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Abstract: In this article, I consider local solutions of the 3D Navier–Stokes equations and its properties
such as an existence of global and smooth solution, uniform boundedness. The basic role is assigned
to a special invariant class of solenoidal vector fields and three parameters that are invariant with
respect to the scaling procedure. Since in spaces of even dimensions the scaling procedure is a
conformal mapping on the Heisenberg group, then an application of invariant parameters can be
considered as the application of conformal invariants. It gives the possibility to prove the sufficient
and necessary conditions for existence of a global regular solution. This is the main result and one
among some new statements. With some compliments, the rest improves well-known classical results.
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1. Introduction

During the last century, the Navier–Stokes equations attracted very much attention. The first
essential steps in this way were offered by C. Oseen [1], F. K. G. Oldquist [2], J. Leray [3–5], and
E. Hopf [6]. Later, the Cauchy problem and the boundary value problem were actively studied by
many authors (see, for example, [7,8], the review [9–17] and etc.). The main objects and tools of these
works were weak solutions or fix points of integral operators. Here, a special case is connected with
the existence problem of a global and regular solution in the 3D Cauchy problem. In response to
the new setting of this task by Ch. Fefferman in 2000 (see [18]), O.A. Ladyzhenskaya wrote in her
review [9] that she would put the main question otherwise: “Do or don’t the Navier–Stokes equations
give, together with initial and boundary dates, the deterministic description of fluid dynamics?”

Then, this problem is more difficult and more interesting from the physical point of view.
Therefore, I introduced some invariants for studying solutions properties. At least, it is natural
for applications because invariants are very important and strong tools. Moreover, these invariants
didn’t apply earlier.

Let us describe them now. The first invariant connected with the Cauchy problem that provided
initial data belongs to a special class C∞

6/5, 3/2 of solenoidal vector fields vanishing at infinity. Here,
outer forces are trivial. Then, the class C∞

6/5, 3/2 is invariant (Theorem 2). This is a new result.
The second invariant is a special parameter λ (see (68)) which is connected with a velocity

changing of E2, where E is a kinetic energy of a fluid flow. If λ ≥ 1 or kinetic energy at a special
moment is not less any mean depending on λ for λ < 1 ( i.e., changing of E2 at moment t = 0 is
negligible), then an ideal, global and smooth motion is determined. In other words, a global regular
solution exists (Theorem 7). This is an essential and qualitative improvement of the classical result
together with a new a priori estimate given by Theorems 8–10. These theorems are new results
in principle.
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Finally, the other parameters ε, 0 < ε < 1, (see formula (87)) and µ, 1 < µ < λ−4, or µ = ∞
may also be very useful (see formula (69), Lemma 50). The first of them is a dissipation coefficient of
kinetic energy . The last parameter holds a time interval of a solution regularity. These three numerical
characteristics λ, ε, µ are invariant with respect to the scaling procedure.

By the way, the first attempts to estimate invariant norms were implicitly undertaken in [12,16].
An introduction of a special invariant class of vector fields and invariant parameters gives the

main idea for the proof of basic results. The first step is connected with a change of the construction
offered in [19]. These changes concern solution approximations. The special kind of them gives
many uniform a priori estimates. Approximations of a velocity function are built on a fundamental
system with a condition for Laplacians of approximative solutions. They must be a finite part of
the Fourier series. Simultaneously, approximations of a pressure function are being built. Jointly
with a hydrodynamical potential, these approximations give the following facts and properties of
local solutions:

(1) solutions are bounded with respect to a uniform norm and therefore it belongs to any class Lp, q;
(2) there is a universal time interval [0, T0) where bounded solutions exist;
(3) more exact necessary conditions of a hypothetical turbulence phenomenon if it is;
(4) a lower estimate of the kinetic energy which influences an existence of a global smooth solution.

The last two items are very important. If dissipation of kinetic energy is large (close to the unit),
then blow up is probable.

To the structure of the paper. In the first part (Section 2), there are considered solutions’ properties
of the Cauchy problem in a local form if initial data is smooth enough. Here, there is given a
modification of classical results with some supplements (see Theorem 1).The rest of this part contains
technical lemmas which are proved by application of hydrodynamic potentials and multiplicative
inequalities from Appendix (Appendix A). In the second part (Sections 3 and 4), there are existence
conditions of global solutions studied in this problem, conditions for local solutions’ extensions if the
kinetic energy is small and close to the minimum. A more precise hypothetic blow up time interval is
found. Here, three basic parameters λ, µ, ε are very useful.

The third part (Sections 5 and 6) contains the proof of main statements (Theorems 7–9), which are
based on properties of invariant parameters λ, µ, ε.

I think, in this way, it is convenient to remove any restrictions on a smoothness in some contrast
to the traditional way. The main idea is connected with an invariant form of an a priori estimate for
gradient norms of a velocity. In addition, other norms are estimated in class L6 and, after that, it is
done in class L2. In particular, it is shown that there is a bad solution of a class L6 with some good
properties. As the corollary, this solution has many uniformly bounded norms with respect to time
argument. Only after that, by routine calculations, we prove the bad solution from above belongs to a
class L2. Precisely, this step distinguishes from classical way for the second time (see [7]).

In the considered problem, a boundedness of solutions depends on a smoothness of initial data.
At least, initial data from the Sobolev class W3

2 gives the same in principle.
The offered construction doesn’t permit diminishing the index of smoothness.
In the final (Section 7), we explain the principal difference between the Navier–Stokes equations

in space and plane.
A part of local results in modification (Section 2) and invariants as tools (Section 4) were announced

by author in [20–22].
NOTATION. Now, let us consider the Cauchy problem (n = 3):

Dtuk +
n

∑
i=1

uiuk, i = ν∆uk − P, k, k = 1, 2, . . . , n, (1)

divu = 0, u(0, x) = ϕ(x), (2)
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where u is a velocity of flow, P is a pressure function, symbols

Dtu =
∂u
∂t

, uk, i =
∂uk
∂xi

, uk, ij =
∂2uk

∂xi∂xj
, ..., P , k =

∂P
∂xk

indicate a partial differentiation or differentiation in distributions,4 is the Laplace operator, and ν

is a positive constant (viscosity coefficient). A mapping ϕ has all derivatives and satisfies conditions
of averaged growth: ϕ ∈ L6/5(R3), ϕ, i ∈ L3/2(R3). The other derivatives belong to classes Lr(R3)

for any r > 1. Furthermore, this class is denoted by symbol C∞
6/5, 3/2. A class C∞

0 (Rn) is the class of
infinitely smooth mappings with a compact support. A norm in a space Lp(Ω) is defined by formula:

‖v‖p =
(∫

Ω
|v(x)|pdx

)1/p
.

A mixed norm is defined by equality:

‖u‖p, q =
(∫ T

0

(∫
Ω
|u(t, x)|pdx

) q
p
dt
) 1

q
.

A symbol Dαv denotes a partial differentiation or distributions with respect to a multi–index α.
An order of the derivative is indicated by |α|. Jacobi matrix of a mapping v with respect to spatial
variables is denoted by ∇v . Its modulus is

|∇v| =
(
∑
i, j

v2
i, j

) 1
2
. (3)

Functions’ properties from the Sobolev classes W l
p(Ω) are given, for example, in [23–25]. A norm

in this functional space is defined by

‖v‖W l
p(Ω) = ∑

|α|≤l
‖Dαv‖p.

Let v be a mapping that is determined on the whole space. For the Riesz potential, we
apply notation:

Iα(v)(x) =
1

γ(α)

∫
Rn

v(y)dy
|x− y|n−α

, (4)

where γ(α) = π
n
2 Γ( α

2 )
/

Γ( n−α
2 ) and Γ is the Euler gamma–function. The properties of these potentials

can be found in [24].
The agreement about summation. Everywhere in this article, the repeated indices give a summation

if it is not done reservation specially. For example,

uiuj, i =
n

∑
i=1

uiuj, i, ui, juj, i =
n

∑
i,j=1

ui, juj, i, uiuj, i4uj =
n

∑
i,j=1

uiuj, i4uj,

etc.
Furthermore, ST = [0, T]× R3. A number T0 we define by formula:

T0 =
(9

4

)4 ν3

‖∇ϕ‖4
2

. (5)

We apply the definition of a weak solution given in [7] everywhere.
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2. Preliminaries. Boundedness and Smoothness Properties of Local Solutions in the Cauchy Problem

Here, with some compliments, a local result described by Theorem 1 is basic in this section. The
rest contains only technical statements.

Theorem 1. Let T0 be a number from formula (5) and a mapping ϕ ∈ C∞
6/5, 3/2. Then, on the set ST0 , there

exist weak solutions u and P of problems (1) and (2) with the following properties:

(1) mappings u and P uniformly continuous and bounded on the set ST for every number T, 0 < T < T0;
(2) the solution u belongs to Sobolev classes W2

2 (ST) and W1
6 (ST) for every number T, 0 < T < T0,

moreover, all norms
‖u‖p, ‖∇u‖p, ‖Dtu‖p, ‖u, ij‖p, ‖∇Dtu‖2

are uniformly bounded in spaces Lp(R3), 2 ≤ p ≤ 6, by a constant C = C(ν, ϕ, T) depending on ν, ϕ

and T only, in addition ‖u‖2 ≤ ‖ϕ‖2;
(3) gradients ∇ui, i = 1, 2, 3, ∇P are bounded on the set ST for every number T, 0 < T < T0;
(4) the solution P satisfies uniform estimates:

‖∇P‖q ≤ C,
3
2
< q < ∞, ‖∇DtP‖q ≤ C, ‖P, ij‖q ≤ C,

for all numbers q, 3
2 < q ≤ 3, and t ∈ [0, T], T < T0, with constants C depending on ν, ϕ, T and

q only;
(5) solutions u and P are classical solutions that is for any T < T0 they belong to the class C∞((0, T0)×

R3)
⋂

C(ST).

The proof of the theorem is given to the end of this section. We note items 1, 3, 4 compliment
well-known Ladyzhenskaya’s results (see [7]). Item (2) contains new uniform estimate for norms of
derivatives. Hence, it follows a boundedness of weak solutions and a finiteness of its mixed norms.
Moreover, we have an existence of weak solution with required properties on the interval [0, T0) with
the finite length. To the studying of the smoothness property for weak solutions, the mixed norms
were applied by O. Ladyzhenskaya in [26] (see, also [7]). They were applied by other authors (see,
for example, [8,10,14]). Item (5) is a particular case from [27]. However, from this theorem, a deeper
result follows (see Theorem 7).

2.1. A Priori Estimates of Gradients’ Norms

Lemma 1. Suppose that a mapping w : ST0 → R3 belongs to a class C2 and w(0, x) = ϕ(x). If, for
every t ∈ [0, T0), Laplacian supports are subsets of some ball with a fixed radius and w ∈ L6(R3), ∇w ∈
L2(R3)

⋂
L6(R3), then for all mappings w satisfying condition:

1
2

d
dt
‖∇w‖2

2 + ν‖4w‖2
2 =

∫
R3

wiwk, i4wkdy, (6)

the following estimate holds:

‖∇w‖2 ≤
‖∇ϕ‖2(

1− t/T0

)1/4

for all t ∈ [0, T0), where T0 from formula (5).

Proof. We take from Corollary A4 the second inequality. Then, from (6), we obtain:

1
2

d
dt
‖∇w‖2

2 + ν‖4w‖2
2 ≤ a1‖∇w‖3/2

2 ‖4w‖3/2
2 . (7)
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Let y = ‖4w‖2/‖∇w‖3
2. Then, (7) can be rewritten in the form:

1
2‖∇w‖6

2

d
dt
‖∇w‖2

2 ≤ a1y3/2 − νy2.

