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Abstract: We consider the Laplacian flow of locally conformal calibrated G2-structures as a natural
extension to these structures of the well-known Laplacian flow of calibrated G2-structures. We study
the Laplacian flow for two explicit examples of locally conformal calibrated G2 manifolds and, in both
cases, we obtain a flow of locally conformal calibrated G2-structures, which are ancient solutions,
that is they are defined on a time interval of the form (−∞, T), where T > 0 is a real number.
Moreover, for each of these examples, we prove that the underlying metrics g(t) of the solution
converge smoothly, up to pull-back by time-dependent diffeomorphisms, to a flat metric as t goes to
−∞, and they blow-up at a finite-time singularity.

Keywords: locally conformal calibrated G2-structures; Laplacian flow; solvable Lie algebras

1. Introduction

A G2-structure on a 7-manifold M can be characterized by the existence of a globally defined
3-form ϕ (the G2 form) on M, which can be written at each point as

ϕ = e127 + e347 + e567 + e135 − e146 − e236 − e245, (1)

with respect to some local coframe {e1, . . . , e7} on M. Here, e127 stands for e1 ∧ e2 ∧ e7, and so on.
A G2-structure ϕ induces a Riemannian metric gϕ and a volume form dVgϕ on M given by

gϕ(X, Y) dVgϕ =
1
6

iX ϕ ∧ iY ϕ ∧ ϕ,

for any pair of vector fields X, Y on M, where iX denotes the contraction by X.
The classes of G2-structures can be described in terms of the exterior derivatives of the 3-form ϕ

and the 4-form ?ϕ ϕ [1,2], where ?ϕ is the Hodge operator defined from gϕ and dVgϕ . If the 3-form ϕ is
closed and coclosed, then the holonomy group of gϕ is a subgroup of the exceptional Lie group G2 [2],
and the metric gϕ is Ricci-flat [3]. When this happens, the G2-structure is said to be torsion-free [4]. This
condition has a variational formulation, due to Hitchin [5,6]. The first compact examples of Riemannian
manifolds with holonomy G2 were constructed first by Joyce [7,8], and then by Kovalev [9]. Recently,
other examples of compact manifolds with holonomy G2 were obtained in [10,11]. Explicit examples
on solvable Lie groups were also constructed in [12]. A G2-structure ϕ is called locally conformal parallel
if ϕ satisfies the two following conditions

dϕ = θ ∧ ϕ, d(?ϕ ϕ) =
4
3

θ ∧ ?ϕ ϕ, (2)
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for some closed non-vanishing 1-form θ, which is known as the Lee form of the G2-structure. Such a
G2-structure is locally conformal to one which is torsion-free. Ivanov, Parton and Piccinni in [13] prove
that a compact locally conformal parallel G2 manifold is a mapping torus bundle over the circle S1

with fibre a simply connected nearly Kähler manifold of dimension six and finite structure group.
We remind that a G2-structure ϕ is called closed (or calibrated according to [14]) if dϕ = 0. In this

paper we will focus our attention on the class of locally conformal calibrated G2-structures, which are
characterized by the condition

dϕ = θ ∧ ϕ,

where θ is a closed non-vanishing 1-form, which is also known as the Lee form of the G2-structure.
We will refer to a manifold equipped with such a structure as a locally conformal calibrated G2 manifold.
Each point of such a manifold has an open neighborhood U where θ = d f , for some f ∈ F (U)
with F (U) being the algebra of the real differentiable functions on U, and the 3-form e− f ϕ defines a
calibrated G2-structure on U. Hence, locally conformal calibrated G2-structures are locally conformal
equivalent to calibrated G2-structures, and they can be considered analogous in dimension 7 to the
locally conformal symplectic manifolds, which have been studied in [15–21] and the references therein.
Some results of locally conformal calibrated G2 manifolds were given in [22–25]. In fact, in [24] the first
author and Ugarte introduced a differential complex for locally conformal calibrated G2 manifolds,
and such manifolds were characterized as the ones endowed with a G2-structure ϕ for which the
space of differential forms annihilated by ϕ becomes a differential subcomplex of the de Rham’s
complex. Moreover, in [23] it is proved that a similar result to that of Ivanov, Parton and Piccinni holds
for compact 7-manifolds with a suitable locally conformal calibrated G2-structure. More recently, a
structure result for Lie algebras with an exact locally conformal calibrated G2-structure was proved by
Bazzoni and Raffero in [22], where it is also shown that none of the non-Abelian nilpotent Lie algebras
with closed G2-structures admits locally conformal calibrated G2-structures.

Compact G2-calibrated manifolds have interesting curvature properties. As we mentioned
before, a G2 holonomy manifold is Ricci-flat or, equivalently, both Einstein and scalar-flat. But on a
compact calibrated G2 manifold, both the Einstein condition [26] and scalar-flatness [27] are equivalent
to the holonomy being contained in G2. In fact, Bryant in [27] shows that the scalar curvature is
always non-positive.

Locally conformal calibrated G2-structures ϕ whose underlying Riemannian metric gϕ is Einstein
have been studied in [25], where it was shown that in the compact case the scalar curvature of gϕ

can not be positive. Then, Fino and Raffero in [25] show that a compact homogeneous 7-manifold
cannot admit an invariant Einstein locally conformal calibrated G2-structure ϕ unless the underlying
metric gϕ is flat. However, in contrast to the compact homogeneous case, a non-compact example of
homogeneous manifold S endowed with a locally conformal calibrated G2-structure whose associated
Riemannian metric is Einstein and non Ricci-flat was given in [25]. The manifold S is a simply
connected solvable Lie group which is not unimodular (see Section 4.2 for details).

