, n) \notin A \cup B. \end{cases}$$

$$\tag{8}$$

We will also use the following properties of Δ_{iik} .

Lemma 1. Let $\varphi(t)$ be a family of left invariant G₂-structures on the Lie group G solving the system (7), and such that $\varphi(t)$ can be expressed as (6), for some functions $f_i = f_i(t)$. For ordered indices (i, j, k) and $(p, q, r) \in A \cup B$ (that is, $\varepsilon(i, j, k)$ and $\varepsilon(p, q, r)$ are both non-zero) we have

- *i*) *if* $\Delta_{ijk} = \Delta_{pqr}$, then $f_{ijk} = f_{pqr}$;
- *ii) if* $f_{ijk}\Delta_{ijk} = f_{pqr}\Delta_{pqr}$, then $f_{ijk} = f_{pqr}$;
- *iii)* if $\Delta_{ijk} + \Delta_{pqr} = 0$, then $f_{ijk}f_{pqr} = 1$;
- *iv)* if $f_{ijk}\Delta_{ijk} + f_{pqr}\Delta_{pqr} = 0$, then $f_{ijk} + f_{pqr} = 2$.

Proof. The first statement of this Lemma was proved in [39]. Nevertheless, we point out how to prove it. Since $\Delta_{ijk} = \Delta_{pqr}$, the system (8) implies that $\frac{d}{dt} \ln f_{ijk} = \frac{d}{dt} \ln f_{pqr}$. Hence, $\ln f_{ijk} = \ln f_{pqr} + C$, for some constant *C*. Now, using that $f_i(0) = 1$, for i = 1, ..., 7, we have that C = 0. So, $f_{ijk} = f_{pqr}$, which proves *i*).

Now, let us suppose that $f_{ijk}\Delta_{ijk} = f_{pqr}\Delta_{pqr}$, for some i, j, k, p, q, r with $1 \le i < j < k \le 7$ and $1 \le p < q < r \le 7$. From (7), we get

$$(f_{ijk})' = (f_{pqr})'.$$

Integrating this equation, we obtain $f_{ijk} = f_{pqr} + C$, for some constant C. Since $f_i(0) = 1$, for all i = 1, ..., 7, we have C = 0, and so $f_{ijk} = f_{pqr}$. This proves *ii*).

To prove *iii*), we use (8), and we obtain

$$\ln(f_{ijk} \cdot f_{pqr}) = C,$$

for some constant *C*. But $f_i(0) = 1$, for all i = 1, ..., 7, imply that C = 0, that is

$$f_{ijk} \cdot f_{pqr} = 1.$$

Finally, let us suppose that $f_{ijk}\Delta_{ijk} + f_{pqr}\Delta_{pqr} = 0$, for some i, j, k, p, q, r with $1 \le i < j < k \le 7$ and $1 \le p < q < r \le 7$. Then, using (7), we get $(f_{ijk})' = -(f_{pqr})'$. Integrating this equation, we obtain $f_{ijk} = -f_{pqr} + C$, for some constant C. But C = 2 since $f_i(0) = 1$, for all i = 1, ..., 7. Thus, $f_{ijk} + f_{pqr} = 2$, which completes the proof. \Box

4. Solutions of the Laplacian Flow on Locally Conformal Calibrated G₂ Solvmanifolds

Lie groups admitting left invariant locally conformal calibrated G_2 -structures constitute a convenient setting where it is possible to investigate the behaviour of the Laplacian flow (5) in the non-compact case.

In this section, we consider two examples of solvable Lie groups *K* and *S*, each of them with a left invariant locally conformal calibrated G₂-structure, and we show that in both cases the solution is ancient (i.e. it is defined in some interval $(-\infty, T)$, with $0 < T < +\infty$) and the induced metrics blow-up at a finite-time singularity.

4.1. The Laplacian Flow on K

Let *K* be the simply connected and solvable Lie group of dimension 7 whose Lie algebra *k* is defined by

$$k = \left(e^{37}, e^{47}, -e^{17}, -e^{27}, e^{14} + e^{23}, e^{13} - e^{24}, 0\right).$$

Here, e^{37} stands for $e^3 \wedge e^7$, and so on; and $(e^{37}, e^{47}, -e^{17}, -e^{27}, e^{14} + e^{23}, e^{13} - e^{24}, 0)$ means that there is a basis $\{e^1, \ldots, e^7\}$ of the dual space k^* of k, satisfying

$$de^{1} = e^{37}, de^{2} = e^{47}, de^{3} = -e^{17}, de^{4} = -e^{27}, de^{5} = e^{14} + e^{23}, de^{6} = e^{13} - e^{24}, de^{7} = 0, (9)$$

where *d* denotes the Chevalley-Eilenberg differential on k^* .

The 3-form φ on *K* given by

$$\varphi = e^{127} + e^{347} + e^{567} + e^{135} - e^{146} - e^{236} - e^{245}$$
(10)

defines a left invariant locally conformal calibrated G₂-structure on the Lie group *K*, with Lee form $\theta = e^7$, and so with torsion form $\tau_1 = \frac{1}{3}e^7$. In fact,

$$d\varphi = -e^{1357} + e^{1467} + e^{2367} + e^{2457} = e^7 \wedge \varphi.$$

In [23] it is proved that there exists a lattice Γ in K, so that the quotient space of right cosets $\Gamma \setminus K$ is a compact solvmanifold endowed with an invariant locally conformal calibrated G₂-structure φ , with Lee form $\theta = e^7$.