The maximal mean on the right-hand side is 27a4
1

256ν3 . Therefore, integrating the inequality

1
2‖∇w‖6

2

d
dt
‖∇w‖2

2 ≤
27a4

1
256ν3

over the interval [0, t], we get:
1

‖∇ϕ‖4
2
− 1
‖∇w‖4

2
≤

27a4
1

64ν3 t.

Furthermore, we take a number a1 from Corollary A4 and obtain the required estimate.

Lemma 2. Let T0 be a constant from Lemma 1. Assume a mapping w : ST0 → R3 belongs to a class C3 and
w(0, x) = ϕ(x), Dtw(0, x) = ψ(x). Suppose that, for every t, there are fulfilled conditions:

(1) Laplacian supports4w,4Dtw are subsets of a ball with a fixed radius;
(2) mappings

w, Dtw ∈ L6(R3), ∇w, ∇Dtw ∈ L2(R3)
⋂

L6(R3);

(3) with constants k1, l the inequalities hold:

‖∇w‖2 ≤ k1‖∇ϕ‖2,
∫ t

0
‖4w‖2

2dt ≤ l;

(4) the equality

1
2

d
dt
‖∇Dtw‖2

2 + ν‖4Dtw‖2
2 =

∫
R3

(
Dtwi · wk, i + wiDtwk, i

)
4Dtwkdx (8)

is true. Then, for every segment, [0, T] where T < T0 the estimate ‖∇Dtw‖2 ≤ k2‖∇ψ‖2 holds with a constant
k2 which depends on ν, T, k1, l, ‖∇ϕ‖2 only.

Proof. The integral on the right-hand side in formula (8) we rewrite with two integrals J1 and J2.
Applying Corollary A4, we make estimates for every integral. In integral J1, a triple of mappings
u, v, w is the triple Dtw, w, Dtw. In integral J2, a required triple is the triple w, Dtw, Dtw. Therefore,
condition (3) yields estimates:

J1 ≤ a‖∇Dtw‖2‖∇w‖1/2
2 ‖4w‖1/2

2 ‖4Dtw‖2

≤ a
√

k1‖∇ϕ‖1/2
2 ‖∇Dtw‖2‖4w‖1/2

2 ‖4Dtw‖2,

J2 ≤ a‖∇w‖2‖∇w‖1/2
2 ‖4w‖1/2

2 ‖ ≤ ak1‖∇ϕ‖2‖∇Dtw‖1/2
2 ‖4w‖3/2

2 .

Hence, from (8), we get:
1
2

d
dt
‖∇Dtw‖2

2 + ν‖4Dtw‖2
2 ≤ (9)

a
√

k1‖∇ϕ‖1/2
2 ‖∇Dtw‖1/2

2 ‖4Dtw‖2

(
‖4w‖1/2

2 +
√

k1‖∇ϕ‖1/2
2 ‖4Dtw‖1/2

2

)
.

Let g(t) = ‖∇Dtw‖2, h(t) = ‖4Dtw‖2/g(t). Then, formula (9) can be transformed to the formula:

1
2

d
dt

ln g(t) + νh2(t) ≤ a
√

k1‖∇ϕ‖1/2
2 ‖4w‖1/2

2 h(t) + ak1‖∇ϕ‖2h3/2(t).
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Let us integrate over segment [0, t] this inequality. For the next step, we apply to each term the Hölder
inequality for three and two factors, respectively getting quantities h2(t) and ‖4w‖2

2. Hence, from
condition (3), we obtain:

1
2

ln
g(t)
g(0)

+ ν
∫ t

0
h2(t)dt ≤ a

√
k1‖∇ϕ‖2

4
√

t
(∫ t

0
‖4w‖2

2dt
)1/4(∫ t

0
h2(t)dt

)1/2
+

+ak1‖∇ϕ‖2
4
√

t
(∫ t

0
h2(t)dt

)3/4
≤ a

√
k1‖∇ϕ‖2

4√lt
√

y + ak1‖∇ϕ‖2
4
√

ty3/4,

where y =
∫ t

0 h2(t)dt. Let M be a maximal mean of the function

F(y) = a1
√

y + a2y3/4 − νy,

where a1 = a
√

k1‖∇ϕ‖2
4
√

lt, a2 = ak1‖∇ϕ‖2
4
√

t. Then, the last estimates give g(t) ≤ e2Mg(0). From
the definition of function g, we have g(0) = ‖∇ψ‖2.

2.2. A Priori Estimates of Laplacian Norms

Lemma 3. Let w, T0 be a mapping and a number from Lemma 1. Then, for every number T, 0 < T < T0,
there exists a constant l = l(ν, ϕ, T) such that

∫ t

0
‖4w‖2

2dt ≤ l

for all t ∈ [0, T].

Proof. We transform inequality (7) applying the estimate from Lemma 1. Then,

1
2

d
dt
‖∇w‖2

2 + ν‖4w‖2
2 ≤ a

‖∇ϕ‖3/2
2

(1− t/T0)3/8 ‖4w‖3/2
2 .

This inequality we integrate over the segment [0, t]. Then, we estimate the right-hand side applying
the Hölder inequality and underlining the integral with the term ‖4w‖2

2. If β(t) =
∫ t

0 ‖4w‖2
2dt, then

we get
1
2
‖∇w‖2

2

∣∣∣t
0
+ νβ(t) ≤ a‖∇ϕ‖3/2

2 β3/4(t)
(∫ t

0
(1− t/T0)

−3/2dt
)1/4

.

The direct calculations of the integral on the right-hand side and the estimate

1√
1− b

− 1 ≤ b√
1− b

give the inequality:

1
2
‖∇w‖2

2 + νβ(t) ≤ a‖∇ϕ‖3/2
2 β3/4(t)

4
√

2t
(1− t/T0)1/8 +

1
2
‖∇ϕ‖2

2.

Take out the first term on the left hand. Then, the required estimate for function β(t) will be obvious.
If β(t) ≤ ‖∇ϕ‖2, then the estimate is acceptable. If β(t) ≥ ‖∇ϕ‖2, then we have:

νβ(t) ≤ a‖∇ϕ‖3/2
2 β3/4(t)

4
√

2t
(1− t/T0)1/8 +

1
2
‖∇ϕ‖5/4

2 β3/4(t).

Hence, it follows the lemma.
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Lemma 4. Let w be a mapping from Lemma 2 and a number T0 from Lemma 1. Then, for every number T,
0 < T < T0, there exists a constant l1 = l1(ν, ϕ, T) such that

∫ t

0
‖4Dtw‖2

2dt ≤ l1

for all t ∈ [0, T].

Proof. For the mapping w, inequality (9) is fulfilled. Its right-hand side we estimate relying on
Lemma 2. Then,

1
2

d
dt
‖∇Dtw‖2

2 + ν‖4Dtw‖2
2 ≤ (10)

a
√

k1k2‖∇ϕ‖1/2
2 ‖∇ψ‖2‖4w‖1/2

2 ‖4Dtw‖2 + ak1
√

k2‖∇ϕ‖1/2
2 ‖∇ψ‖2‖4Dtw‖3/2

2 .

Let C be a maximal coefficient of factors

‖4w‖1/2
2 ‖4Dtw‖2, ‖4Dtw‖3/2

2 .

Therefore, from formula (10), we have inequality:

1
2

d
dt
‖∇Dtw‖2

2 + ν‖4Dtw‖2
2 ≤ C‖4w‖1/2

2 ‖4Dtw‖2 + C‖4Dtw‖3/2
2 .

This inequality we integrate over segment[0, t] and its right-hand side we estimate applying the Hölder
inequality and underlining terms with norms ‖4Dtw‖2. If

β1(t) =
∫ t

0
‖4, Dtw‖2

2dt

then we have the estimate:

1
2
‖∇Dtw‖2

2

∣∣∣t
0
+ νβ1(t) ≤ C 4

√
t
(∫ t

0
‖4w‖2

2dt
)1/4

β1/2
1 (t) + C 4

√
tβ3/4

1 (t).

We increase the right side using Lemma 3 and deduce the left side taking out the first positive term.
Then, we obtain:

νβ1(t) ≤ C 4√ltβ1/2
1 (t) + C 4

√
tβ3/4

1 (t) +
1
2
‖∇ψ‖2

2.

Hence, we get the lemma in the same way as Lemma 3. If β1(t) > ‖∇ψ‖2, then, from

‖∇ψ‖2
2 < β1/2

1 (t)‖∇ψ‖3/2
2 ,

we obtain the lemma inequality. If β1(t) ≤ ‖∇ψ‖2, then the estimate is acceptable.

2.3. Basic Space of Solenoidal Vector Fields and Orthogonal Systems

Let us consider solenoidal vector fields ϕ : R3 → R3 from class C∞ with a compact support of
4ϕ. A closure of this class is defined by the norm:

‖ϕ‖ = ‖ϕ‖6 + |∇ϕ‖2 + ∑
i, j
‖ϕ, ij‖2. (11)

We denote its by J2
0 (R3). From Lemmas A1 and A2, it follows that elements u ∈ J2

0 (R3) are
represented by the Riesz potentials; moreover, u, ∇u ∈ L6(R3). Otherwise, each element is defined
uniquely by its Laplacian. The class J2

0 (R3) is a separable space as a subspace of the Sobolev classes
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W l
p(R3), 1 < p < ∞. Therefore, there exists a countable system (ψn)n=1,... of infinite smooth vector

fields satisfying conditions:

(1) div ψn = 0;
(2) supports of4ψn are compact sets;
(3) the closure of a linear span in norm (11) coincides with the space J2

0 (R3).

Now, we apply the Sonin–Shmidt orthogonalization to the fundamental system (ψn)n=1,... and
construct a countable system of mappings (bn)n=1,..., which would be with the orthogonality property
of Laplacians in the space L2(R3). That is, the scalar product

(4bn,4bm) =
∫

R3
4bn

i 4bm
i dx = δij, (12)

where δij is Kronecker’s symbol. Then, every mapping bn is a finite linear combination of mappings
(ψk). Therefore, a support of4bn is a compact set. Let

4bn = an. (13)

The system (an) is complete for the space J2
0 (R3); that is, the following proposition is true.

Lemma 5. If in the space L2(R3) for a some vector field u ∈ J2
0 (R3) the scalar product (u, an) = 0 for every

n = 1, 2, . . . then u = 0.

Proof. From chosen mappings an, the equality (u,4ψn) = 0 for each element of the fundamental
system (ψn)n=1,... follows. The Stokes theorem gives∫

|x|≤r
uk4ψn

k dx = −
∫
|x|≤r

uk, iψ
n
k, idx +

∫
|x|=r

ukψn
k, i

xi
r

dS.

The integral over the sphere vanishes as r → ∞. Actually, from Corollary A2 of Lemma A2, we have:∣∣∣ ∫
|x|=r

ukψn
k, i

xi
r

dS
∣∣∣ ≤ C1

r2

∫
|x|=r
|u(x)|dS.

Furthermore, we apply Lemma A4 (α = 2, p = 6) taking into consideration a continuity of u. The
passage to the limit yields the equality (u,4ψn) = −(∇u,∇ψn) or (∇u,∇ψn) = 0. We take a
sequence of finite and smooth mappings

(ηn)n=1,..., ηn ∈ J2
0 (R3), ηn =

n

∑
i

βiψ
i,

which converges to the vector field u in the space J2
0 (R3). Hence, (∇u,∇u) = 0. The summability of u

in the space L6(R3) proves lemma equality.

Remark 1. To the fundamental system of mappings (ψn) we can adjoin any solenoidal vector field
ϕ ∈ C∞

0 (R3), ϕ 6= 0 or any vector field from the class J2
0 (R3) as the first element of this system.