On the other hand, in [23] it is given an example of a compact manifold N with a locally conformal
calibrated G2-structure. The manifold N is a compact solvmanifold, that is N is a compact quotient of
a simply connected solvable Lie group K by a lattice, endowed with an invariant locally conformal
calibrated G2-structure.

Since Hamilton introduced the Ricci flow in 1982 [28], geometric flows have been an important
tool in studying geometric structures on manifolds. In G2 geometry, geometric flows for different
G2-structures have been proposed. Let M be a 7-manifold endowed with a calibrated G2-structure ϕ.
The Laplacian flow starting from ϕ is the initial value problem

d
dt ϕ(t) = ∆t ϕ(t),

d ϕ(t) = 0,

ϕ(0) = ϕ,

where ϕ(t) is a closed G2 form on M, and ∆t = d d∗ + d∗d is the Hodge Laplacian operator associated
with the metric g(t) = gϕ(t) induced by the 3-form ϕ(t). This flow was introduced by Bryant in [27] as
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a tool to find torsion-free G2-structures on compact manifolds. Short-time existence and uniqueness of
the solution when M is compact were proved in [29]. The analytic and geometric properties of the
Laplacian flow have been deeply investigated in the series of papers [30–32]. Non-compact examples
where the flow converges to a flat G2-structure have been given in [33].

In [34], a flow evolving the 4-form ψ = ?ϕ ϕ in the direction of minus its Hodge Laplacian was
introduced, and it is called Laplacian coflow of ϕ. This flow preserves the condition of the G2-structure
ϕ being coclosed, that is ψ(t) is closed for any t, and it was studied in [34] for two explicit examples of
coclosed G2-structures. But no general result is known about the short time existence of the coflow.
A modified Laplacian coflow was introduced by Grigorian in [35] (see also [36]). There it was proved
that for compact manifolds, the modified Laplacian coflow has a unique solution ψ(t) for the short
time period t ∈ [0, ε], for some ε > 0. Geometric properties of both coflows on the 7-dimensional
Heisenberg group and on 7-dimensional almost-abelian Lie groups were proved in [37,38], respectively.

Some work has also been done on other related flows of G2-structures—such as the Laplacian flow
and the Laplacian coflow, for locally conformal parallel G2-structures. These flows has been originally
proposed by the second author with Otal and Villacampa in [39], and the first examples of long time
solutions of the flows are given in [39].

In this note, for any locally conformal calibrated G2-structure ϕ on a manifold M, we consider the
Laplacian flow of ϕ given by 

d
dt ϕ(t) = ∆t ϕ(t),

d ϕ(t) = θ(t) ∧ ϕ(t),

ϕ(0) = ϕ.

We do not known any general result on the short time existence of solution for this flow.
Nevertheless, in Section 4 (Theorems 1 and 2), for each of the aforementioned examples of solvable
Lie groups K and S with a locally conformal calibrated G2-structure, we show that the solution of the
before Laplacian flow is ancient, that is it is defined on a time interval of the form (−∞, T), where T > 0
is a real number. Moreover, for each of the two examples K and S, we show that the underlying metrics
g(t) = gϕ(t) of the solution converge smoothly, up to pull-back by time-dependent diffeomorphisms,
to a flat metric as t goes to −∞, and they blow-up in finite-time. As we mentioned before, the Lie
group S has a locally conformal calibrated G2-structure inducing an Einstein metric. We prove that the
solution ϕ(t) of the flow on S induces an Einstein metric for all time t where ϕ(t) is defined.

2. G2-Structures

Let M be a 7-dimensional manifold with a G2-structure defined by a 3-form ϕ. Denote by ψ the
4-form ψ = ?ϕ ϕ, where ?ϕ is the Hodge star operator of the metric gϕ induced by ϕ. Let (Ω∗(M), d)
be the de Rham complex of differential forms on M. Then, Bryant in [27] proved that the forms dϕ and
dψ are such that {

dϕ = τ0 ψ + 3 τ1 ∧ ϕ + ?ϕτ3,

dψ = 4τ1 ∧ ψ− ?ϕτ2,
(3)

where τ0 ∈ Ω0(M), τ1 ∈ Ω1(M), τ2 ∈ Ω2
14(M) and τ3 ∈ Ω3

27(M). Here Ω2
14(M) and Ω3

27(M) are
the spaces

Ω2
14(M) = {α ∈ Ω2(M) | α ∧ ϕ = − ?ϕ α},

Ω3
27(M) = {β ∈ Ω3(M) | β ∧ ϕ = 0 = β ∧ ?ϕ ϕ}.

The differential forms τi (i = 0, 1, 2, 3) that appear in (3), are called the intrinsic torsion forms of ϕ.
In terms of the torsion forms, some classes of G2-structures with the defining conditions are

recalled in the Table 1.
Note that if a manifold M has a locally conformal calibrated G2-structure ϕ, then

dϕ = θ ∧ ϕ,
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Table 1. Some classes of G2-structures.