However, we should note that in the following Theorem, we will show a solution of the Laplacian flow (5) of the G₂ form φ (defined by (10)) on the Lie group *K*. Such a solution does not solve the Laplacian flow of φ on the compact quotient $\Gamma \setminus K$ since we will consider the Hodge Laplacian operator Δ_t on the Lie algebra *k* of *K* and we cannot check the Hodge Laplacian operator on the compact space $\Gamma \setminus K$.

Theorem 1. The family of locally conformal calibrated G_2 -structures $\varphi(t)$ on K given by

$$\varphi(t) = e^{127} + e^{347} + \left(1 - \frac{8}{3}t\right)^{-3/2} \left(e^{567} + e^{135} - e^{146} - e^{236} - e^{245}\right)$$
(11)

is the solution for the Laplacian flow (5) of the G₂ form φ given by (10), where $t \in \left(-\infty, \frac{3}{8}\right)$. The Lee form $\theta(t)$ of $\varphi(t)$ is $\theta(t) = e^7$. Moreover, the underlying metrics g(t) of this solution converge smoothly, up to pull-back by time-dependent diffeomorphisms, to a flat metric, uniformly on compact sets in K, as t goes to $-\infty$, and they blow-up as t goes to $\frac{3}{8}$.

Proof. As in Section 2, let $f_i = f_i(t)$ (i = 1, ..., 7) be some differentiable real functions depending on a parameter $t \in I \subset \mathbb{R}$ such that $f_i(0) = 1$ and $f_i(t) \neq 0$, for any $t \in I$, where I is a real open interval. For each $t \in I$, we consider the basis { $x^1, ..., x^7$ } of left invariant 1-forms on K defined by

$$x^i = x^i(t) = f_i(t)e^i, \quad 1 \le i \le 7$$

Taking into account (9), the structure equations of *K* with respect to the basis $\{x^1, \ldots, x^7\}$ are

$$dx^{1} = \frac{f_{1}}{f_{37}}x^{37}, \qquad dx^{2} = \frac{f_{2}}{f_{47}}x^{47}, \qquad dx^{3} = -\frac{f_{3}}{f_{17}}x^{17}, \qquad dx^{4} = -\frac{f_{4}}{f_{27}}x^{27},$$

$$dx^{5} = \frac{f_{5}}{f_{14}}x^{14} + \frac{f_{5}}{f_{23}}x^{23}, \qquad dx^{6} = \frac{f_{6}}{f_{13}}x^{13} - \frac{f_{6}}{f_{24}}x^{24}, \qquad dx^{7} = 0.$$
(12)

From now on, we write $f_{ij} = f_{ij}(t) = f_i(t)f_j(t)$, $f_{ijk} = f_{ijk}(t) = f_i(t)f_j(t)f_k(t)$, and so forth. Then, for any $t \in I$, we consider the G₂-structure $\varphi(t)$ on K given by

$$\varphi(t) = x^{127} + x^{347} + x^{567} + x^{135} - x^{146} - x^{236} - x^{245}$$

= $f_{127}e^{127} + f_{347}e^{347} + f_{567}e^{567} + f_{135}e^{135} - f_{146}e^{146} - f_{236}e^{236} - f_{245}e^{245}.$ (13)

Note that the 3-form $\varphi(t)$ defined by (13) is such that $\varphi(0) = \varphi$ and, for any t, $\varphi(t)$ determines the metric g(t) on K such that the basis $\{x_i = \frac{1}{f_i}e_i; i = 1, ..., 7\}$ of left invariant vector fields on K dual to $\{x^1, ..., x^7\}$ is orthonormal. So, $g(t)(e_i, e_i) = f_i^2$, and hence $f_i = f_i(t) > 0$.

To solve the flow (5) of φ we determine firstly the functions f_i and the interval I so that $\frac{d}{dt}\varphi(t) = \Delta_t \varphi(t)$, for $t \in I$. We know that

$$\Delta_t \varphi(t) = (\star_t d \star_t d - d \star_t d \star_t) \varphi(t).$$

We calculate separately each of the terms $\star_t d \star_t d\varphi(t)$ and $-d \star_t d \star_t \varphi(t)$ of $\Delta_t \varphi(t)$. Taking into account (12) and the fact that the basis $\{x^1(t), \ldots, x^7(t)\}$ is orthonormal, we have

$$\star_{t}d \star_{t}d\varphi(t) = -\frac{(f_{1}f_{4} - f_{2}f_{3})(f_{2}f_{3} + f_{1}f_{4})f_{5}}{f_{1}f_{2}f_{3}^{2}f_{4}^{2}f_{7}} x^{126} - \frac{(f_{1}f_{4} - f_{2}f_{3})(f_{1}^{2}f_{2}^{2} + f_{3}^{2}f_{4}^{2})}{f_{1}f_{2}^{2}f_{3}^{2}f_{4}f_{7}^{2}} x^{146} - \frac{(f_{2}f_{3} - f_{1}f_{4})(f_{1}^{2}f_{2}^{2} + f_{3}^{2}f_{4}^{2})}{f_{1}^{2}f_{2}f_{3}f_{4}^{2}f_{7}^{2}} x^{236} + \frac{(f_{1}f_{4} - f_{2}f_{3})(f_{2}f_{3} + f_{1}f_{4})f_{5}}{f_{1}^{2}f_{2}^{2}f_{3}f_{4}f_{7}} x^{346} + \frac{(f_{2}^{2}f_{3}^{2}f_{5}^{2} + f_{1}^{2}f_{4}^{2}f_{5}^{2} + f_{1}^{2}f_{3}^{2}f_{6}^{2} + f_{2}^{2}f_{4}^{2}f_{6}^{2})}{f_{1}^{2}f_{2}^{2}f_{3}^{2}f_{4}^{2}} x^{567},$$
(14)