2.4. Successive Approximations of Solutions and Its Estimates: Velocity

Let (an
1,...) be an orthonormal system of mappings in the space L2(R3) constructed above with the

completeness property in J2
0 (R3) and conditions (12) and (13). Moreover, an ∈ C∞

0 (R3) for all n and
a1 = 4ϕ

‖4ϕ‖2
where a vector field ϕ ∈ C∞

0 (R3) is initial data in problems (1) and (2).
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For successive approximations vn, we define changing Ladyzhenskaya’s construction in ([7],
p. 197). Set

4vn(t, x) =
n

∑
q=1

cqn(t)aq(x). (14)

Then, an approximative solution vn is built as a hydrodynamical potential

vn(t, x) = − 1
4π

n

∑
q=1

cqn(t)
∫

R3

aq(y)dy
|x− y| . (15)

Functions cqn are solutions of a system of differential equations:(
Dtvn, aq

)
− ν
(
4vn, aq

)
+
∫

R3
vn

i vn
k, ia

q
kdx = 0, q = 1, 2 . . . , n, (16)

with initial data: cqn(0) = ‖4ϕ‖2δq1, where δqr is Kronecker’s delta. Hence,

4vn(0, x) = 4ϕ(x), vn(0, x) = ϕ(x). (17)

Now, we find an existence interval of a smooth solution in system (16). For every equation
from (16), we multiply by functions cqn and sum them. As a result, we have:(

Dtvn,4vn
)
− ν|4vn‖2

2 +
∫

R3
vn

i vn
k, i4vn

k dx = 0.

From Corollary A3, we get:(
Dt∇vn,∇vn

)
+ ν‖4vn‖2

2 =
∫

R3
vn

i vn
k, i4vn

k dx. (18)

From Lemmas A1 and A2 vector fields vn ∈ L6(R3), ∇vn ∈ L6(R3)
⋂

L2(R3). Equalities (17)
and (18) are conditions of Lemma 1 for mappings vn . Therefore, in system (16), an existence of smooth
solutions on some interval [0, t0) is guaranteed by well-known theorems for ordinary differential
equations. By Lemma 1 (see estimates), these solutions can be extended on the interval [0, T0) where
T0 is the constant in Lemma 1 (see also (5)). Thus, we proved the following statement.

Lemma 6. Let [0, T0) be an interval from Lemma 1. Then, for every t ∈ [0, T0), approximations vn constructed
by formulas (14) and (16) satisfy conditions:

(1) ‖∇vn‖2 ≤ ‖∇ϕ‖2

(
1− t/T0

)−1/4
,

(2) ‖∇vn‖6 ≤ A‖4vn‖2,

where a constant A from Lemma A1.

Proof. Item (1) follows from Lemma 1. Item (2) is the corollary of the second representation in (A1),
Lemma A1 and arguments in the proof of Corollary A4.

Lemma 7. Let [0, T0) be a constant of Lemma 1. Then, for every segment [0, T], T < T0, approximations vn,
which are constructed by formulae (14)–(16), satisfy inequalities:

(1) ‖∇Dtvn‖2 ≤ k2‖∇(ν4ϕ− ϕi ϕ, i)‖2, where a number k2 = k2(ν, ϕ, T) depends on ν, ϕ, T only;
(2) ‖∇Dtvn‖6 ≤ A‖4Dtvn‖2 with the constant A from Lemma A1.
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Proof. The item (2) can be proved in the same way as the estimate (2) from Lemma 6. Let us prove item
(1). We differentiate equalities (16) with respect to t. Then, from each, we multiply by the derivative
c′qn(t) and add together in final. As a result, we have(

Dttvn,4Dtvn
)
− ν‖4Dtvn‖2

2 +
∫

R3

(
Dtvn

i vn
k, i + vn

i Dtvn
k, i

)
4Dtvn

k dx = 0.

A support of4Dtvn is a compact set. The Stokes theorem and Corollary A3 give:(
Dtt∇vn,∇Dtvn

)
+ ν‖4Dtvn‖2

2 =
∫

R3

(
Dtvn

i vn
k, i + vn

i Dtvn
k, i

)
4Dtvn

k dx. (19)

From Lemmas A1 and A2, we have

vn, Dtvn ∈ L6(R3), ∇vn, Dt∇vn ∈ L6(R3)
⋂

L2(R3).

By Lemma 3, the vector field vn satisfies the inequality:∫ t

0
‖4vn‖2

2dt ≤ l(ν, ϕ, T).

Then, mappings vn satisfy Lemma 2. This implies:

‖∇Dtvn‖2 ≤ k2‖∇Dtvn(0, x)‖2 (20)

with some constant k2 = k2(ν, ϕ, T).
Let us estimate the right-hand side of (20). In (16), we take t = 0. Then, we multiply them by

numbers c′qn(0) respectively and add them together. As a result, formula (17) gives(
Dtvn(0, x),4Dtvn(0, x)

)
−
(
4Dtvn(0, x), T1(x)

)
= 0, (21)

where
T1 = ν4ϕ− ϕi ϕ, i. (22)

We move derivatives with the factor4Dtvn in (21) using Corollary A3 and a finiteness of mapping ϕ.
Then, we obtain

‖∇Dtvn(0, x)‖2
2 =

(
∇Dtvn(0, x),∇T1(x)

)
.

Apply Cauchy–Bunyakovskii’s inequality. Hence, we get the required estimate

‖∇Dtvn(0, x)‖2 ≤ ‖∇T1(x)‖2.

Thus, from (20), a lemma follows.

Lemma 8. Let T0 be a constant of Lemma 1. Then, on every segment [0, T], 0 < T < T0, approximations vn

from formulae (14)–(16) satisfy conditions:

(1) ‖4vn‖2 ≤ C = C(ν, ϕ, T);
(2)

∫ t
0 ‖4Dtvn‖2

2dt ≤ l1;

where constants C and l1 depend on ν, ϕ, T only.

Proof. Condition (1) follows from (18). We apply the Cauchy–Bunyakovskii inequality and estimates
(1) of Lemmas 6 and 7 to the scalar product

(
Dt∇vn,∇vn). Then, |

(
Dt∇vn,∇vn)| ≤ C1(ν, ϕ, T) = C1.

The right-hand side from (18) is estimated by applying Corollary A4, where we take the triple vn, vn, vn.
From (18), we have

ν‖4vn‖2
2 ≤ C1 + a‖∇vn‖3/2

2 ‖4vn‖3/2
2 .
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Apply again estimate (1) of Lemma 6. Then,

ν‖4vn‖2
2 ≤ C1 + C2‖4vn‖3/2

2 .

This implies condition (1). Vector fields vn satisfy Lemma 2 (see the proof of Lemma 6). Then, Lemma 4
gives estimate (2).

Lemma 9. Let T0 be a constant of Lemma 1. Then, approximations vn from (14)–(16) are bounded by a constant
C on the set ST for every T < T0 where a constant C depends on ν, ϕ, T only.

Proof. For approximation vn, we use integral representation (A2). One should replace integration over
whole space by integrations over ball |y− x| ≤ 1 and its complement. Then, vn(t, x) = 1

4π (J1 + J2).
Every term is estimated by application of Hölder’s inequality. We have

|J1| ≤ ‖∇vn‖6

(∫
|y−x|≤1

dy
|x− y|2,4

)5/6
, |J2| ≤ ‖∇vn‖2

(∫
|y−x|≥1

dy
|x− y|4

)1/2
.

Hence,
|J1| ≤ C1|∇vn‖6, |J2| ≤ C2|∇vn‖2,

where C1, C2 are universal constants. The norm ‖∇vn‖6 is estimated in two steps. In the first step,
we apply inequality 2) from Lemma 6. After that, we use inequality (1) from lemma 8. To estimate
another norm ‖∇vn‖2, we can apply inequality (1) from Lemma 6. Hence, we get a boundedness of all
vector fields vn by a general constant.

Lemma 10. Let T0 be a constant of Lemma 1. Then, for every exponent p ∈ [3/2, 6] and every segment
[0, T], T < T0, approximations vn from formulae (14)–(16) satisfy the inequality ‖vn

i vn
, i‖p ≤ C with a

constant C depending on ν, ϕ, T, p only.

Proof. If p = 6, then the statement follows from Lemma 9 and estimates by item (2) of Lemma 6 and
item (1) of Lemma 8. If p = 3/2, then we apply Hölder’s inequality. Hence, we have ‖vn

i vn
, i‖3/2 ≤

‖vn‖6‖∇vn‖2. Estimates of Lemma 6 and Lemma 8 prove the lemma for this exponent. An intermediate
exponents is verified by Lemma A5.

Lemma 11. Let T0 be a constant of Lemma 1. Then, for all t ∈ [0, T0), approximations vn from
formulae (18)–(20) satisfy inequalities

‖vn
, ij‖2 ≤ M|4vn‖2, ‖Dtvn

, ij‖2 ≤ M|4Dtvn‖2,

i, j = 1, 2, 3, with a universal constant M.

Proof. The statement of lemma is the corollary well-known results about integral differentiation with
a weak singularity (see [28]). From the second representation of Lemma A2, we obtain two equalities:
vn

, ij = kij4vn + Tij(4vn), Dtvn
, ij = kij4Dtvn + Tij(4Dtvn), where kij are some constants, Tij are

singular integral operators. Its boundedness in the space L2 gives the required estimates.

Lemma 12. Let T0 be a constant of Lemma 1. Then, for every segment [0, T], T < T0, for all exponents
p ∈ [1, 3/2] and each triple i, j, k = 1, 2, 3 approximations vn from (14)–(16) satisfy inequalities:

(1) ‖vn
i, jv

n
j, ik‖p ≤ C;

(2) ‖vn
i, jDtvn

j, ik‖p ≤ C‖4Dtvn‖2;

(3) ‖Dtvn
i, jv

n
j, ik‖p ≤ C‖4Dtvn‖3/p−2

2 ;
(4) ‖vn

i, jDtvn
j, i‖p ≤ C;
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where constants C depend on ν, ϕ, T, p only.

Proof. Apply Hölder’s inequality. Then,

∫
|hi, jgj, ik|pdx ≤

(∫
|hi, j|2p/(2−p)dx

)1−p/2(∫
|gj, ik|2dx

)p/2
. (23)

Denote h = vn, g = vn. An exponent 2p/(2− p) ∈ [2, 6]. Then, the first factor in (23) is estimated
by Lemma 1 with an assumption r = 2, s = 6. Uniform estimate (1) follows from Lemma 6 and
Lemma 8. In the same way taking a pair h = vn, g = Dtvn we get estimate (2). Now, denote
h = Dtvn, g = vn. To the first factor from the right-hand side of (23) we apply Lemma A5 relying on
r = 2, s = 6, t = 3− 3/p. The norm ‖∇Dtvn‖2 has a uniform estimate with respect to t and n by
Lemma 7. Apply the both estimates of this lemma and obtain estimate (3). The other estimates (4) and
(1) we prove in the same way.

2.5. Successive Approximations of Solutions and Its Estimates: Pressure

Let vn be an approximation from formulae (14)–(16). Fix T, T < T0 where T0 is the constant from
Lemma 1. Consider a hydrodynamical potential

Pn(t, x) =
1

4π

∫
R3

vn
i, j(t, y)vn

j, i(t, y)dy

|x− y| . (24)

A product vn
i, jv

n
j, i ∈ L1(R3)

⋂
L3(R3). This follows from estimates of Lemma 6, Lemma 8 and

Hölder’s inequality. By Lemma A4 on every segment [0, T], we have:

‖vn
i, jv

n
j, i‖p ≤ C(ν, ϕ, T, p) = C, 1 ≤ p ≤ 3. (25)

Lemma A1 implies a uniform estimate with respect to t and n:

‖Pn‖q ≤ A(p, q)C(ν, ϕ, T, p) (26)

for any exponent q > 3, where 1
q = 1

p −
2
3 .