Class Type Conditions

X0 parallel τ0, τ1, τ2, τ3 = 0
X2 closed, calibrated τ0, τ1, τ3 = 0
X4 locally conformal parallel τ0, τ2, τ3 = 0

X2 ⊕X4 locally conformal calibrated τ0, τ3 = 0

with θ the Lee form of ϕ. Thus, taking into account (3), the torsion form τ1 of the G2 form ϕ can be
expressed in terms of the Lee form θ as τ1 = 1

3 θ. Moreover (see [24]), the torsion forms τ1 and τ2 of ϕ

can be obtained as follows:

τ1 = − 1
12

?ϕ

(
?ϕdϕ ∧ ϕ

)
,

τ2 = ?ϕ

(
4τ1 ∧ (?ϕ ϕ)− d ?ϕ ϕ

)
.

(4)

3. The Laplacian Flow of Locally Conformal Calibrated G2-Structures

In this section, we introduce the Laplacian flow of a locally conformal calibrated G2-structure on
a manifold M and, for its equations, we show some properties that help us solve the flow when M is a
Lie group.

Definition 1. Let M be a 7-manifold with a locally conformal calibrated G2-structure ϕ. We say that a
time-dependent G2-structure ϕ(t) on M, defined for t in some real open interval, satisfies the Laplacian flow
system of ϕ if, for all times t for which ϕ(t) is defined, we have

d
dt ϕ(t) = ∆t ϕ(t),

d ϕ(t) = θ(t) ∧ ϕ(t),

ϕ(0) = ϕ,

(5)

where θ(t) is the Lee form of ϕ(t), and ∆t = d d∗ + d∗d is the Hodge Laplacian operator associated with the
metric g(t) = gϕ(t) induced by the 3-form ϕ(t).

In order to solve the first equation of the flow (5) for our examples, we follow the approach of [39].
Let G be a simply connected solvable Lie group of dimension 7 with Lie algebra g. Let {e1, . . . , e7}

be a basis of the dual space g∗ of g, and let fi = fi(t) (i = 1, . . . , 7) be some differentiable real functions
depending on a parameter t ∈ I ⊂ R such that fi(0) = 1 and fi(t) 6= 0, for any t ∈ I, where I is a real
open interval. For each t ∈ I, we consider the basis {x1, . . . , x7} of g∗ defined by

xi = xi(t) = fi(t)ei, 1 ≤ i ≤ 7.

We consider the one-parameter family of left invariant G2-structures ϕ(t) on G given by

ϕ(t) = x127 + x347 + x567 + x135 − x146 − x236 − x245

= f127e127 + f347e347 + f567e567 + f135e135 − f146e146 − f236e236 − f245e245,
(6)

where fijk = fijk(t) stands for the product fi(t) f j(t) fk(t).
Now, we introduce the function ε(i, j, k) on ordered indices (i, j, k) as follows:

ε(i, j, k) =


1 if (i, j, k) ∈ A = {(1, 2, 7), (1, 3, 5), (3, 4, 7), (5, 6, 7)};
−1 if (i, j, k) ∈ B = {(1, 4, 6), (2, 3, 6), (2, 4, 5)};
0 otherwise.
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Thus, the G2 form ϕ defined in (1), can be rexpressed as ϕ = ∑(i,j,k)∈A∪B ε(i, j, k)eijk, and the G2
form ϕ(t) given by (6) becomes

ϕ(t) = ∑
(i,j,k)∈A∪B

ε(i, j, k)xijk.

Therefore,

d
dt

ϕ(t) = ∑
(i,j,k)∈A∪B

ε(i, j, k)
d fijk

dt
eijk

= ∑
(i,j,k)∈A∪B

ε(i, j, k)
( fijk)

′

fijk
xijk

= ∑
(i,j,k)∈A∪B

ε(i, j, k)
d
dt

(
ln fijk

)
xijk.

Moreover, we have

∆t ϕ(t) = ∑
(i,j,k)∈A∪B

ε(i, j, k)∆ijk xijk + ∑
1≤l<m<n≤7, (l,m,n) 6∈A∪B

∆lmn xlmn ,

where ε(i, j, k)∆ijk is the coefficient in xijk of ∆t ϕ(t) if (i, j, k) ∈ A ∪ B (i.e., if ε(i, j, k) 6= 0), and ∆lmn

is the coefficient in xlmn of ∆t ϕ(t) if 1 ≤ l < m < n ≤ 7 and ε(l, m, n) = 0. Consequently, the first
equation of the flow (5) is equivalent to the system of differential equations∆ijk =

( fijk)
′

fijk
if (i, j, k) ∈ A ∪ B,

∆lmn = 0 if 1 ≤ l < m < n ≤ 7 and (l, m, n) 6∈ A ∪ B,
(7)

that is, {
∆ijk =

d
dt ln( fijk) if (i, j, k) ∈ A ∪ B,

∆lmn = 0 if 1 ≤ l < m < n ≤ 7 and (l, m, n) 6∈ A ∪ B.
(8)

We will also use the following properties of ∆ijk.

Lemma 1. Let ϕ(t) be a family of left invariant G2-structures on the Lie group G solving the system (7),
and such that ϕ(t) can be expressed as (6), for some functions fi = fi(t). For ordered indices (i, j, k) and
(p, q, r) ∈ A ∪ B (that is, ε(i, j, k) and ε(p, q, r) are both non-zero) we have

i) if ∆ijk = ∆pqr, then fijk = fpqr;

ii) if fijk∆ijk = fpqr∆pqr, then fijk = fpqr;

iii) if ∆ijk + ∆pqr = 0, then fijk fpqr = 1;

iv) if fijk∆ijk + fpqr∆pqr = 0, then fijk + fpqr = 2.