and, on the other hand, we obtain

$$d \star_{t} d \star_{t} \varphi(t) = \frac{(f_{1}f_{2} - f_{3}f_{4}) (f_{2}^{2}f_{3}^{2} + f_{1}^{2}f_{4}^{2})}{f_{1}^{2}f_{2}^{2}f_{3}f_{4}f_{7}^{2}} x^{127} - \frac{f_{6} (f_{2}f_{3}f_{5} + f_{1}f_{4}f_{5} + f_{1}f_{3}f_{6} + f_{2}f_{4}f_{6})}{f_{1}^{2}f_{2}f_{3}f_{4}} x^{135} + \frac{f_{5} (f_{2}f_{3}f_{5} + f_{1}f_{4}f_{5} + f_{1}f_{3}f_{6} + f_{2}f_{4}f_{6})}{f_{1}^{2}f_{2}f_{3}f_{4}^{2}} x^{146} + \frac{f_{5} (f_{2}f_{3}f_{5} + f_{1}f_{4}f_{5} + f_{1}f_{3}f_{6} + f_{2}f_{4}f_{6})}{f_{1}f_{2}^{2}f_{3}^{2}f_{4}} x^{236} + \frac{f_{6} (f_{2}f_{3}f_{5} + f_{1}f_{4}f_{5} + f_{1}f_{3}f_{6} + f_{2}f_{4}f_{6})}{f_{1}f_{2}^{2}f_{3}f_{4}^{2}} x^{245} - \frac{(f_{1}f_{2} - f_{3}f_{4}) (f_{2}^{2}f_{3}^{2} + f_{1}^{2}f_{4}^{2})}{f_{1}f_{2}f_{3}^{2}f_{4}^{2}} x^{347}.$$

$$(15)$$

Since (1, 2, 6) and $(3, 4, 6) \notin A \cup B$, the system (7) implies that $\Delta_{126} = 0 = \Delta_{346}$. Moreover, from (14) and (15) we have

$$\Delta_{126} = \frac{f_5}{f_7} \left(\frac{f_2}{f_1 f_4^2} - \frac{f_1}{f_2 f_3^2} \right),$$

and

$$\Delta_{346} = \frac{f_5}{f_7} \left(\frac{f_4}{f_2^2 f_3} - \frac{f_3}{f_1^2 f_4} \right).$$

Each of these equalities implies that $f_{14}^2 = f_{23}^2$, and so

$$f_{14} = f_{23} \tag{16}$$

since $f_i = f_i(t) > 0$.

Also (14) and (15) imply that the coefficients Δ_{ijk} , with $(i, j, k) \in A \cup B$, are given by

$$\Delta_{127} = -\frac{f_3}{f_1} B_{23} + \frac{f_4}{f_2} B_{14}, \qquad \Delta_{347} = \frac{f_2}{f_4} B_{23} - \frac{f_1}{f_3} B_{14}, \Delta_{135} = \frac{f_6}{f_{13}} A, \qquad \Delta_{245} = \frac{f_6}{f_{24}} A, \Delta_{146} = \frac{f_5}{f_{14}} A - \frac{f_1}{f_3} B_{12} + \frac{f_4}{f_2} B_{34}, \qquad \Delta_{236} = \frac{f_5}{f_{23}} A + \frac{f_2}{f_4} B_{12} - \frac{f_3}{f_1} B_{34}, \Delta_{567} = A_2,$$
(17)

where

$$A = f_5 \left(\frac{1}{f_{23}} + \frac{1}{f_{14}}\right) + f_6 \left(\frac{1}{f_{13}} + \frac{1}{f_{24}}\right), \quad A_2 = f_5^2 \left(\frac{1}{f_{23}^2} + \frac{1}{f_{14}^2}\right) + f_6^2 \left(\frac{1}{f_{13}^2} + \frac{1}{f_{24}^2}\right),$$

$$B_{12} = \frac{1}{f_7^2} \left(\frac{f_2}{f_4} - \frac{f_1}{f_3}\right), \quad B_{34} = \frac{1}{f_7^2} \left(\frac{f_4}{f_2} - \frac{f_3}{f_1}\right), \quad (18)$$

$$B_{23} = \frac{1}{f_7^2} \left(\frac{f_2}{f_4} - \frac{f_3}{f_1}\right), \quad B_{14} = \frac{1}{f_7^2} \left(\frac{f_4}{f_2} - \frac{f_1}{f_3}\right).$$

Using (17), one can check that $f_{135}\Delta_{135} = f_{245}\Delta_{245}$. Thus, $f_{13} = f_{24}$ by Lemma 1–*ii*). This equality and (16) imply

$$f_1 = f_2, \qquad f_3 = f_4.$$
 (19)

The equalities (19) imply that the functions B_{12} and B_{34} defined in (18) are such that $B_{12} = 0 = B_{34}$. Hence, $\Delta_{146} = \frac{f_5}{f_{14}}A$. So, from (17), we have $f_{146}\Delta_{146} = f_{245}\Delta_{245}$. Now, Lemma 1–*ii*) and (19) imply

$$f_5 = f_6.$$
 (20)

Moreover, from (18) and (19) we get $B_{14} = -B_{23}$. Then, from (17) we have $f_{127}\Delta_{127} + f_{347}\Delta_{347} = 0$. Now, Lemma 1–*iv*) implies $f_{12} + f_{34} = 2/f_7$.

Thus,

$$f_7 = \frac{2}{(f_1^2 + f_3^2)}.$$
(21)

Using the equalities (19) and (21), we obtain that $\Delta_{135} = \Delta_{567}$. Therefore, by Lemma 1–*i*) we have

$$f_{13} = f_{67}$$
.