Let us decompose integral in (24) by two integrals J1 and J2: over ball |y− x| < 1 and over its
exterior. Every integral we estimate by Hölder’s inequality or a simple estimation. Then,

4π J1 ≤ ‖vn
i, jv

n
j, i‖3

(∫
|y−x|<1

dy
|x− y|1,5

)2/3
≤ C1, 4π J2 ≤ ‖vn

i, jv
n
j, i‖1 ≤ C2.

Thus, with some constant C = C(ν, ϕ, T) on the set ST for all n, we obtain:

|Pn(t, x)| ≤ C. (27)

Function Pn has derivatives in distributions:

Pn
, i, DtPn, DtPn

, i, Pn
, ij, DtPn

, ij.

The differentiation of the integral from (24), the summation and a simple estimation give:

|∇Pn(t, x)| ≤ 1
2π

∫ |∇vn(t, y)|2dy
|x− y|2 , |∇DtPn(t, x)| ≤ 1

2π

∫ |vn
i, j(t, y)|Dtvn

j, i(t, y)|dy

|x− y|2 . (28)

By Lemma A1 for exponents p ∈ (1, 3] and q > 3/2 where 1
q = 1

p −
1
3 , we have:

‖∇Pn(t, x)‖q ≤ 2A(p, q)‖|∇vn|2‖p. (29)
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The right-hand side of (29) is bounded upper by a constant C = C(ν, ϕ, T, p). Here, we apply
inequalities from Lemma 6, Lemma 8 and Lemma A5. Therefore,

‖∇Pn(t, x)‖q ≤ C. (30)

Derivatives
vn

i, j, Dtvn
i, j ∈ L6(R3)

⋂
L2(R3).

Thus, Dt∇Pn ∈ Lq(R3) for any exponent q > 3/2. By Lemma A1, we obtain:

‖∇DtPn‖q ≤ 2A(p, q)‖vn
i, jDtvn

j, i‖p. (31)

Consider two cases: 1 < p ≤ 3/2 and 3/2 < p ≤ 3.
Let 1 < p ≤ 3/2 . Then, the right-hand side of (31) is bounded by a constant C = C(ν, ϕ, T, p).

This follows from estimate 4 of Lemma 12.
Let 3/2 < p ≤ 3. Then, the exponent 6p/(6− p) ∈ [2, 6]. Applying Hölder’s inequality, we get

‖vn
i, jDtvn

j, i‖p ≤ ‖vn
i, j‖6p/(6−p)‖Dtvn

j, i‖6.

The first factor is estimated uniformly by a some constant C = C(ν, ϕ, T, p). This is proved
by application Lemma A5, Lemmas 6 and 8. The second factor is estimated by inequality (2) from
Lemma 7. Hence, for an exponent q, q > 3, 1

q = 1
p −

1
3 , we get:

‖vn
i, jDtvn

j, i‖p ≤ C‖4Dtvn‖2.

Applying the integral representation for derivative DtPn in the same way we prove another
uniform estimate ‖DtPn‖q ≤ C for every exponent q, q > 3.

As the final result from (26), (27), (30), (31), we obtain the following statement.

Lemma 13. Let T0 be a constant from Lemma 1. Let Pn be a function defined by (24). Then, on every segment
[0, T], T < T0, with some constants C1 = C(ν, ϕ, T), C2 = C(ν, ϕ, T, q), there are fulfilled uniform estimates
with respect to t ∈ [0, T] and n:

(1) |Pn(t, x)| ≤ C1 for all x ∈ R3;
(2) ‖∇Pn‖q ≤ C2 for every q > 3/2;
(3) ‖∇DtPn‖q ≤ C2 for every q ∈ (3/2, 3];
(4) ‖∇DtPn‖q ≤ C2‖4DtPn‖2, ‖Pn‖q ≤ C2, ‖DtPn‖q ≤ C2 for every q > 3.

Lemma 14. Suppose that T0 is the constant from Lemma 1. Let Pn be a function defined by (24). Then, on
every segment [0, T], T < T0, with some constants C2 = C(ν, ϕ, T, q), there are fulfilled uniform estimates
with respect to t ∈ [0, T] and n:

(1) ‖Pn
, km‖q ≤ C2;

(2) ‖DtPn
, km‖q ≤ C2 max(1, ‖4Dtvn‖2);

for every q ∈ (3/2, 3] and every pair of numbers k, m = 1, 2, 3.

Proof. These estimates follow from Lemma A1, Lemma 12 and integral representations for derivatives
extracting from (24). Apply Lemma A1 and item (1) of Lemma 12. Then, we obtain the first inequality.
In the same way, we get the second inequality with an application of estimates (2) and (3) from
Lemma 12.
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Lemma 15. Let T0 be a constant of Lemma 1. Let Pn be a function defined by (24). Then, on every segment
[0, T], T < T0, with some constant C = C(ν, ϕ, T, q), there are fulfilled uniform estimates with respect to
t ∈ [0, T] and n: ‖Pn

, klm‖q ≤ C for every q ∈ (1, 3/2], k, l, m = 1, 2, 3.

Proof. It is sufficient to repeat the proof of Lemma 11 with the application of formula (24).

Lemma 16. Let T0 be a constant from Lemma 1. Supposing that Pn is the function defined by (24), then

4Pn = −vn
i, jv

n
j, i.

Proof. This follows from proposition A3.

2.6. Estimates of Uniform Continuity of Approximations in Spaces L2(R3) and C(ST)

Now, we estimate the integral continuity modulus of gradients and Laplacians for approximations
following [7]. Let T0 be a constant from Lemma 1. Let T, T1 be arbitrary numbers such that T < T1 < T0.
Assume t ∈ [0, T], t + h ∈ [0, T1]. Equations (16) we write by the following form:(

Dtvn(t + h, ·), aq
)
− ν
(
4vn(t + h, ·), aq

)
+
∫

vn
i (t + h, x)vn

k, i(t + h, x)aq
kdx = 0, (32)

q = 1, . . . , n.

Every equality we multiply by difference cqn(t + h)− cqn(t) respectively and add together them.
Setting z = vn(t + h, x)− vn(t, x), we have( ∂z

∂h
,4z

)
= ν(4vn(t + h, ·),4z)−

∫
vn

i (t + h, x)vn
k, i(t + h, x)4zkdx.

To the scalar product on the right-hand side, we apply Cauchy–Bunyakovskii’s inequality. The
integral (J is its mean) we estimate by Corollary A4 for the triple vn, vn, z. Then,

|(4vn(t + h, ·),4z)| ≤ ‖4vn‖2‖4z‖2,

|J| ≤ a‖∇vn‖3/2
2 ‖4vn‖1/2

2 ‖4z‖2.

Every factor from the right-hand side of these inequalities is bounded by a constant C = C(ν, ϕ, T1)

uniformly with respect to t, n, h. This follows from estimates of Lemmas 6–8, definition of z and the
choice of means h, T1. Since ( ∂z

∂h
,4z

)
= −1

2
d

dh
‖∇z‖2

2,

then we get inequalities:

−C ≤ 1
2

d
dh
‖∇z‖2

2 ≤ C.

Integrating it over segments [0, h] if h > 0 and [h, 0] if h < 0 in any case we have: ‖∇z‖2
2 ≤ 2C|h|.

Thus, the following statement is proved.

Lemma 17. Let T0 be a constant from Lemma 1. Let T, T1, T < T1 < T0 be arbitrary but fixed numbers.
Then, there exists a constant C = C(ν, ϕ, T1) such that, for all approximations vn, there is a fulfilled inequality:

‖∇vn(t + h, ·)−∇vn(t, ·)‖2 ≤ C
√
|h|,

whenever t ∈ [0, T], t + h ∈ [0, T1].
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Lemma 18. Let T0 be a constant from 1. Let T, T1, T < T1 < T0 be arbitrary but fixed numbers. Then, there
exists a constant C = C(ν, ϕ, T1) such that for all approximations vn there is fulfilled inequality:

‖4vn(t + h, ·)−4vn(t, ·)‖2 ≤ C 8
√
|h|3

whenever t ∈ [0, T], t + h ∈ [0, T1].

Proof. Formulae (16) and (32) yield equalities:(
Dtz, aq

)
− ν
(
4z, aq

)
+
∫
(zivn

k, i(t + h, x) + vn
i (t, x)zk, i)aq

kdx = 0, q = 1, . . . , n,

where z = vn(t + h, x)− vn(t, x). Every equality we multiply by factor c′qn(t + h) respectively and
add together them. Furthermore, in the second term, we replace differentiation on variable t by
differentiation on variable h. Hence, we obtain:(

Dtz,4Dtvn(t + h, ·)
)
− ν
(
4z,

∂

∂h
4z
)
=

−
∫
(zivn

k, i(t + h, x) + vn
i (t, x)zk, i)4Dtvn

k (t + h, x)dx = −L1 − L2.

Here, L1, L2 are integrals from the first and the second products sums, respectively. Hence,(
∇Dtz,∇Dtvn(t + h, ·)

)
+

ν

2
∂

∂h
‖4z‖2

2 = L1 + L2. (33)

The scalar products on the left-hand side of (33) are bounded uniformly. This follows from estimates
of Lemmas 6–8. Therefore, we have:

− C− L1 − L2 ≤
ν

2
∂

∂h
‖4z‖2

2 = C + L1 + L2 (34)

with some constant C = C(ν, ϕ, T1). A uniform boundedness of integrals L1, L2 follows from
Corollary A4. For the verification, we take mappings triples z, vn(t + h, ·), Dtvn(t + h, ·) and
vn(t, ·), z, Dtvn(t + h, ·), respectively. Finally, applying estimates from Lemma 6, Lemma 8 and
Lemma 17, we obtain:

|L1| ≤ a‖∇z‖2‖∇vn(t + h, ·)‖1/2
2 ‖4Dtvn(t + h, ·)‖1/2

2 ‖4z‖2 ≤ (35)

C1

√
|h|‖4Dtvn(t + h, ·)‖1/2

2 ,

|L2| ≤ a‖∇vn‖2‖∇z‖1/2
2 ‖4z‖1/2

2 ‖4Dtvn(t + h, ·)‖2 ≤ C2
4
√
|h|‖4Dtvn(t + h, ·)‖2, (36)

where constants Cm = Cm(ν, ϕ, T1), m = 1, 2 depend on ν, ϕ, T1 only.
We integrate (34) over segments [0, h] if h > 0 and [h, 0] if h < 0. Assume h > 0 without restriction of
the generality. Then, from (35) after Hölder’s inequality application and inequality (2) of Lemma 8,
we get: ∫ h

0
|L1|dh ≤ C1h5/4

(∫ h

0
‖4Dtvn(t + h, ·)‖2

2dh
)1/4

≤ C1
4
√

l1h5/4,

where C1 is a new constant. From (36) in the same way, we obtain another estimate:

∫ h

0
|L2|dh ≤ C2

√
l1h3/4.

Integrating (34) and, gathering last estimates, we get lemma inequality.



Axioms 2019, 8, 41 16 of 51

Lemma 19. Let T0 be a number from Lemma 1. Let T, T1, T < T1 < T0 be arbitrary but fixed numbers. Then,
there exists a constant C = C(ν, ϕ, T1) such that for all approximations vn and Pn there are fulfilled inequalities:

|vn(t + h, x)− vn(t, z)| ≤ C(|h|0,375 + |x− z|0,5),

|Pn(t + h, x)− Pn(t, z)| ≤ C(|h|0,375 + |x− z|0,5)

whenever t ∈ [0, T], t + h ∈ [0, T1], |h| ≤ 1, x, z ∈ R3.