Proof. The first statement of this Lemma was proved in [39]. Nevertheless, we point out how to
prove it. Since ∆ijk = ∆pqr, the system (8) implies that d

dt ln fijk =
d
dt ln fpqr. Hence, ln fijk = ln fpqr + C,

for some constant C. Now, using that fi(0) = 1, for i = 1, . . . , 7, we have that C = 0. So, fijk = fpqr,
which proves i).

Now, let us suppose that fijk∆ijk = fpqr∆pqr, for some i, j, k, p, q, r with 1 ≤ i < j < k ≤ 7 and
1 ≤ p < q < r ≤ 7. From (7), we get

( fijk)
′ = ( fpqr)

′.
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Integrating this equation, we obtain fijk = fpqr + C, for some constant C. Since fi(0) = 1, for all
i = 1, . . . , 7, we have C = 0, and so fijk = fpqr. This proves ii).

To prove iii), we use (8), and we obtain

ln( fijk · fpqr) = C,

for some constant C. But fi(0) = 1, for all i = 1, . . . , 7, imply that C = 0, that is

fijk · fpqr = 1.

Finally, let us suppose that fijk∆ijk + fpqr∆pqr = 0, for some i, j, k, p, q, r with 1 ≤ i < j < k ≤ 7
and 1 ≤ p < q < r ≤ 7. Then, using (7), we get ( fijk)

′ = −( fpqr)′. Integrating this equation,
we obtain fijk = − fpqr + C, for some constant C. But C = 2 since fi(0) = 1, for all i = 1, . . . , 7. Thus,
fijk + fpqr = 2, which completes the proof.

4. Solutions of the Laplacian Flow on Locally Conformal Calibrated G2 Solvmanifolds

Lie groups admitting left invariant locally conformal calibrated G2-structures constitute a
convenient setting where it is possible to investigate the behaviour of the Laplacian flow (5) in
the non-compact case.

In this section, we consider two examples of solvable Lie groups K and S, each of them with a
left invariant locally conformal calibrated G2-structure, and we show that in both cases the solution
is ancient (i.e. it is defined in some interval (−∞, T), with 0 < T < +∞) and the induced metrics
blow-up at a finite-time singularity.

4.1. The Laplacian Flow on K

Let K be the simply connected and solvable Lie group of dimension 7 whose Lie algebra k is
defined by

k =
(

e37, e47,−e17,−e27, e14 + e23, e13 − e24, 0
)

.

Here, e37 stands for e3 ∧ e7, and so on; and
(
e37, e47,−e17,−e27, e14 + e23, e13 − e24, 0

)
means that

there is a basis {e1, . . . , e7} of the dual space k∗ of k, satisfying

de1 = e37, de2 = e47, de3 = −e17, de4 = −e27,

de5 = e14 + e23, de6 = e13 − e24, de7 = 0,
(9)

where d denotes the Chevalley-Eilenberg differential on k∗.
The 3-form ϕ on K given by

ϕ = e127 + e347 + e567 + e135 − e146 − e236 − e245 (10)

defines a left invariant locally conformal calibrated G2-structure on the Lie group K, with Lee form
θ = e7, and so with torsion form τ1 = 1

3 e7. In fact,

dϕ = −e1357 + e1467 + e2367 + e2457 = e7 ∧ ϕ.

In [23] it is proved that there exists a lattice Γ in K, so that the quotient space of right cosets Γ\K
is a compact solvmanifold endowed with an invariant locally conformal calibrated G2-structure ϕ,
with Lee form θ = e7.

However, we should note that in the following Theorem, we will show a solution of the Laplacian
flow (5) of the G2 form ϕ (defined by (10)) on the Lie group K. Such a solution does not solve the
Laplacian flow of ϕ on the compact quotient Γ\K since we will consider the Hodge Laplacian operator
∆t on the Lie algebra k of K and we cannot check the Hodge Laplacian operator on the compact
space Γ\K.
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Theorem 1. The family of locally conformal calibrated G2-structures ϕ(t) on K given by

ϕ(t) = e127 + e347 +
(
1− 8

3 t
)−3/2

(
e567 + e135 − e146 − e236 − e245

)
(11)

is the solution for the Laplacian flow (5) of the G2 form ϕ given by (10), where t ∈
(
−∞, 3

8

)
. The Lee form θ(t)

of ϕ(t) is θ(t) = e7. Moreover, the underlying metrics g(t) of this solution converge smoothly, up to pull-back
by time-dependent diffeomorphisms, to a flat metric, uniformly on compact sets in K, as t goes to −∞, and they
blow-up as t goes to 3

8 .

Proof. As in Section 2, let fi = fi(t) (i = 1, . . . , 7) be some differentiable real functions depending on a
parameter t ∈ I ⊂ R such that fi(0) = 1 and fi(t) 6= 0, for any t ∈ I, where I is a real open interval.
For each t ∈ I, we consider the basis {x1, . . . , x7} of left invariant 1-forms on K defined by

xi = xi(t) = fi(t)ei, 1 ≤ i ≤ 7.

Taking into account (9), the structure equations of K with respect to the basis {x1, . . . , x7} are

dx1 =
f1

f37
x37, dx2 =

f2

f47
x47, dx3 = − f3

f17
x17, dx4 = − f4

f27
x27,

dx5 =
f5

f14
x14 +

f5

f23
x23, dx6 =

f6

f13
x13 − f6

f24
x24, dx7 = 0.