From this equality and (21), we obtain

$$f_6 = \frac{1}{2} f_{13} \left(f_1^2 + f_3^2 \right). \tag{22}$$

In summary, from (19)–(22), we have

$$f_1 = f_2,$$
 $f_3 = f_4,$ $f_5 = f_6 = \frac{1}{2}f_{13}(f_1^2 + f_3^2),$ $f_7 = \frac{2}{f_1^2 + f_3^2}$

Now, we can suppose that $f_3 = f_1 = f$ (see below Lemma 2). Then, the previous conditions reduce to

$$f_1 = f_2 = f_3 = f_4 = f, \qquad f_5 = f_6 = f^4, \qquad f_7 = f^{-2}.$$
 (23)

Then, by (18), $B_{14} = 0 = B_{23}$ since $f_1 = f_2 = f_3 = f_4$ by (23). So, $\Delta_{127} = 0 = \Delta_{347}$. This implies that the unique non-zero components Δ_{ijk} of the Laplacian of $\Delta_t \varphi(t)$ are

$$\Delta_{567} = \Delta_{135} = \Delta_{146} = \Delta_{236} = \Delta_{245} = 4f^4.$$

Then, the system of differential Equations (7) reduces to

$$f^{-5}f' = \frac{2}{3}.$$

Integrating this equation, we obtain

$$f = \left(C - \frac{8}{3}t\right)^{-\frac{1}{4}}, \qquad C = constant.$$
(24)

But f(0) = 1 implies C = 1. Hence,

$$f = f(t) = \left(1 - \frac{8}{3}t\right)^{-\frac{1}{4}}.$$

Therefore, the one-parameter family of 3-forms $\varphi(t)$ given by (11) is the solution of the Laplacian flow of φ on *K*, and it exists for every $t \in \left(-\infty, \frac{3}{8}\right)$.

A simple computation shows that

$$d\varphi(t) = f^6 \left(-e^{1357} + e^{1467} + e^{2367} + e^{2457} \right) = e^7 \wedge \varphi(t),$$

and so the Lee form $\theta(t)$ of $\varphi(t)$ is $\theta(t) = e^7$.

Now we study the behavior of the underlying metric g(t) of such a solution in the limit for $t \to -\infty$. If we think of the Laplacian flow as a one parameter family of G₂ manifolds with a locally conformal calibrated G₂-structure, it can be checked that, in the limit, the resulting manifold has

vanishing curvature. For $t \in (-\infty, \frac{3}{8})$, let us consider the metric g(t) on K induced by the G₂ form $\varphi(t)$ given by (11). Then,

$$g(t) = \left(1 - \frac{8}{3}t\right)^{-\frac{1}{2}}(e^{1})^{2} + \left(1 - \frac{8}{3}t\right)^{-\frac{1}{2}}(e^{2})^{2} + \left(1 - \frac{8}{3}t\right)^{-\frac{1}{2}}(e^{3})^{2} \\ + \left(1 - \frac{8}{3}t\right)^{-\frac{1}{2}}(e^{4})^{2} + \left(1 - \frac{8}{3}t\right)^{-2}(e^{5})^{2} + \left(1 - \frac{8}{3}t\right)^{-2}(e^{6})^{2} \\ + \left(1 - \frac{8}{3}t\right)^{-1}(e^{7})^{2}.$$

Then, taking into account the symmetry properties of the Riemannian curvature R(t) we obtain

$$\begin{split} R_{1234} &= R_{1256} = R_{3456} = -\frac{1}{2(1-\frac{8}{3}t)}, \\ R_{1313} &= R_{1414} = R_{2323} = R_{2424} = \frac{3}{4(1-\frac{8}{3}t)}, \\ R_{1515} &= R_{1616} = R_{2525} = R_{2626} = R_{3535} = R_{3636} = R_{4545} = R_{4646} \\ &= R_{1324} = R_{1432} = R_{1526} = R_{1652} = R_{3546} = R_{3654} = -\frac{1}{4(1-\frac{8}{3}t)}, \\ R_{ijkl} &= 0 \qquad \text{otherwise,} \end{split}$$

where $R_{ijkl} = R(t)(e_i, e_j, e_k, e_l)$. Therefore, $\lim_{t\to -\infty} R(t) = 0$.

Furthermore, the curvatures R(g(t)) of g(t) blow-up as t goes to $\frac{3}{8}$, and the finite-time singularity is of Type I since $R(g(t)) = O(1 - \frac{8}{3}t)^{-1}$ as $t \to \frac{3}{8}$; in fact,

$$\lim_{t \to \frac{3}{8}} \frac{|R(g(t))|}{(1 - \frac{8}{3}t)^{-1}} < \infty.$$

To complete the proof of Theorem 1, we show that under the conditions (19)–(22) the assumption $f_1 = f_3$, that we made in its proof, is correct.

Lemma 2. If the 3-form $\varphi(t)$ defined in (13) is the solution for the Laplacian flow (5) of the G₂ form φ given by (10), then $f_1(t) = f_3(t)$.