Proof. We have | f (t + h, x) − f (t, z)| ≤ | f (t + h, x) − f (t, x)| + | f (t, x) − f (t, z)|. Therefore, one
should find uniform estimates for every modulus on the right-hand side considering mappings vn, Pn.
From representation (A2), it follows: |vn(t + h, x)− vn(t, x)| ≤ 1

4π (J1 + J2), where

J1 =
∫
|y−x|≤1

|∇vn(t + h, y)−∇vn(t, y)|dy
|x− y|2 ,

J2 =
∫
|y−x|≥1

|∇vn(t + h, y)−∇vn(t, y)|dy
|x− y|2 .

To every integral, we apply again Hölder’s inequality. Then,

J1 ≤ ‖∇vn(t + h, ·)−∇vn(t, ·)‖6

(∫
|y−x|≤1

|x− y|−12/5dy
)5/6

,

J2 ≤ ‖∇vn(t + h, ·)−∇vn(t, ·)‖2

(∫
|y−x|≥1

|x− y|−4dy
)1/2

.

The second representation in (A2) and Lemma A1 yield estimate:

‖∇vn(t + h, ·)−∇vn(t, ·)‖6 ≤ A‖4vn(t + h, ·)−4vn(t, ·)‖2.

Therefore, previous inequalities and estimates from Lemma 17 and Lemma 18 give formula:

|vn(t + h, x)− vn(t, x)| ≤ C|h|0,375, (37)

where C is a constant depending on ν, ϕ, T1 only.
Let us estimate the second modulus applying Poisson’s formula (see (A1)). Then,

|vn(t, x)− vn(t, z)| ≤ |x− z|
4π

∫ |4vn(t, y)|dy
|x− y||z− y| =

|x− z|
4π

J3.

From the inequality,

J3 ≤ ‖4vn(t, ·)‖2

(∫
|x− y|−2|z− y|−2dy

)1/2
,

with some constant C1, we obtain:

J3 ≤ C1‖4vn(t, ·)‖2|x− z|−1/2.

Previous estimates and Lemma 8 (estimate (1)) yield:

|vn(t, x)− vn(t, z)| ≤ C|x− z|0,5, (38)

where a constant C depends on ν, ϕ, T1 only. Thus, the first estimate follows from (37) and (38).
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In the same way, we prove an inequality of the kind (38) for the function Pn (formula (24)). The norm
‖∇vn‖4, which appears after applying Holder’s inequality, we must estimate by Lemma A5. Then,

‖∇vn‖4 ≤ ‖∇vn‖1/2
2 ‖∇vn‖1/6

6 .

Furthermore, Lemma 6 (estimates (1), (2)) and lemma 8 (estimate (1)) yield the inequality ‖∇vn‖4 ≤ C,
where C = C(ν, ϕ, T) is some universal constant. Then, it follows:

|Pn(t, x)− Pn(t, z)| ≤ C1|x− z|0,5. (39)

A difference L = Pn(t + h, x)− Pn(t, x) is represented in the following form:

L =
1

4π

∫ (vn
i, j(t + h, y)− vn

i, j(t, y))(vn
j, i(t + h, y)− vn

j, i(t, y))dy

|x− y| .

To obtain this formula, we change summation index for a separate terms (use (24)) and apply Hölder’s
inequality for three factors and two factors. We make estimates separately on a ball |y− x| ≤ 1 and its

exterior. Let m =
(∫
|y−x|≤1 |x− y|−2dy

)1/2
. Then,

∣∣∣∫
|y−x|≤1

(·)dy
∣∣∣ ≤ m‖∇vn(t + h, ·)−∇vn(t, ·)‖6(‖∇vn(t + h, ·)‖3 + ‖∇vn(t, ·)‖3),

∣∣∣∫
|y−x|≥1

(·)dy
∣∣∣ ≤ ‖∇vn(t + h, ·)−∇vn(t, ·)‖2(‖∇vn(t + h, ·)‖2 + ‖∇vn(t, ·)‖2).

In the last case, as the first step, we make a simple estimate, thereupon, we apply Hölder’s
inequality. The analogous arguments that are used above for the proof of the first estimate in lemma
and formula (39) yield the inequality:

|Pn(t + h, x)− Pn(t, x)| ≤ C|h|0,375, (40)

where C = C(ν, ϕ, T1) is some constant depending on ν, ϕ, T1 only. Uniform estimates (39) and (40)
prove the second inequality of lemma.

2.7. Weak Limits Properties of Approximation Sequences

Lemma 20. Let T0 be a number from Lemma 1 and T < T0 be a positive number. Then, the sequence of mappings
(vn)n=1,... defined by (14)–(16) is bounded in the space W1

6 (ST) and the sequence (Pn)n=1,... constructed by
formula (24) is bounded in spaces W1

q (ST), q > 3.

Proof. Estimate (2) from Lemma 6 and estimate (1) from Lemma 8 yield inequality ‖∇vn‖6 ≤ C.
It is fulfilled with some constant C whenever n and t ∈ [0, T]. For all mappings vn, Dtvn integral
representation (A2) is true. Then, by Lemma A1, we obtain:

‖vn‖6 ≤ A‖∇vn‖2, ‖Dtvn‖6 ≤ A‖∇Dtvn‖2.

From inequalities (1) of Lemmas 6 and 8, we conclude that there exist constants C1, C2, such that
‖vn‖6 ≤ C1, ‖Dtvn‖6 ≤ C2. All norms are uniformly bounded with respect to t. Hence, the sequence
(vn)n=1,... is bounded in W1

6 (ST).
Uniform boundedness of these norms ‖Pn‖q, ‖∇Pn‖q, ‖DtPn‖q, q > 3, with respect to t and n follows
from Lemma 13. Therefore, the sequence (Pn)n=1,... is bounded in spaces W1

q (ST).
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Remark 2. The spaces W1
6 (ST), W1

q (ST) are reflexive. Hence, every bounded set from it is a weakly compact
set (see [? ]). Then, by Lemma 20, sequences (vn)..., (Pn)... are bounded in these spaces. It is possible to extract
a weakly converging subsequences from its. Let

u(t, x) = lim
k→∞

vnk (t, x), P(t, x) = lim
k→∞

Pnk (t, x) (41)

be weak limits of these subsequences. Without restriction of generality, we assume that these subsequences
converge to the own weak limits on every compact set of ST . This follows from Arzela’s theorem and Lemma 19.

Lemma 21. Let u and P be weak limits from (41). Then,

(1) mappings u and P are uniformly continuous on a set ST , T < T0, moreover, u(0, x) = ϕ(x);
(2) mappings u and P are bounded on a set ST ;
(3) the mapping u ∈W1

6 (ST) and there exists a constant C = C(ν, ϕ, T) such that following inequalities are
true: ‖u‖6 ≤ C, ‖∇u‖6 ≤ C, ‖Dtu‖6 ≤ C whenever t ∈ [0, T];

(4) ‖∇u‖2 ≤ C‖∇ϕ‖2, ‖∇Dtu‖2 ≤ C‖∇T1‖2 whenever t ∈ [0, T], where vector field T1 from (22),
a constant C = C(ν, ϕ, T);

(5) u has distributions of the second and third orders: u, ij, Dtu, ij, in addition, for all t ∈ [0, T], there are
fulfilled inequalities: ‖4u‖2 ≤ C,

∫ t
0 ‖4Dtu‖2

2dt ≤ l1 where constants C, l1 from Lemma 8;
(6) the function P ∈ W1

q (ST) for every q > 3, in this case, there exists a constant C = C(ν, ϕ, T, q) such
that, for all t ∈ [0, T] estimates ‖P‖q ≤ C, ‖DtP‖q ≤ C are true;

(7) there exist constants Ci = Ci(ν, ϕ, T, q) such that ‖∇P‖q ≤ C1 for every q > 3/2 and ‖∇DtP‖q ≤ C2

for every q ∈ (3/2, 3];
(8) the function P has distributions of the second and third orders: P, km, P, kmj, DtP, i, in addition, there

exists a number C = C(ν, ϕ, T, q) such that, for all t ∈ [0, T], the following inequalities hold:

‖P, km‖q ≤ C, ‖DtP, i‖q ≤ C for every q ∈ (3/2, 3] and ‖P, kmj‖q ≤ C, for every q ∈ (1, 3/2].

Proof. Property (1) follows from Remark 2. A uniform continuity follows from Lemma 19 and a
uniform convergence of subsequences (vnk )k=1,... and (Pnk )k=1,... on compact subsets of ST .

Property (2) follows from a uniform convergence on compact sets, Lemma 9 and Lemma 13 (item
(1)).

Property (3) follows from norm semicontinuity of a weak limit in reflexive spaces.
Property (4) follows from Lemma 11. A uniform boundedness of norms ‖vn

, ij‖2 (see Lemma 8

and Lemma 11) and norms boundedness ‖Dtvn
, ij‖2 in the space W1

2 (ST) (see Lemma 8 and Lemma 11)
guarantee an existence of distributions u, ij, Dtu, ij. Estimates of its norms follow from a semicontinuity
of a weak limit norm.

Properties (5)–(8) are proved in the same way. For the verification, we apply Lemmas 13–15.

Lemma 22. Weak limits from (41) satisfy equalities:

P, k = −
1

4π

∫ ui, j(t, y)uj, i(t, y)(xk − yk)dy
|x− y|3 , u, j =

1
4π

∫ 4u(t, y)(xj − yj)dy
|x− y|3 .

Proof. The first equality is fulfilled for mappings vn and Pn. The sequence (∇vn)n=1,... is bounded in
the space W1

2 (ST). In addition, estimates of norms ‖∇vn‖2, ‖vn
, ij‖2, ‖Dtvn

, i‖2 are uniform with respect
to t and n (see Lemmas 6–8 and 11). Apply Sobolev–Kondrashov’s embedding theorem (see [23],
pp. 83–94) to the sequence (∇vn)n=1,.... As a bounded set, it is embedded in the space Lq([0, T]×Ω)

for every ball Ω ⊂ R3. An exponent q satisfies condition

1
q
− 1

2
+

1
m

> 0, q < 4.
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In this case, a dimension of spatial domain [0, T]×Ω) m = 4. Thus, we can assume that a subsequence
(∇vnk )k=1,... converges strongly to a mapping ∇u in the space Lq([0, T]×Ω), q < 4, for every ball
Ω ⊂ R3. Denote the integral from the first equality of the lemma by Qk(t, x). Let dn = Pn

, m − Qm.
From equality

vn
i, jv

n
j, i − ui, juj, i = (vn

i, j − ui, j)(vn
j, i + uj, i),

we deduce:

|dn(t, x)| ≤ 1
4π

∫ |∇vn(t, y)−∇u(t, y)||∇vn(t, y) +∇u(t, y)|dy
|x− y|2 .

Multiply this inequality by |η| where η ∈ C0(ST) an arbitrary test–function. Thereupon, integrate over
the set ST and change integration order. Then,∣∣∣ ∫

ST

dnηdx
∣∣∣ ≤ ∫ T

0

∫
R3

I2(|η|)|∇vn −∇u||∇vn +∇u|dydt =
∫ T

0
(K1 + K2)dt,

where I2 is the Riesz potential, K1 is the interior integral calculating over ball |y| < r, and K2 is
the interior integral calculating over exterior of this ball. Estimate every integral applying Hölder’s
inequality. Thus, we have

K2 ≤
(∫
|y|≥r

I2(|η|)dy
)1/2
‖∇vn −∇u‖3‖∇vn +∇u‖6.