(12)

From now on, we write fij = fij(t) = fi(t) f j(t), fijk = fijk(t) = fi(t) f j(t) fk(t), and so forth. Then,
for any t ∈ I, we consider the G2-structure ϕ(t) on K given by

ϕ(t) = x127 + x347 + x567 + x135 − x146 − x236 − x245

= f127e127 + f347e347 + f567e567 + f135e135 − f146e146 − f236e236 − f245e245.
(13)

Note that the 3-form ϕ(t) defined by (13) is such that ϕ(0) = ϕ and, for any t, ϕ(t) determines
the metric g(t) on K such that the basis {xi =

1
fi

ei; i = 1, . . . , 7} of left invariant vector fields on K dual

to {x1, . . . , x7} is orthonormal. So, g(t)(ei, ei) = f 2
i , and hence fi = fi(t) > 0.

To solve the flow (5) of ϕ we determine firstly the functions fi and the interval I so that
d
dt ϕ(t) = ∆t ϕ(t), for t ∈ I. We know that

∆t ϕ(t) = (?td ?t d− d ?t d?t)ϕ(t).

We calculate separately each of the terms ?td ?t dϕ(t) and −d ?t d ?t ϕ(t) of ∆t ϕ(t). Taking into
account (12) and the fact that the basis {x1(t), . . . , x7(t)} is orthonormal, we have

?td ?t dϕ(t) = − ( f1 f4 − f2 f3) ( f2 f3 + f1 f4) f5

f1 f2 f 2
3 f 2

4 f7
x126 −

( f1 f4 − f2 f3)
(

f 2
1 f 2

2 + f 2
3 f 2

4
)

f1 f 2
2 f 2

3 f4 f 2
7

x146

−
( f2 f3 − f1 f4)

(
f 2
1 f 2

2 + f 2
3 f 2

4
)

f 2
1 f2 f3 f 2

4 f 2
7

x236 +
( f1 f4 − f2 f3) ( f2 f3 + f1 f4) f5

f 2
1 f 2

2 f3 f4 f7
x346

+

(
f 2
2 f 2

3 f 2
5 + f 2

1 f 2
4 f 2

5 + f 2
1 f 2

3 f 2
6 + f 2

2 f 2
4 f 2

6
)

f 2
1 f 2

2 f 2
3 f 2

4
x567,

(14)
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and, on the other hand, we obtain

d ?t d ?t ϕ(t) =
( f1 f2 − f3 f4)

(
f 2
2 f 2

3 + f 2
1 f 2

4
)

f 2
1 f 2

2 f3 f4 f 2
7

x127 − f6 ( f2 f3 f5 + f1 f4 f5 + f1 f3 f6 + f2 f4 f6)

f 2
1 f2 f 2

3 f4
x135

+
f5 ( f2 f3 f5 + f1 f4 f5 + f1 f3 f6 + f2 f4 f6)

f 2
1 f2 f3 f 2

4
x146

+
f5 ( f2 f3 f5 + f1 f4 f5 + f1 f3 f6 + f2 f4 f6)

f1 f 2
2 f 2

3 f4
x236

+
f6 ( f2 f3 f5 + f1 f4 f5 + f1 f3 f6 + f2 f4 f6)

f1 f 2
2 f3 f 2

4
x245 −

( f1 f2 − f3 f4)
(

f 2
2 f 2

3 + f 2
1 f 2

4
)

f1 f2 f 2
3 f 2

4 f 2
7

x347.

(15)

Since (1, 2, 6) and (3, 4, 6) 6∈ A ∪ B, the system (7) implies that ∆126 = 0 = ∆346. Moreover,
from (14) and (15) we have

∆126 =
f5

f7

(
f2

f1 f 2
4
− f1

f2 f 2
3

)
,

and

∆346 =
f5

f7

(
f4

f 2
2 f3
− f3

f 2
1 f4

)
.

Each of these equalities implies that f 2
14 = f 2

23, and so

f14 = f23 (16)

since fi = fi(t) > 0.
Also (14) and (15) imply that the coefficients ∆ijk, with (i, j, k) ∈ A ∪ B, are given by

∆127 = − f3

f1
B23 +

f4

f2
B14, ∆347 =

f2

f4
B23 −

f1

f3
B14,

∆135 =
f6

f13
A, ∆245 =

f6

f24
A,

∆146 =
f5

f14
A− f1

f3
B12 +

f4

f2
B34, ∆236 =

f5

f23
A +

f2

f4
B12 −

f3

f1
B34,

∆567 = A2,

(17)

where

A = f5

(
1
f23

+
1
f14

)
+ f6

(
1
f13

+
1
f24

)
, A2 = f 2

5

(
1
f 2
23

+
1
f 2
14

)
+ f 2

6

(
1
f 2
13

+
1
f 2
24

)
,

B12 =
1
f 2
7

(
f2

f4
− f1

f3

)
, B34 =

1
f 2
7

(
f4

f2
− f3

f1

)
,

B23 =
1
f 2
7

(
f2

f4
− f3

f1

)
, B14 =

1
f 2
7

(
f4

f2
− f1

f3

)
.

(18)

Using (17), one can check that f135∆135 = f245∆245. Thus, f13 = f24 by Lemma 1– ii). This equality
and (16) imply

f1 = f2, f3 = f4. (19)

The equalities (19) imply that the functions B12 and B34 defined in (18) are such that B12 = 0 = B34.
Hence, ∆146 = f5

f14
A. So, from (17), we have f146∆146 = f245∆245. Now, Lemma 1– ii) and (19) imply

f5 = f6. (20)
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Moreover, from (18) and (19) we get B14 = −B23. Then, from (17) we have f127∆127 + f347∆347 = 0.
Now, Lemma 1– iv) implies

f12 + f34 = 2/ f7.