Proof. Take $u = f_1$ and $v = f_3$. We know that if the 3-form $\varphi(t)$ defined in (13) is the solution for the Laplacian flow (5) of the G₂ form φ , then the equalities (19)–(22) are satisfied. Now, taking into account (17), the equalities (19)–(22) imply that the Hodge Laplacian $\Delta_t \varphi(t)$ of $\varphi(t)$ has the following expression

$$\Delta_t \varphi(t) = -\frac{(u^2 - v^2)(u^2 + v^2)^2}{2u^2} x^{127} + \frac{(u^2 - v^2)(u^2 + v^2)^2}{2v^2} x^{347} + (u^2 + v^2)^2 \left(x^{567} + x^{135} - x^{146} - x^{236} - x^{245}\right).$$

Thus, for $(i, j, k) \in \{(1, 2, 7), (3, 4, 7)\}$, the equation $\Delta_{ijk} = \frac{(f_{ijk})'}{f_{ijk}}$ of the system (7) becomes in both cases

$$\frac{du}{dt} = -\frac{(u^2 - 2v^2)(u^2 + v^2)^3}{12uv^2},$$

while for $(i, j, k) \in A \cup B$ with $(1, 2, 7) \neq (i, j, k) \neq (3, 4, 7)$, the equation $\Delta_{ijk} = \frac{(f_{ijk})'}{f_{ijk}}$ is expressed as

$$\frac{dv}{dt} = \frac{(2u^2 - v^2)(u^2 + v^2)^3}{12u^2v}.$$

Therefore, the system (7) becomes

$$\begin{cases} \frac{du}{dt} = -\frac{(u^2 - 2v^2)(u^2 + v^2)^3}{12uv^2},\\ \frac{dv}{dt} = \frac{(2u^2 - v^2)(u^2 + v^2)^3}{12u^2v},\\ u(0) = v(0) = 1. \end{cases}$$
(25)

Thus,

$$\frac{dv}{du} = -\frac{v(2u^2 - v^2)}{u(u^2 - 2v^2)}.$$
(26)

To solve this differential equation, we consider the change of variable w = v/u. Then, (26) can be expressed as follows:

$$u\frac{dw}{du} + w = -w\frac{2-w^2}{1-2w^2}.$$

We solve this differential equation by applying separation of variables, and we get the following solution

$$\ln u + C = -\frac{1}{6} \left(\ln \left(1 - w^2 \right) + 2 \ln w \right) = \frac{1}{6} \ln \frac{v^2 \left(u^2 - v^2 \right)}{u^4},$$

for some constant C. This equation is equivalent to

$$\tilde{C}u^2 = v^2 \left(u^2 - v^2\right),$$

for some constant \tilde{C} . Thus, $\tilde{C} = 0$ since u(0) = v(0) = 1. Therefore, since $v(t) = f_3(t) \neq 0$ for all t, for the functions u and v we have three possibilities: u = v, u = -v or v = 0. But u(0) = 1 = v(0), hence the only possibility is u(t) = v(t), that is, $f_1(t) = f_3(t)$. (Here, we would like to note that since u(t) = v(t), the second differential equation of the system (25) reduces to $\frac{6}{u} \frac{du}{dt} = 4u^4$, that is the differential Equation (24), which we have solved before.) \Box

Remark 1. Note that proceeding in a similar way as Lauret did in [40] for the Ricci flow, we can evolve the Lie brackets $\mu(t)$ instead of the 3-form defining the G₂-structure, and we can show that the corresponding bracket flow has a solution for every t. In fact, if we fix on \mathbb{R}^7 the 3-form $x^{127} + x^{347} + x^{567} + x^{135} - x^{146} - x^{236} - x^{245}$, the basis $\{x_1(t), \ldots, x_7(t)\}$ defines, for every real number $t \in (-\infty, \frac{3}{8})$, a solvable Lie algebra with bracket $\mu(t)$ such that $\mu(0)$ is the Lie bracket of the Lie algebra k of K. Moreover, the solution of the bracket flow converges to the null bracket corresponding to the abelian Lie algebra as t goes to $-\infty$, and it blows-up as t goes to $\frac{3}{8}$.

Remark 2. Taking into account (4) and (11), one can check that the torsion form $\tau_2(t)$ of $\varphi(t)$ is given by

$$\tau_2(t) = \frac{4}{3} \left(1 - \frac{8}{3}t \right)^{-1} \left(e^{12} + e^{34} \right) - \frac{8}{3} \left(1 - \frac{8}{3}t \right)^{-5/2} e^{56}.$$

Thus, $\lim_{t\to-\infty} \tau_2(t) = 0$. However, the solution $\varphi(t)$ does not converge to a locally conformal parallel G₂-structure as t goes to $-\infty$ since, by (11), the G₂ forms $\varphi(t)$ degenerate when $t \to -\infty$. Moreover, $\varphi(t)$ blows-up as t goes to $\frac{3}{8}$.

4.2. The Laplacian Flow on S

Now we consider the simply connected and solvable Lie group *S* whose Lie algebra *s* is defined as follows:

$$s = \left(\frac{1}{2}e^{17}, \frac{1}{2}e^{27}, \frac{1}{2}e^{37}, \frac{1}{2}e^{47}, e^{14} + e^{23} + e^{57}, e^{13} - e^{24} + e^{67}, 0\right).$$
(27)

Then, the 3-form φ given by

$$\varphi = e^{127} + e^{347} + e^{567} + e^{135} - e^{146} - e^{236} - e^{245}$$
(28)

defines a left invariant locally conformal calibrated G₂-structure on the Lie group *S*, with Lee form $\theta = -e^7$, and so with torsion form $\tau_1 = -\frac{1}{3}e^7$. In fact,

$$d\varphi = e^{1357} - e^{1467} - e^{2367} - e^{2457} = -e^7 \wedge \varphi.$$

Since *S* is a nonunimodular Lie group, *S* cannot admit a lattice Γ such that the quotient space $\Gamma \setminus S$ is a compact solvmanifold. In fact, the linear map $s \to \mathbb{R}$, $X \to tr(ad X)$ is such that $tr(ad e_7)$ is non-zero, where $\{e_1, \ldots, e_7\}$ is the basis of *s* dual to the basis $\{e^1, \ldots, e^7\}$ of s^* .