The second and the third factors on the right-hand side we estimate by constants independent of t and
n (see Lemmas 6, 8, 21 with conditions (3)–(4) and Lemma A5). A radius r is fixed so that the first
factor is less an arbitrary positive number ε. Then, K2 ≤ Cε. Integral K1 we estimate on a subsequence.
Then,

K1 ≤
(∫
|y|≤r
|∇vnk −∇u|3dy

)1/3
‖I2(|η|)‖2‖∇vn +∇u‖6.

The second and the third factors are uniformly bounded by a some constant C. Therefore, the inequality:

∫ T

0
K1dt ≤ C

(∫ T

0

∫
|y|<r
|∇vnk −∇u|3dydt

)1/3 3√T2

is fulfilled. The middle factor is not greater ε if a number k is large enough. This follows from condition
of a strong convergence on a bounded set. Combining all estimates above, we obtain the inequality

|
∫

ST

dnk ηdx| ≤ CεT + Cε
3√T2.

This means that dnk → 0 weakly because a function η is an arbitrary. The first equality is proved.
The second equality is proved in the same way. Consider the difference dn = vn

, j − Rj where Rj
is the integral of the second equality. In the integral dn(t, x), we replace the variable by y = x + z.
Thereupon, we multiply the equality by a test–function η ∈ C0(ST) and integrate its over set ST .
Change integration order and carry over Laplace operator to function η. Then,∣∣∣∫

ST

dnηdxdt
∣∣∣ ≤ 1

4π

∫ T

0

∫
R3

1
|z|2

∫
R3
|vn(t, x + z)− u(t, x + z)||4η(t, x)|dxdzdt.

Replace variables in the interior integral by x = y− z and change integration order. Hence, we get:∣∣∣∫
ST

dnηdxdt
∣∣∣ ≤ ∫ T

0

∫
R3
|vn(t, y)− u(t, y)||I1(4η)(y)|dydt.
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Integration with respect to y we make separately over ball |y| < r and its exterior. The furthest
arguments are conducted in the same way as above. A distinction in the following. In this time, we
use an uniform convergence of a subsequence (vnk )k=1,... on compact sets (see Remark 2).

2.8. Weak Solutions and Gradients Boundedness

Lemma 23. Let u and P be weak limits from (41). Then, for every solenoidal vector field ψ ∈ C∞
0 (R3) and

almost everywhere t ∈ [0, T], there is fulfilled integral identity:

(Dtu,4ψ)− ν(4u,4ψ) +
∫

uiuj, i4ψjdx + (∇P,4ψ) = 0.

Proof. Equalities (16) multiply by a test–function η ∈ C∞
0 ([0, T]) and integrate its over segment [0, T] .

If a subsequence (vnk )k=1,... converges weakly, then, for all q = 1, . . . , nk, we have

∫ T

0
(Dtvnk ,4aq)η(t)dt− ν

∫ T

0
(4vnk ,4aq)η(t)dt +

∫ T

0

∫
vnk

i vnk
j, i4aq

j η(t)dxdt = 0.

Fix a some number q . Then, the passage to the limit gives the equality

∫ T

0
(Dtu,4aq)η(t)dt− ν

∫ T

0
(4u,4aq)η(t)dt +

∫ T

0

∫
uiuj, i4aq

j η(t)dxdt = 0. (42)

This is explained by a weak convergence of a sequence (vnk
i vnk

, i )k=1,... to the mapping uiu, i. It is given
by support compactness of a vector field aq, by uniform boundedness with respect to t and n of norms
‖∇vn‖p, 2 ≤ p ≤ 6, and a uniform convergence of subsequence (vnk )k=1,... on compact subsets of ST .
A function η is an arbitrary. Therefore, from (42), we obtain

(Dtu,4aq)− ν(4u,4aq) +
∫

uiuj, i4aq
j dx = 0.

It is already fulfilled for every natural number q. The construction of vector fields aq permits this
integral identity to extend on elements of the fundamental system (ψn

n=1,...) (see (12) and (13)), i.e.,

(Dtu,4ψn)− ν(4u, 4ψn) +
∫

uiuj, i4ψn
j dx = 0. (43)

We show that identity (43) is true for every solenoidal vector field ψ ∈ C∞
0 (R3). Let (ξm)m=1,... be a

sequence of a finite linear combinations of mappings ψn, which converges to a vector field ψ ∈ C∞
0 (R3)

in the space J2
0 (R3). Then,

‖∇ξm −∇ψ‖2 → 0, ‖ξm
, ij − ψ, ij‖2 → 0

and equality (43) for mappings ξm is true. Mappings4u, uiu, i belong to the space L2(R3) for a.e. t.
Then,

(4u,4ξm)→ 4u,4ψ),
∫

uiuj, i4ξm
j dx →

∫
uiuj, i4ψjdx

a.e. as m→ ∞. Let us show
(Dtu,4ξm)→ (Dtu,4ψ)

as the same condition is. Consider the equality of scalar products

−(Dtu,4ξm) = (Dtu, j, ξm
, j)

and note that the right side tends to (Dtu, j, ψ, j) (see Lemma 21 item (4)). On the other side,
−(Dtu, j, ψ, j) = (Dtu,4ψ). Condition (43) is true for an arbitrary ψ ∈ C∞

0 (R3). From (∇P,4ψ) = 0,
we have the lemma.
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Lemma 24. (see ([7], pp. 41–44), see also [29].) Let B ⊂ R3 be an arbitrary ball. Then, a space L2(B) of any
vector fields has a decomposition by a direct sum L2(B) = G(B)⊕ J0(B) of orthogonal subspaces. A subspace
G(B) is the space of gradients ∇g where g : B → R is locally square–integrable function with a finite norm
‖∇g‖2. A space J0(B) is the closure with respect to the norm L2(B) of all solenoidal vector fields from the
class C∞

0 (B) .

Lemma 25. If u and P are weak limits (41), then there are fulfilled equalities:

Dtuk − ν4uk + uiuk, i + P, k = 0, k = 1, 2, 3,

a.e. on a set ST for any T ∈ [0, T0).

Proof. Let
Hk = Dtuk − ν4uk + uiuk, i + P, k.

Denote h2 = −ν4u, h3 = uiu, i, h6 = Dtu +∇P. Every vector field hp, p = 2, 3, 6, belongs to the space
Lp(R3) (see Lemma 21). Mappings norms hp are bounded by constants independent of t ∈ [0, T]. From
the first equality of Lemma 22, we gather (H,∇g) = 0, where g ∈ C∞

0 (R3) is an arbitrary. We assume
the mapping H and its generators hp belong to the class C∞(R3). Otherwise, we take averages with a
kernel from C∞

0 (R3) for them. For averages, the equality (H,∇g) = 0 and the equality of Lemma 23
are kept. This follows from behind an arbitrary choice of a smooth function g and a field ψ ∈ C∞

0 (R3).
Then, div H = 0. Moreover, a smoothness H and the equality of Lemma 23 imply (4H, ψ) = 0. From
Lemma 24 on every ball B ⊂ R3, we have4H = ∇h. A function h is infinitely smooth. This is given
by smoothness 4H . Then, div 4H = 4h. On the other hand, div 4H = 4div H = 0. Therefore,
the function h is a harmonic function. Hence, and from above, there is42H = 0. By Lemma A7, we
have H = 0. Making an average parameter tending to zero, we obtain this equality in the general
case.

Lemma 26. Let u and P be weak limits from (41). Then, there exists a number C = C(ν, ϕ, T) such that, for
almost everywhere, t ∈ [0, T] following conditions are fulfilled:

(1) ‖4u‖6 ≤ C;
(2) |∇uk(t, x)| ≤ C, |∇P(t, x)| ≤ C, k = 1, 2, 3.

Proof. From Lemma 25, we conclude that Laplacian4u is the linear combination of three vector fields
∇P, Dtu, uiu, i. Coordinates ui are bounded on the set ST by Lemma 21 item (2). Then, from Lemma 21
(see estimates (3) and (6)), it follows the first part of the lemma.
Gradients boundness∇ui we obtain from the second integral representation of Lemma 22 and estimate
‖4u‖6 ≤ C. In the next step, we repeat the proof of Lemma 9.

Gradients boundedness ∇P we get from the first integral representation of Lemma 22 and
gradients boundedness ∇ui with repeating of the proof from Lemma 9.

2.9. Weak Solutions, Integral Equations and Energetic Inequality

Let Γ(x, t) = (4πνt)−n/2e−|x|
2/4νt be a Weierstrass kernel. Furthermore, we consider mixed norms

for mappings defined on the set ST = [0, T]× Rn.

Lemma 27. (See [13], Theorem 2.1.) A vector field u : ST → Rn with a finite mixed norm ‖u‖p, q is a weak
solution of problems (1) and (2) if and only if when u is a solution of integral equation

u + B(u, u) = f , (44)

where B is a some nonlinear integral operator, f (t, x) =
∫

Γ(x− y, t)ϕ(y)dy.
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Lemma 28. (See [13], Theorem 3.4.) Let u be a solution of integral Equation (44) with a finite mixed norm
‖u‖p, q where p, q ≥ 2, 3

p + 2
q ≤ 1. Let k be a positive integer such that k + 1 < p, q < ∞. If mixed norms

of derivatives

Dα ∂j f
∂tj

with exponents p1 = p
|α|+2j+1 , q1 = q

|α|+2j+1 are finite whenever |α|+ 2j ≤ k, then also mixed norms of

Dα ∂ju
∂tj

are finite for the same means α, j, p1, q1.

Remark 3. The proof of this result relies on Calderon–Zygmund’s theorem and a boundedness of singular
integral operators of parabolic type (see [30]).

Remark 4. Norms Dα ∂ju
∂tj are bounded by a constant that depends on exponents p, q, derivative order and the

mixed norm ‖u‖p, q. It follows directly from the proof of the theorem in [13].

Lemma 29. If u is a weak limit from (41), then there exists a number C = C(ν, ϕ, T, p, q) such that ‖u‖p, q ≤ C
whenever p, q ≥ 2, 3

p + 2
q ≤ 1.

Proof. Let T < T0 be a positive arbitrary number. Integrate the equality of Lemma 25 over segment
[0, t] where t < T. Then, continuity and absolute continuity on lines of mapping u give:

u(t, x)− ϕ(x) =
∫ t

0
(ν4u(τ, x)− ui(τ, x)u, i(τ, x)−∇P(τ, x))dτ.

Every integrable term has finite norms

‖4u‖2, ‖∇P‖2, ‖uiu, i‖2.

In addition, every norm is bounded by a constant C = C(ν, ϕ, T) depending on ν, ϕ, T only. It follows
from Lemma 21 (see estimates (5) and (7)) for the first and the second norms. A boundedness of the
third norm follows from mapping boundedness u (see Lemma 21 item (2)) and the estimate from
item (4) (see Lemma 21) . Therefore, ‖u‖2 ≤ C. A boundedness of vector field u (see Lemma 21
item (2)) gives a uniform estimate ‖u‖p ≤ C whenever p ≥ 2. Then, any mixed norm ‖u‖p, q is finite
whenever p, q from lemma condition.

Lemma 30. If u is a weak limit from (41), then a mixed norm ‖4u‖6/5, 4 < ∞.

Proof. Let initial data ϕ ∈ C∞
6/5, 3/2. Function f from Lemma 27 is represented by integral

f (t, x) =
1

π3/2

∫
e−|z|

2
ϕ(x +

√
4νtz)dz.