Thus,

f7 =
2

( f 2
1 + f 2

3 )
. (21)

Using the equalities (19) and (21), we obtain that ∆135 = ∆567. Therefore, by Lemma 1– i) we have

f13 = f67.

From this equality and (21), we obtain

f6 =
1
2

f13 ( f 2
1 + f 2

3 ). (22)

In summary, from (19)–(22), we have

f1 = f2, f3 = f4, f5 = f6 =
1
2

f13 ( f 2
1 + f 2

3 ), f7 =
2

f 2
1 + f 2

3
.

Now, we can suppose that f3 = f1 = f (see below Lemma 2). Then, the previous conditions
reduce to

f1 = f2 = f3 = f4 = f , f5 = f6 = f 4, f7 = f−2. (23)

Then, by (18), B14 = 0 = B23 since f1 = f2 = f3 = f4 by (23). So, ∆127 = 0 = ∆347.
This implies that the unique non-zero components ∆ijk of the Laplacian of ∆t ϕ(t) are

∆567 = ∆135 = ∆146 = ∆236 = ∆245 = 4 f 4.

Then, the system of differential Equations (7) reduces to

f−5 f ′ =
2
3

.

Integrating this equation, we obtain

f =
(

C− 8
3

t
)− 1

4
, C = constant. (24)

But f (0) = 1 implies C = 1. Hence,

f = f (t) =
(

1− 8
3

t
)− 1

4
.

Therefore, the one-parameter family of 3-forms ϕ(t) given by (11) is the solution of the Laplacian

flow of ϕ on K, and it exists for every t ∈
(
−∞, 3

8

)
.

A simple computation shows that

dϕ(t) = f 6(− e1357 + e1467 + e2367 + e2457) = e7 ∧ ϕ(t),

and so the Lee form θ(t) of ϕ(t) is θ(t) = e7.
Now we study the behavior of the underlying metric g(t) of such a solution in the limit for

t→ −∞. If we think of the Laplacian flow as a one parameter family of G2 manifolds with a locally
conformal calibrated G2-structure, it can be checked that, in the limit, the resulting manifold has
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vanishing curvature. For t ∈
(
−∞, 3

8

)
, let us consider the metric g(t) on K induced by the G2 form

ϕ(t) given by (11). Then,

g(t) =
(

1− 8
3

t
)− 1

2
(e1)2 +

(
1− 8

3
t
)− 1

2
(e2)2 +

(
1− 8

3
t
)− 1

2
(e3)2

+
(

1− 8
3

t
)− 1

2
(e4)2 +

(
1− 8

3
t
)−2

(e5)2 +
(

1− 8
3

t
)−2

(e6)2

+
(

1− 8
3

t
)−1

(e7)2.

Then, taking into account the symmetry properties of the Riemannian curvature R(t) we obtain

R1234 = R1256 = R3456 = − 1
2(1− 8

3 t)
,

R1313 = R1414 = R2323 = R2424 =
3

4(1− 8
3 t)

,

R1515 = R1616 = R2525 = R2626 = R3535 = R3636 = R4545 = R4646

= R1324 = R1432 = R1526 = R1652 = R3546 = R3654 = − 1
4(1− 8

3 t)
,

Rijkl = 0 otherwise,

where Rijkl = R(t)(ei, ej, ek, el). Therefore, limt→−∞ R(t) = 0.
Furthermore, the curvatures R

(
g(t)

)
of g(t) blow-up as t goes to 3

8 , and the finite-time singularity
is of Type I since R

(
g(t)

)
= O(1− 8

3 t)−1 as t→ 3
8 ; in fact,

lim
t→ 3

8

|R
(

g(t)
)
|

(1− 8
3 t)−1

< ∞.

To complete the proof of Theorem 1, we show that under the conditions (19)–(22) the assumption
f1 = f3, that we made in its proof, is correct.

Lemma 2. If the 3-form ϕ(t) defined in (13) is the solution for the Laplacian flow (5) of the G2 form ϕ given
by (10), then f1(t) = f3(t).

Proof. Take u = f1 and v = f3. We know that if the 3-form ϕ(t) defined in (13) is the solution
for the Laplacian flow (5) of the G2 form ϕ, then the equalities (19)–(22) are satisfied. Now, taking
into account (17), the equalities (19)–(22) imply that the Hodge Laplacian ∆t ϕ(t) of ϕ(t) has the
following expression

∆t ϕ(t) = − (u2 − v2)(u2 + v2)2

2u2 x127 +
(u2 − v2)(u2 + v2)2

2v2 x347+

+ (u2 + v2)2
(

x567 + x135 − x146 − x236 − x245
)

.

Thus, for (i, j, k) ∈ {(1, 2, 7), (3, 4, 7)}, the equation ∆ijk =
( fijk)

′

fijk
of the system (7) becomes in

both cases
du
dt

= −
(
u2 − 2v2) (u2 + v2)3

12uv2 ,
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while for (i, j, k) ∈ A ∪ B with (1, 2, 7) 6= (i, j, k) 6= (3, 4, 7), the equation ∆ijk =
( fijk)

′

fijk
is expressed as

dv
dt

=

(
2u2 − v2) (u2 + v2)3

12u2v
.

Therefore, the system (7) becomes
du
dt = − (u2−2v2)(u2+v2)

3

12uv2 ,

dv
dt =

(2u2−v2)(u2+v2)
3

12u2v ,
u(0) = v(0) = 1.