Theorem 2. The family of locally conformal calibrated G_2 -structures $\varphi(t)$ on S given by

$$\varphi(t) = (1 - 4t)^{3/4} e^{127} + (1 - 4t)^{3/4} e^{347} + e^{567} + e^{135} - e^{146} - e^{236} - e^{245}$$
(29)

is the solution for the Laplacian flow (5) of the G₂ form φ given by (28), where $t \in \left(-\infty, \frac{1}{4}\right)$. The Lee form $\theta(t)$ of $\varphi(t)$ is $\theta(t) = -e^7$. Moreover, the underlying metrics g(t) of this solution converge smoothly, up to pull-back by time-dependent diffeomorphisms, to a flat metric, uniformly on compact sets in S, as t goes to $-\infty$, and they blow-up as t goes to $\frac{1}{4}$.

Proof. To study the flow (5) of the G_2 form φ defined in (28), we should proceed as in Theorem 1. However, in order to short the proof, we will show directly that the one-parameter family of G_2 -structures given by (29) is the solution for the flow (5). For this, we consider the differentiable real functions $f_i = f_i(t)$ (i = 1, ..., 7) given by

$$f_i(t) = (1 - 4t)^{1/8}, \quad i = 1, 2, 3, 4,$$

$$f_5(t) = f_6(t) = (1 - 4t)^{-1/4},$$

$$f_7(t) = (1 - 4t)^{1/2}.$$
(30)

These functions are defined for all $t \in \left(-\infty, \frac{1}{4}\right)$; moreover, $f_i(t) > 0$, for $t \in \left(-\infty, \frac{1}{4}\right)$.

Now, for each $t \in \left(-\infty, \frac{1}{4}\right)$, we consider the basis $\{x^1, \ldots, x^7\}$ of left invariant 1-forms on *S* defined by

$$x^{i} = x^{i}(t) = f_{i}(t)e^{i}, \quad 1 \le i \le 7.$$

Taking into account (30) and (27), the structure equations of *S* with respect to the basis $\{x^1, \ldots, x^7\}$ are

$$dx^{1} = \frac{1}{2} (1 - 4t)^{-1/2} x^{17}, \qquad dx^{2} = \frac{1}{2} (1 - 4t)^{-1/2} x^{27}, dx^{3} = \frac{1}{2} (1 - 4t)^{-1/2} x^{37}, \qquad dx^{4} = \frac{1}{2} (1 - 4t)^{-1/2} x^{47}, dx^{5} = (1 - 4t)^{-1/2} (x^{14} + x^{23} + x^{57}), \qquad dx^{6} = (1 - 4t)^{-1/2} (x^{13} - x^{24} + x^{67}), dx^{7} = 0.$$

$$(31)$$

For any $t \in \left(-\infty, \frac{1}{4}\right)$, we consider the 3-form $\varphi(t)$ on *S* given by

$$\varphi(t) = x^{127} + x^{347} + x^{567} + x^{135} - x^{146} - x^{236} - x^{245}.$$
(32)

Then, this 3-form $\varphi(t)$ defines a G₂-structure on *S*, and it is equal to the 3-form $\varphi(t)$ defined in (29). Note that the 3-form $\varphi(t)$ is such that $\varphi(0) = \varphi$ and, for any *t*, $\varphi(t)$ determines the metric g(t) on *S* such that the basis $\{x_i = \frac{1}{f_i}e_i; i = 1,...,7\}$ of left invariant vector fields on *S* dual to $\{x^1,...,x^7\}$ is orthonormal. So, $g(t)(e_i, e_i) = f_i^2$.

Moreover, for every $t \in \left(-\infty, \frac{1}{4}\right)$, $\varphi(t)$ defines a locally conformal calibrated G₂-structure on *S*. In fact,

$$d\varphi(t) = e^{1357} - e^{1467} - e^{2367} - e^{2457} = -e^7 \wedge \varphi(t),$$

since on the right-hand side of (29) the terms e^{127} and e^{347} are both closed and $d(e^{567} + e^{135} - e^{146} - e^{236} - e^{245}) = e^{1357} - e^{1467} - e^{2367} - e^{2457}$. So, the Lee form $\theta(t)$ of $\varphi(t)$ is $\theta(t) = -e^7$.

Next, we show that $\frac{d}{dt}\varphi(t) = \Delta_t \varphi(t) = (\star_t d \star_t d - d \star_t d \star_t)\varphi(t)$. Using (31) and (32), we obtain

$$\frac{d}{dt}\varphi(t) = -3(1-4t)^{-1}\left(x^{127} + x^{347}\right).$$
(33)

On the other hand, we have

$$(\star_t d \star_t d)\varphi(t) = -4(1-4t)^{-1}x^{567} - 2(1-4t)^{-1}\left(x^{135} - x^{146} - x^{236} - x^{245}\right),\tag{34}$$

and

$$(-d \star_t d \star_t) \varphi(t) = -3(1-4t)^{-1} \left(x^{127} + x^{347} \right) + 4(1-4t)^{-1} x^{567} + 2(1-4t)^{-1} \left(x^{135} - x^{146} - x^{236} - x^{245} \right).$$
(35)

Therefore, (33), (34) and (35) imply $\frac{d}{dt}\varphi(t) = \Delta_t \varphi(t)$.

To complete the proof, we study the behavior of the underlying metrics of such a solution in the limit for $t \to -\infty$. If we think of the Laplacian flow as a one parameter family of G_2 manifolds with a locally conformal calibrated G_2 -structure, it can be checked that, in the limit, the resulting manifold has vanishing curvature. Denote by g(t), $t \in \left(-\infty, \frac{1}{4}\right)$, the metric on *S* induced by the G_2 form $\varphi(t)$ given by (29). Then, g(t) has the following expression

$$g(t) = (1-4t)^{\frac{1}{4}}(e^{1})^{2} + (1-4t)^{\frac{1}{4}}(e^{2})^{2} + (1-4t)^{\frac{1}{4}}(e^{3})^{2} + (1-4t)^{\frac{1}{4}}(e^{4})^{2} + (1-4t)^{-\frac{1}{2}}(e^{5})^{2} + (1-4t)^{-\frac{1}{2}}(e^{6})^{2} + (1-4t)(e^{7})^{2}.$$

Now, one can check that every non-vanishing coefficient appearing in the expression of the Riemannian curvature R(g(t)) of g(t) is proportional to $\frac{1}{(1-4t)}$. Therefore, $\lim_{t\to\infty} R(t) = 0$.