For ϕ ∈ C∞
6/5, 3/2, there is true Lemma 34. Therefore, the mapping f and any of its derivatives have

a finite mixed norm ‖ · ‖p, q. By Lemma 25 and Lemma 29, the vector field u is a weak solution of
problems (1) and (2) with a finite mixed norm ‖u‖p, q whenever p, q ≥ 2. Then, from Lemma 27, we
conclude that u is a solution of integral Equation (44). From Lemma 28, we obtain a finiteness of
mixed norms for the second derivatives ‖Dαu‖p1, q1 , where p1 = p/3, q1 = q/3, |α| = 2, j = 0. Let
p = 18/5, q = 12. Then, we have the statement of the lemma.
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Lemma 31. (Energetic condition.) Let u and P be weak limits from (41). Then,

‖u‖2
2 + 2ν

∫ t

0
‖∇u(τ, x)‖2

2dτ = ‖ϕ‖2
2

for every t ∈ [0, T0) where T0 from Lemma 1.

Proof. Note that weak solutions satisfy conditions:

J1 =
∫

P, kukdx = 0, J2 =
∫

uiuk, iukdx = 0. (45)

From the first equality of Lemma 22, we have:

J1 =
1

4π

∫
R3

ui, j(t, y)uj, i(t, y)
∫

R3

uk(t, x)(xk − yk)

|x− y|3 dxdy. (46)

Integrals commutation is possible since the integral over R6 is a finite. It follows from∫
R6
| · |dxdy ≤ 4π

∫
R3
|∇u(τ, y)|2 I1(|u|)dy,

Tonnelli’s theorem, boundedness and summability of u, ∇u with any exponent not less than two and
Lemma A1. Here, I1 is the Riesz potential. The interior integral in (46) is equal to zero since

∫
|x−y|<r

uk(t, x)(xk − yk)

|x− y|3 dx = −
∫
|x−y|=r

uk(t, x)(xk − yk)

r2 dS =

−1
r

∫
|x−y|<r

div udx = 0

for any radius r.
Let us prove the second equality from (45). The second equality of Lemma 22 implies:

J2 =
1

4π

∫
R3
4uk(t, y)

∫
R3

ui(t, x)uk(t, x)(xi − yi)

|x− y|3 dxdy. (47)

Integrals commutation we prove in the same way. There is inequality:∫
R6
| · |dxdy ≤ 4π

∫
R3
|4u(τ, y)|2 I1(|u|2)dy.

The right-hand side is a finite because4u ∈ Lp, 2 ≤ p ≤ 6 (see Lemma 21 item (5), Lemma 26 item (1),
Lemma A5). In addition, I1(|u|2) ∈ Lp, p > 3/2 by Lemma A1. To interior integral in (47) we apply
the Stokes formula. Then, ∫

|x−y|<r

ui(t, x)uk(t, x)(xi − yi)

|x− y|3 dx =

∫
|x−y|<r

ui(t, x)uk, i(t, x)
|x− y| dx− 1

r

∫
|x−y|=r

uiuk
xi − yi

r
dS.

A product uiuk belongs to the space W1
p(R3) whenever p > 1. Then, the integral over surface tends to

zero as r → ∞ (to apply Lemma A4 with exponent α = 1 and a mean p, close to unit). Hence, and from
(47) we have:

J2 =
1

4π

∫
R3
4uk(t, y)

∫
R3

ui(t, x)uk, i(t, x)
|x− y| dxdy. (48)
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In the iterated integral ∫
|y|<r
4uk(t, y)

∫
R3

ui(t, x)uk, i(t, x)
|x− y| dxdy,

we change integration order because the double integral is finite (see above). Hence, we get:

∫
|y|<r
4uk(t, y)

∫
R3

ui(t, x)uk, i(t, x)
|x− y| dxdy = (49)

∫
R3

ui(t, x)uk, i(t, x)
∫
|y|<r

4uk(t, y)
|x− y| dydx.

The interior integral in the right-hand side of (49) is uniformly bounded with respect to r > 1. This
follows from a boundedness of the Riesz potential I2(|4u|). It is proved in the same way as Lemma 9
with applications Lemma 26 item (1) and Lemma 21 item (5). Furthermore, we use Lebesgue’s theorem.
Then, (48) and (49) give the equality of iterated integrals:

J2 =
∫

R3
ui(t, x)uk, i(t, x)I2(4uk)(x)dx. (50)

The mapping u ∈ J2
0 (R3) (norm defined by (15)). Lemma A1 shows that Poisson’s formula is true for

elements of the space J2
0 (R3). Then, I2(4u) = −u. Therefore, we have J2 = −J2 from (50). The second

equality from (45) is proved.
Let us show that vector field u satisfies the equality∫

R3
uk4ukdx = −‖∇u‖2

2 (51)

a.e. on [0, T]. We have the equality of iterated integrals:

∫
R3
4uk(t, x)

∫
|y|<r

uk, j(t, x)(xj − yj)

|x− y|3 dydx = (52)

∫
|y|<r

uk, j(t, y)
∫

R3

4uk(t, x)(xj − yj)

|x− y|3 dydx.

A finiteness of double integral follows from a boundedness∇u (see Lemma 26, item (2)) and properties
of the Riesz potential I1(|4u|). Let r → ∞. The interior integral on the left-hand side of (52) tends
to 4πuk(t, x) in the space L6(R3) for almost every t. (See Lemma A1 and equality (A2), which is true
for elements of the space J2

0 (R3) ). The norm ‖4u‖6/5 is finite a.e. by Lemma 30. In (52), we make
the passage to the limit. The interior integral on the right-hand side of (52) is replaced by application
of Lemma 22. Then, we get (51). To finish the proof, we are helped with the following steps. Every
equality from Lemma 25 we multiply by function uk. Thereupon, we add together them and integrate
over space R3. From (45) and (49), we have

(Dtu, u) + ν‖∇u‖2
2 = 0.

Hence, we get the required equality.

2.10. Proof of Theorem 1

Observe that all estimates in proved lemmas above depend on norms ‖∇ϕ‖2, ‖∇T1‖2

(see (22)), ‖4ϕ‖2 or ‖ϕ‖2 only and don’t depend on a diameter of Laplacian support4ϕ.
If ϕ ∈ C∞

6/5, 3/2, then, by Lemma A4 integrals,

1
r2

∫
|y−x|=r

|ϕ(y|dS,
1
r

∫
|y−x|=r

|∇ϕ(y|dS



Axioms 2019, 8, 41 25 of 51

tend to zero as r → ∞. Therefore, equalities from Lemma A2 are true for mappings of the class C∞
6/5, 3/2.

In addition, we have summability ϕ with any exponent p > 6/5 and ∇ϕ with any exponent p > 3/2
(see Lemma 32).

1. Assume that initial data ϕ ∈ C∞
6/5, 3/2 and its Laplacian support is a compact set. Let T0 be a

constant from Lemma 1. Then, item (3) follows from Lemma 26, and items (1) and (4) we get from
Lemma 21.

Let us prove estimates of item (2). A uniform boundedness with respect to t of norms

‖u‖6, ‖∇u‖6, ‖Dtu‖6

we obtain from Lemma 21 (item (3)). An uniform boundedness of norms

‖∇u‖2, ‖∇Dtu‖2, ‖4u‖2, ‖∇P‖2

follows from Lemma 21 (see items (4), (5), (7)). The estimate of norm ‖u‖2 follows from Lemma 31.
A uniform boundedness of norms ‖u, ij‖6 we get by Lemma 26. A uniform boundedness for norm
‖Dtu‖2 is the corollary of Lemma 25 because Dtu is the finite linear combination of terms with uniform
bounded norms in the space L2(R3). Uniform estimates of norms in spaces Lp(R3), 2 < p < 6 we
take from Lemma A5. The occurrence of vector field u in spaces W1

2 (ST) and W1
6 (ST) we get from

the uniform estimates proved above. By Lemma 25 and Lemma 21 (see items (5) and (7)), we obtain
D2

ttu = ν4Dtu− uiDtu, i − (Dtui)u, i − Dt∇P. Hence, it follows a finiteness of norm ‖D2
ttu‖2 since u

and ∇u are bounded. Therefore, u ∈W2
2 (ST) .

Let us prove item (5) using mixed norms (see [8,26,27]). Weak solutions u and P belong to class
C(ST) (see item 1) of this theorem). In Lemma 28, we put p = q assuming it is very large. Now, we fix an
order of derivatives: m > 1. Then, by Lemma 27 and Lemma 28, derivative norms ‖DαDj

tu‖, |α| ≤ m
are bounded in the space Lr(ST) where an exponent r ≥ 6 is an arbitrary but fixed. A boundedness
of weak solution u and its summability in L2(ST) imply the belonging u ∈ Lr(ST), r ≥ 2. Exponents
means r, p = q we choose by large numbers so that the next conditions are fulfilled:

(1) for any ball lying in ST , all conditions of Sobolev’s embedding theorem in a space of continuous
functions are certainly valid ([23], p. 64);

(2) at least, all derivatives of the order up to m− 1 satisfy also all conditions Sobolev’s theorem
from above.

Since an integer number m is an arbitrary, then a weak solution u belongs to the class
C∞((0, T0)× R3). A smoothness of function P we obtain from Lemma 25 and the smoothness of
vector field u. The continuity is proved in item 1.

2. Let initial data ϕ ∈ C∞
6/5, 3/2. We take a test-function η ∈ C∞(R3) such that η(x) = 1 if |x| ≤ 1

and η(x) = 0 if |x| ≥ 2. Consider a solenoidal vector field

Φr(x) = η(x/r)ϕ(x)−∇Q(x).

Then,4Q(x) = 1
r η, i(x/r)ϕi(x). A function Q is Poisson’s integral

Q(x) = −r−1 I2(η, i(·/r)ϕi)(x).

Hence, we have:

|∇Q(x)| ≤ r−1 I(|∇η(·/r)| · |ϕ|)(x) ≤ Mr−1 I1(|ϕ|)(x)

where I1 is the Riesz potential, M is the maximal mean of |∇η|. From Lemma A1, we obtain

‖∇Q‖2 ≤ AMr−1‖ϕ‖6/5 = O(r−1).
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Direct calculations yield:

‖Φr‖2
2 =

∫ (
r−2|∇η(x/r)|2 + η2(x/r)|∇ϕ(x)|2 + 2r−1ηη, k(x/r)ϕi(x)ϕi, k(x)

)
dx+

‖∇Q‖2
2 − 2r−1

∫ (
η, k(x/r)ϕj(x)Q, jk(x) + η(x/r)ϕj, k(x)Q, jk(x)

)
dx.

Without the second term in the first integral, the rest of the integrals of all terms in the right-hand
tend to zero as r → ∞. This is guaranteed by a test-function η and a boundedness of the second
derivatives Q, jk. The last follows from representation of function Q by Poisson’s integral and definition
of the class C∞

6/5, 3/2. In this case, we have two equalities:

Q, kj(x) =
1

4πr

∫
R3
(η, i(y/r)ϕi(y)), k

xj − yj

|x− y|3 dy, (53)

Q, kj(x) = ckjr−1η, i(x/r)ϕi(x) + r−1Tkj(η, i(·/r)ϕi)(x), (54)

where ckj are universal constants, and Tkj are singular integral operators. Therefore, as r → ∞, then

‖∇Φr‖2 → |∇ϕ‖2. (55)

A vector field Φr ∈ C∞
6/5, 3/2. A summability of the vector field and its derivatives follows from (53)

and (54), the equality
Q, j(x) = cijη(x/r)ϕi(x) + Tij(η(·/r)ϕi)(x)

and Lemma A1. In addition, Φr → ϕ in the space J2
0 (R3), DαΦr → Dα ϕ in the space L2(R3).