(25)

Thus,
dv
du

= − v(2u2 − v2)

u(u2 − 2v2)
. (26)

To solve this differential equation, we consider the change of variable w = v/u. Then, (26) can be
expressed as follows:

u
dw
du

+ w = −w
2− w2

1− 2w2 .

We solve this differential equation by applying separation of variables, and we get the
following solution

ln u + C = −1
6

(
ln
(

1− w2
)
+ 2 ln w

)
=

1
6

ln
v2 (u2 − v2)

u4 ,

for some constant C. This equation is equivalent to

C̃u2 = v2
(

u2 − v2
)

,

for some constant C̃. Thus, C̃ = 0 since u(0) = v(0) = 1. Therefore, since v(t) = f3(t) 6= 0 for all t,
for the functions u and v we have three possibilities: u = v, u = −v or v = 0. But u(0) = 1 = v(0),
hence the only possibility is u(t) = v(t), that is, f1(t) = f3(t). (Here, we would like to note that
since u(t) = v(t), the second differential equation of the system (25) reduces to 6

u
du
dt = 4u4, that is the

differential Equation (24), which we have solved before.)

Remark 1. Note that proceeding in a similar way as Lauret did in [40] for the Ricci flow, we can evolve the Lie
brackets µ(t) instead of the 3-form defining the G2-structure, and we can show that the corresponding bracket
flow has a solution for every t. In fact, if we fix on R7 the 3-form x127 + x347 + x567 + x135− x146− x236− x245,
the basis {x1(t), . . . , x7(t)} defines, for every real number t ∈

(
−∞, 3

8
)
, a solvable Lie algebra with bracket

µ(t) such that µ(0) is the Lie bracket of the Lie algebra k of K. Moreover, the solution of the bracket flow
converges to the null bracket corresponding to the abelian Lie algebra as t goes to −∞, and it blows-up as t goes
to 3

8 .

Remark 2. Taking into account (4) and (11), one can check that the torsion form τ2(t) of ϕ(t) is given by

τ2(t) =
4
3
(
1− 8

3 t
)−1

(
e12 + e34

)
− 8

3
(
1− 8

3 t
)−5/2e56.

Thus, limt→−∞ τ2(t) = 0. However, the solution ϕ(t) does not converge to a locally conformal parallel
G2-structure as t goes to −∞ since, by (11), the G2 forms ϕ(t) degenerate when t → −∞. Moreover, ϕ(t)
blows-up as t goes to 3

8 .
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4.2. The Laplacian Flow on S

Now we consider the simply connected and solvable Lie group S whose Lie algebra s is defined
as follows:

s =
(

1
2

e17,
1
2

e27,
1
2

e37,
1
2

e47, e14 + e23 + e57, e13 − e24 + e67, 0
)

. (27)

Then, the 3-form ϕ given by

ϕ = e127 + e347 + e567 + e135 − e146 − e236 − e245 (28)

defines a left invariant locally conformal calibrated G2-structure on the Lie group S, with Lee form
θ = −e7, and so with torsion form τ1 = − 1

3 e7. In fact,

dϕ = e1357 − e1467 − e2367 − e2457 = −e7 ∧ ϕ.

Since S is a nonunimodular Lie group, S cannot admit a lattice Γ such that the quotient space
Γ\S is a compact solvmanifold. In fact, the linear map s → R, X → tr(ad X) is such that tr(ad e7) is
non-zero, where {e1, . . . , e7} is the basis of s dual to the basis {e1, . . . , e7} of s∗ .

Theorem 2. The family of locally conformal calibrated G2-structures ϕ(t) on S given by

ϕ(t) = (1− 4t)3/4 e127 + (1− 4t)3/4 e347 + e567 + e135 − e146 − e236 − e245 (29)

is the solution for the Laplacian flow (5) of the G2 form ϕ given by (28), where t ∈
(
−∞, 1

4

)
. The Lee form

θ(t) of ϕ(t) is θ(t) = −e7. Moreover, the underlying metrics g(t) of this solution converge smoothly, up to
pull-back by time-dependent diffeomorphisms, to a flat metric, uniformly on compact sets in S, as t goes to −∞,
and they blow-up as t goes to 1

4 .

Proof. To study the flow (5) of the G2 form ϕ defined in (28), we should proceed as in Theorem 1.
However, in order to short the proof, we will show directly that the one-parameter family of
G2-structures given by (29) is the solution for the flow (5). For this, we consider the differentiable real
functions fi = fi(t) (i = 1, . . . , 7) given by

fi(t) = (1− 4t)1/8 , i = 1, 2, 3, 4,

f5(t) = f6(t) = (1− 4t)−1/4 ,

f7(t) = (1− 4t)1/2 .

(30)

These functions are defined for all t ∈
(
−∞, 1

4

)
; moreover, fi(t) > 0, for t ∈

(
−∞, 1

4

)
.

Now, for each t ∈
(
−∞, 1

4

)
, we consider the basis {x1, . . . , x7} of left invariant 1-forms on S

defined by
xi = xi(t) = fi(t)ei, 1 ≤ i ≤ 7.

Taking into account (30) and (27), the structure equations of S with respect to the basis
{x1, . . . , x7} are

dx1 =
1
2
(1− 4t)−1/2 x17, dx2 =

1
2
(1− 4t)−1/2 x27,

dx3 =
1
2
(1− 4t)−1/2 x37, dx4 =

1
2
(1− 4t)−1/2 x47,

dx5 = (1− 4t)−1/2 (x14 + x23 + x57), dx6 = (1− 4t)−1/2 (x13 − x24 + x67),
dx7 = 0.