Furthermore, the curvatures R(g(t)) of g(t) blow-up as t goes to $\frac{1}{4}$, and the finite-time singularity is of Type I since $R(g(t)) = O(1 - 4t)^{-1}$ as $t \to \frac{1}{4}$; in fact

$$\lim_{t \to \frac{1}{4}} \frac{|R(g(t))|}{(1-4t)^{-1}} < \infty.$$

Remark 3. As we have noticed in Remark 1, we can also evolve the Lie brackets v(t) instead of the 3-form defining the left invariant G₂-structure on S, and we can show that the corresponding bracket flow has a solution for every $t \in (-\infty, \frac{1}{4})$. In fact, if we fix on \mathbb{R}^7 the 3-form $x^{127} + x^{347} + x^{567} + x^{135} - x^{146} - x^{236} - x^{245}$, the basis $\{x_1(t), \ldots, x_7(t)\}$ defines, for every real number $t \in (-\infty, \frac{1}{4})$, a solvable Lie algebra with bracket v(t) such that v(0) is the Lie bracket of the Lie algebra s of S. As for the Lie group K (see Remark 1), the solution

of the bracket flow converges to the null bracket corresponding to the abelian Lie algebra as t goes to $-\infty$, and it blows-up as t goes to $\frac{1}{4}$.

Remark 4. Taking into account (4) and (29), one can check that the torsion form $\tau_2(t)$ of $\varphi(t)$ is given by

$$\tau_2(t) = \frac{5}{3}(1-4t)^{-1/4} \left(e^{12} + e^{34}\right) - \frac{10}{3}(1-4t)^{-1}e^{56}$$

Thus, $\lim_{t\to-\infty} \tau_2(t) = 0$. However, the solution $\varphi(t)$ does not converge to a locally conformal parallel G_2 -structure as t goes to $-\infty$ since, by (29), the G_2 forms $\varphi(t)$ blow-up when $t \to -\infty$, and $\varphi(t)$ degenerate as t goes to $\frac{1}{4}$. Note that the metrics behaves differently for S than for K. Indeed, the induced metrics by the solution of the Laplacian flow on S blow-up at infinity and at the finite time, while the induced metrics by the solution of the Laplacian flow on K only blow-up as t goes to $\frac{3}{8}$.

Remark 5. Note that, for every $t \in \left(-\infty, \frac{1}{4}\right)$, the metric g(t) is an Einstein metric with negative scalar curvature on the Lie group S. In fact, with respect to the orthonormal basis $\{x_1(t), \ldots, x_7(t)\}$, we have

$$Ric(g(t)) = -\frac{3}{1-4t}g(t) = -\frac{3}{1-4t}\sum_{1 \le i \le 7} (x^i)^2.$$

Author Contributions: The three authors have contributed equally to the realization and writing of this article.

Funding: The first and third authors were partially supported by MINECO-FEDER Grant MTM2014-54804-P and Gobierno Vasco Grant IT1094-16, Spain. The second author was partially supported by the project MTM2017-85649-P (AEI/Feder, UE) and Gobierno de Aragón/Fondo Social Europeo—Grupo Consolidado E22-17R Algebra y Geometría.

Acknowledgments: We are grateful to the anonymous referees for useful comments and improvements. Moreover, we would like to thank Guest Editor.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Bryant, R.L. Metrics with exceptional holonomy. Ann. Math. 1987, 126, 525–576. [CrossRef]
- Fernández, M.; Gray, A. Riemannian manifolds with structure group G₂. Ann. Mat. Pura Appl. 1982, 132, 19–45. [CrossRef]
- 3. Bonan, E. Sur des variétés riemanniennes a groupe d'holonomie *G*₂ ou Spin(7). *C. R. Acad. Sci. Paris* **1966**, 262, 127–129.
- 4. Salamon, S. *Riemannian Geometry and Holonomy Groups;* Longman Scientific and Technical: Harlow Essex, UK, 1989.
- 5. Hitchin, N.J. The geometry of three-forms in six dimensions. J. Diff. Geom. 2000, 55, 547–576. [CrossRef]
- Hitchin, N.J. Stable forms and special metrics. In *Global Differential Geometry: The Mathematical Legacy of Alfred Gray, Proceedings of the International Congress on Differential Geometry, Bilbao, Spain, 18–23 September 2000;* Fernández, M., Wolf, J.A., Eds.; Contemporary Mathematics; American Mathematical Society: Providence, RI, USA, 2001; Volume 288, pp. 70–89.
- 7. Joyce, D.D. Compact Riemannian 7-manifolds with holonomy G₂. I. J. Differ. Geom. 1996, 43, 291–328. [CrossRef]
- 8. Joyce, D.D. Compact Riemannian 7-manifolds with holonomy G₂. II. J. Differ. Geom. 1996, 43, 329–375. [CrossRef]
- 9. Kovalev, A. Twisted connected sums and special Riemannian holonomy. J. Reine Angew. Math. 2003, 565, 125–160. [CrossRef]
- Corti, A.; Haskins, M.; Nordström, J.; Pacini, T. G₂-manifolds and associative submanifolds via semi-Fano 3-folds. *Duke Math. J.* 2015, 164, 1971–2092. [CrossRef]
- 11. Joyce, D.D.; Karigiannis, S. A new construction of compact torsion-free G₂-manifolds by gluing families of Eguchi-Hanson spaces. *arXiv* **2017**, arXiv:1707.09325.
- 12. Chiossi, S.; Fino, A. Conformally parallel G₂ structures on a class of solvmanifolds. *Math. Z.* 2006, 252, 825–848. [CrossRef]

- Ivanov, S.; Parton, M.; Piccinni, P. Locally conformal parallel G₂ and Spin(7) manifolds. *Math. Res. Lett.* 2006, 13, 167–177. [CrossRef]
- 14. Harvey, R.; Lawson, H.B., Jr. Calibrated geometries. Acta Math. 1982, 148, 47–157. [CrossRef]
- Banyaga, A. On the geometry of locally conformal symplectic manifolds. In *Infinite Dimensional Lie Groups in Geometry and Representation Theory, Proceedings of the 2000 Howard Conference, Washington, DC, USA, 17–21 August 2000;* World Scientific Publishing: River Edge, NJ, USA, 2002; pp. 79–91.
- 16. Bazzoni, G. Locally conformally symplectic and Kähler geometry. *arXiv* 2017, arXiv:1711.02440.
- Bazzoni, G.; Marrero, J.C. On locally conformal symplectic manifolds of the first kind. *Bull. Sci. Math.* 2018, 143, 1–57. [CrossRef]
- 18. Dragomir, S.; Ornea, L. *Locally Conformal Kähler Geometry*; Progress in Mathematics; Birkhäuser: Boston, MA, USA, 1998; Volume 155, p. xiv+327.
- 19. Eliashberg, Y.; Murphy, E. Making cobordisms symplectic. *arXiv* 2015, arXiv:1504.06312.
- 20. Ornea, L.; Verbitsky, M. A report on locally conformally Kähler manifolds. Contemp. Math. 2011, 542, 135–150.
- 21. Vaisman, I. Locally conformal symplectic manifolds. Int. J. Math. Math. Sci. 1985, 8, 521–536. [CrossRef]
- 22. Bazzoni, G.; Raffero, A. Special types of locally conformal closed G₂-structures. Axioms 2018, 7, 90. [CrossRef]
- 23. Fernández, M.; Fino, A.; Raffero, A. Locally conformal calibrated *G*₂-manifolds. *Annali Matematica Pura Applicata* **2016**, *195*, 1721–1736. [CrossRef]
- 24. Fernández, M.; Ugarte, L. A differential complex for locally conformal calibrated G₂ manifolds. *Ill. J. Math.* **2000**, *44*, 363–390.
- 25. Fino, A.; Raffero, A. Einstein locally conformal calibrated G₂-structures. *Math. Z.* **2015**, *280*, 1093–1106. [CrossRef]
- 26. Cleyton, R.; Ivanov, S. On the geometry of closed G₂-structures. *Commun. Math. Phys.* **2007**, 270, 53–67. [CrossRef]
- 27. Bryant, R.L. Some remarks on G₂-structures. In Proceedings of the Gökova Geometry-Topology Conference, Gökova, Turkey, 30 May–3 June 2005; International Press of Boston: Somerville, MA, USA, 2006; pp. 75–109.
- 28. Hamilton, R.S. Three-manifolds with positive Ricci curvature. J. Diff. Geom. 1982, 17, 255–306. [CrossRef]
- 29. Bryant, R.L.; Xu, F. Laplacian flow for closed G₂-structures: Short time behavior. *arXiv* 2011, arXiv:1101.2004v1.
- Lotay, J.D.; Wei, Y. Laplacian flow for closed G₂-structures: Shi-type estimates, uniqueness and compactness. *Geom. Funct. Anal.* 2017, 27, 165–233. [CrossRef]
- 31. Lotay, J.D.; Wei, Y. Stability of torsion free G₂-structures along the Laplacian flow. *arXiv* 2015, arxiv:1504.07771.
- 32. Lotay, J.D.; Wei, Y. Laplacian flow for closed G₂ structures: Real analyticity. arXiv 2015, arXiv:1601.04258.
- Fernández, M.; Fino, A.; Manero, V. Laplacian flow of closed G₂-structures inducing nilsolitons. J. Geom. Anal. 2016, 26, 1808–1837. [CrossRef]
- 34. Karigiannis, S.; McKay, B.; Tsui, M.P. Soliton solutions for the Laplacian coflow of some G₂-structures with symmetry. *Diff. Geom. Appl.* **2012**, *30*, 318–333. [CrossRef]
- 35. Grigorian, S. Short-time behavior of a modified Laplacian coflow of G₂-structures. *Adv. Math.* **2013**, 248, 378–415. [CrossRef]
- 36. Grigorian, S. Flows of co-closed G₂-structures. *arXiv* 2011, arXiv: 1811.10505.
- Bagaglini, L.; Fernández, M.; Fino, A. Laplacian coflow on the 7-dimensional Heisenberg group. *arXiv* 2017, arXiv:1704.00295.
- Bagaglini, L.; Fino, A. The laplacian coflow on almost-abelian Lie groups. *Ann. Mat. Pura Appl.* 2018, 197, 1855–1873. [CrossRef]
- 39. Manero, V.; Otal, A.; Villacampa, R. Solutions of the Laplacian flow and coflow of a locally conformal parallel G₂-structure. *arXiv* **2017**, arXiv:1711.08644v1.
- 40. Lauret, J. The Ricci flow for simply connected nilmanifolds. *Commun. Anal. Geom.* **2011**, *19*, 831–854. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).