(31)
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For any t ∈
(
−∞, 1

4

)
, we consider the 3-form ϕ(t) on S given by

ϕ(t) = x127 + x347 + x567 + x135 − x146 − x236 − x245. (32)

Then, this 3-form ϕ(t) defines a G2-structure on S, and it is equal to the 3-form ϕ(t) defined in (29).
Note that the 3-form ϕ(t) is such that ϕ(0) = ϕ and, for any t, ϕ(t) determines the metric g(t) on S
such that the basis {xi =

1
fi

ei; i = 1, . . . , 7} of left invariant vector fields on S dual to {x1, . . . , x7} is

orthonormal. So, g(t)(ei, ei) = f 2
i .

Moreover, for every t ∈
(
−∞, 1

4

)
, ϕ(t) defines a locally conformal calibrated G2-structure on S.

In fact,
dϕ(t) = e1357 − e1467 − e2367 − e2457 = −e7 ∧ ϕ(t),

since on the right-hand side of (29) the terms e127 and e347 are both closed and d
(
e567 + e135 − e146 −

e236 − e245) = e1357 − e1467 − e2367 − e2457. So, the Lee form θ(t) of ϕ(t) is θ(t) = −e7.
Next, we show that d

dt ϕ(t) = ∆t ϕ(t) = (?td ?t d− d ?t d?t)ϕ(t). Using (31) and (32), we obtain

d
dt

ϕ(t) = −3(1− 4t)−1
(

x127 + x347
)

. (33)

On the other hand, we have

(?td ?t d)ϕ(t) = −4(1− 4t)−1x567 − 2(1− 4t)−1
(

x135 − x146 − x236 − x245
)

, (34)

and
(−d ?t d?t)ϕ(t) =− 3(1− 4t)−1

(
x127 + x347

)
+ 4(1− 4t)−1x567

+ 2(1− 4t)−1
(

x135 − x146 − x236 − x245
)

.
(35)

Therefore, (33), (34) and (35) imply d
dt ϕ(t) = ∆t ϕ(t).

To complete the proof, we study the behavior of the underlying metrics of such a solution in the
limit for t→ −∞. If we think of the Laplacian flow as a one parameter family of G2 manifolds with a
locally conformal calibrated G2-structure, it can be checked that, in the limit, the resulting manifold
has vanishing curvature. Denote by g(t), t ∈

(
−∞, 1

4

)
, the metric on S induced by the G2 form ϕ(t)

given by (29). Then, g(t) has the following expression

g(t) =
(
1− 4t

) 1
4 (e1)2 +

(
1− 4t

) 1
4 (e2)2 +

(
1− 4t

) 1
4 (e3)2 +

(
1− 4t

) 1
4 (e4)2

+
(
1− 4t

)− 1
2 (e5)2 +

(
1− 4t

)− 1
2 (e6)2 +

(
1− 4t

)
(e7)2.

Now, one can check that every non-vanishing coefficient appearing in the expression of the
Riemannian curvature R(g(t)) of g(t) is proportional to 1

(1−4t) . Therefore, limt→−∞ R(t) = 0.

Furthermore, the curvatures R
(

g(t)
)

of g(t) blow-up as t goes to 1
4 , and the finite-time singularity

is of Type I since R
(

g(t)
)
= O(1− 4t)−1 as t→ 1

4 ; in fact

lim
t→ 1

4

|R
(

g(t)
)
|

(1− 4t)−1 < ∞.

Remark 3. As we have noticed in Remark 1, we can also evolve the Lie brackets ν(t) instead of the 3-form
defining the left invariant G2-structure on S, and we can show that the corresponding bracket flow has a solution
for every t ∈

(
−∞, 1

4
)
. In fact, if we fix on R7 the 3-form x127 + x347 + x567 + x135 − x146 − x236 − x245,

the basis {x1(t), . . . , x7(t)} defines, for every real number t ∈
(
−∞, 1

4
)
, a solvable Lie algebra with bracket

ν(t) such that ν(0) is the Lie bracket of the Lie algebra s of S. As for the Lie group K (see Remark 1), the solution
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of the bracket flow converges to the null bracket corresponding to the abelian Lie algebra as t goes to −∞, and it
blows-up as t goes to 1

4 .

Remark 4. Taking into account (4) and (29), one can check that the torsion form τ2(t) of ϕ(t) is given by

τ2(t) =
5
3
(1− 4t)−1/4

(
e12 + e34

)
− 10

3
(1− 4t)−1e56.

Thus, limt→−∞ τ2(t) = 0. However, the solution ϕ(t) does not converge to a locally conformal parallel
G2-structure as t goes to −∞ since, by (29), the G2 forms ϕ(t) blow-up when t→ −∞, and ϕ(t) degenerate as
t goes to 1

4 . Note that the metrics behaves differently for S than for K. Indeed, the induced metrics by the solution
of the Laplacian flow on S blow-up at infinity and at the finite time, while the induced metrics by the solution of
the Laplacian flow on K only blow-up as t goes to 3

8 .

Remark 5. Note that, for every t ∈
(
−∞, 1

4

)
, the metric g(t) is an Einstein metric with negative scalar

curvature on the Lie group S. In fact, with respect to the orthonormal basis {x1(t), . . . , x7(t)}, we have

Ric(g(t)) = − 3
1− 4t

g(t) = − 3
1− 4t ∑

1≤i≤7
(xi)2.
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