Laplacians supports4Φr are compact sets. Therefore, there exist solutions ur and Pr with an initial
data ur(0, x) = Φr(x) satisfying theorem with the number

T0(r) =
(9

4

)4 ν3

‖Φr‖4
2

.

From (55), we have T0(r)→ T0 as r → ∞. Fix a number T < T0. From the remark at the beginning
of the proof, we conclude all estimates of the theorem for solutions ur, Pr. They are uniform with
respect to r for r > r0. Hence, sets of mappings (ur)r>r0 , (Pr)r>r0 are bounded in spaces W1

2 (ST) and
W1

6 (ST). Extract subsequences (urk )k=1,..., (Prk )k=1,..., which converge weakly. Let u and P be its weak
limits, respectively. These limits satisfy the next properties:

(1) Lemma 21 is true for them (this is verified in the same way as the proof of Lemma 21 for
subsequences);

(2) Lemma 25 is true for them;
(3) Lemma 26 is fulfilled for them. Thus, u and P are weak solutions of problems (1) and (2).

Lemma 27 and Lemma 29 are true for vector field u. Conditions of growth for a mapping
ϕ ∈ C∞

6/5, 3/2 show correctness of Lemma 28 for weak solutions from above.

Furthermore, we realize the proof from the first part (see item (1) above). Therefore, the theorem
is true also in this case. Theorem 1 is proved.

3. Homotopic Property of Cauchy Problem Solutions in Class C∞
6/5, 3/2

If initial data ϕ ∈ C∞
6/5, 3/2, then the Cauchy problem solutions from Theorem 1 have the next

homotopic property.
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Theorem 2. Let u and P be solutions of problems (1) and (2) from Theorem 1. Then, for every fixed mean
t ∈ (0, T0) (see (5)) mappings u, P, Dtu ∈ C∞

6/5, 3/2. Moreover, all norms

‖u‖6/5, ‖∇u‖3/2, ‖Dαu‖r, ‖DβP‖r, ‖DβDtu‖r

if r > 1, |α| ≥ 2, |β| ≥ 0, are uniformly bounded on every segment [0, T] where T < T0.

Proof of Theorem 2 (it is given below) is relied on for the next simple properties of mappings
v ∈ C∞

6/5, 3/2. For every vector field v and its derivatives of the first order, these are true for both (A1)
and representation (Riesz’s formula):

v(x) =
1

4π

∫
R3

v, j(y)(xj − yj)dy
|x− y|3 , v, j(x) =

1
4π

∫
R3

v, jk(y)(xj − yj)dy
|x− y|3 . (56)

The second equality we obtain by application of the Stokes theorem to the integral from (56)
calculating over a spherical layer ε ≤ |y− x| ≤ r. From Lemma A4,

∫
|y−x|=r

|v, (y)|dS
r2 → 0

as r → ∞ since∇v ∈W1
3/2(R3). Then, the passage to limit as r → ∞, ε→ 0 implies the second equality

(56). The first equality is proved in the same way.
We have

|v, j(x)| ≤ π

2
I1(|∇v, j|)(x),

where I1 is the Riesz potential from (4). Hardy–Littlewood–Sobolev’s inequality (see Lemma A1)
implies

‖I1(∇v, j|)‖q ≤ A‖∇v, j‖p,

where 1
q = 1

p −
1
3 , 1 < p < q. Consider only p ∈ (1, 3). Two last estimates yield ∇v ∈ Lq(R3) for

every q > 3/2. Analogously with the above, we show for the mapping v and a number q ∈ [3/2, 3)
the belonging v ∈ Lr(R3) whenever r ≥ 3. The logarithmic convex of norm ‖v‖p and Lemma A5 yield
norm finiteness ‖v‖p for p ≥ 6/5. Thus, we proved the next statement.

Lemma 32. Let v ∈ C∞
6/5, 3/2. Then, v ∈ Lp(R3), ∇v ∈ Lq(R3) whenever p ≥ 6/5, q ≥ 3/2.

Remark 5. Write Poisson’s formula (the representation by Riesz’s integral I2) for mappings v, ∇v and Dαv.
Then, we have a boundedness of every vector field v ∈ C∞

6/5, 3/2 and its derivatives.

Let

P(x) =
1

4π

∫
R3

vi, j(y)vj, i(y)dy
|x− y| (57)

(the repeated index gives summation).

Lemma 33. Let v ∈ C∞
6/5, 3/2 and div v = 0. Then, the function P and all its derivatives belong to the space

Lr(R3) whenever r > 1.

Proof. The integral from (57) we integrate by parts twice over a spherical layer ε ≤ |y − x| ≤ r.
Lemma A4 and the passage to the limit as r → ∞, ε→ 0 imply:

P(x) =
|v(x)|2

3
− Tij(vivj)(x), (58)
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where Tij is a singular integral operator with a kernel

kij =
∂2

∂yi∂yj

1
4π|x− y| .

Lemma A1 and well-known Calderon–Zygmund’s theorem give a summation of function P for any
finite exponent r > 1 . Since

P, k(x) = − 1
4π

∫
R3

vi, j(y)vj, i(y)(xk − yk)dy
|x− y|3 ,

then, analogously with the above, we get:

P, k(x) = −1
3

vj(x)vk, j(x) + Tik(vjvi, j)(x). (59)

Hence, we obtain a summability of ∇P whenever finite p > 1. A summability of the other derivatives
follows from equalities:

DβP,k(x) = −1
3

Dβ(vjvk, j)(x) + Tik(Dβ(vjvi, j))(x). (60)

Lemma 34. If v ∈ C∞
6/5, 3/2, then Poisson’s and Riesz’s formulae are true:

v(x) = − 1
4π

∫
R3

4v(y)dy
|x− y| , v(x) =

1
4π

∫
R3

v, j(y)(xj − yj)dy
|x− y|3 .

Lemma 35. Suppose a function P and all its derivatives are summaable in space R3 whenever r > 1 . Let
v, w ∈ C∞

6/5, 3/2. Then,

∫
R3

vk4wkdx = −
∫

R3
vk, jwk, jdx,

∫
R3

wkP, kdx = −
∫

R3
Pdiv wdx.

Proof. Apply the second representation from Lemma 34 and make the commutation of integrals.
Then, ∫

R3
vk4wkdy =

1
4π

∫
R3

vk, j(y)
∫

R3

4wk(y)(xj − yj)dx
|x− y|3 dy = −

∫
R3

vk, jwk, jdy

(see the first equality of Lemma A4). Changing of integration order is possible because the integral

J =
∫

R6

|∇v(y)||4w(x)|dxdy
|x− y|2

is a finite. Really, we have

J = γ(1)
∫

R3
|4w|I1(|∇v|)dx.

Then, a finiteness follows from a summability of the Riesz potential I1(|∇v|) with exponent 3 (see A1)
and the summability of 4w with exponent 3/2. The first equality is proved. To prove the second
formula, we observe a finiteness of integrals

J1 =
∫

R6

|w(x)||4P(y)|dxdy
|x− y|2 ,
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J2 =
∫

R6

|div w(x)||4P(y)|dxdy
|x− y| = 4π

∫
R3
|divw|I2(|4P|)dx.

Thereupon, we have:

∫
R3

wkP, kdx =
1

4π

∫
R3

wk(x)
∫

R3

4P(y)(xk − yk)dy
|x− y|3 dx =

1
4π

∫
R3
4P(y)

∫
R3

4wk(xk − yk)dx
|x− y|3 dy =

1
4π

∫
R3
4P(y)

∫
R3

div w(x)dx
|x− y| .

Proof of Theorem 2. Items (1), (2) and (3) from Theorem 1, Lemma 27 and Lemma 28 yield a finiteness
of mixed norms ‖Dαu‖p1, q1 where p1 = p

|α|+1 , q1 = q
|α|+1 , whenever p, q ≥ 2, 3

p + 2
q ≤ 1. For

derivatives of the second order, in particular, we have a finiteness of norm ‖4u‖6/5, 4 (see 30). Integrate
(1) over segment [0, t] where t ≤ T < T0. The solution P is represented by (57). Then, from (59), we get

uk(t, x)− ϕk(t, x) = (61)

∫ t

0
(ν4uk(τ, x) + Tik(ujuj, i)(τ, x)− 2

3
uj(τ, x)uj, i(τ, x))dτ.

Estimate norms in L6/5 of every term in (61) in the usual way. We apply Hölder’s inequality to interior
and exterior integrals. Then,

∫
R3

∣∣∣∫ t

0
uiuk, idτ

∣∣∣6/5
dx ≤ t1/5

∫
St

uiuk, idτdx ≤ (62)

T1/5
(∫

St
|u|2dτdx

)3/5(∫
St
|∇uk|3dτdx

)2/5
,

∫
R3

∣∣∣∫ t

0
4ukdτ

∣∣∣6/5
dx ≤ t1/5

∫ t

0
‖4uk‖6/5

6/5dτ ≤ (63)

T9/10
(∫ T

0
‖4uk‖4

6/5dτ
)3/10

< ∞.

The singular integral operator Tik is bounded. Hence, from (61)–(63) and item (2) of Theorem 1, we
obtain a uniform estimate of norm ‖u‖6/5 with respect to t ∈ [0, T].

In the same way, we prove a summability of gradient ∇u with any exponent p ≥ 3/2. From
Lemma 27 and Lemma 28, whenever p, q ≥ 2, 3

p + 2
q ≤ 1, we get a finiteness of mixed norms

‖Dαu‖p1, q1 for derivatives of the third order where p1 = p
4 , q1 = q

4 since α = 3, j = 0. In particular,
we have a finiteness of norm ‖4∇u‖3/2, 3/2.

Let us differentiate (1) with respect to xm. Thereupon, we integrate its over [0, t] where t ≤ T < T0.
Formulae (57) and (60) yield

uk, m − ϕk, m =
∫ t

0
(ν4uk, m + Tik((ujuj, i), m)−

2
3
(ujuj, i), m)dτ. (64)

Hence, for exponent p = 3/2, we obtain estimates, which are similar estimates (62) and (63).
A boundedness u, uniform estimates of norm ‖∇u‖3 (see item (2) from Theorem 1) on segment
[0, T], a finiteness of mixed norm ‖4∇u‖3/2, 3/2 give a uniform boundedness of norms ‖∇u‖3/2.

Let derivative order |α| ≥ 2. Then, (62) takes the form:

Dαuk − Dα ϕk =
∫ t

0
(ν4Dαuk + Tik(Dα(uiuj, i))−

2
3

Dα(ujuj, i))dτ. (65)
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Fix an exponent r > 1. Choose numbers p, q = (|α|+ 3)r. Then, we have a finiteness of the mixed
norm ‖Dαu‖r, r. It follows∣∣∣∫

R3

∫ t

0
4Dαudτdx

∣∣∣r ≤ tr−1
∫

St
|4Dαu|rdτ ≤ Tr−1

∫
ST

|Dα4u|rdτdx < ∞. (66)

Terms in derivative Dα(uiuk, i) without coefficients have a form: DβuiDγuk, i, where |β|+ |γ| = |α|.
Then, ∣∣∣∫

R3

∫ t

0
DβuiDγukdτdx

∣∣∣r ≤ Tr−1
∫

ST

|Dβu|r|Dγ∇u|rdτdx = Tr−1 J. (67)

To the right-hand side, we apply Hölder’s inequality with exponents |α|+3
|β|+1 and |α|+3

|γ|+2 . Therefore,

J ≤ ‖Dβu‖r/p1
p1, p2‖D

γ∇u‖r/p2
p1, p2 ,

where p1 = p
|β|+1 , p2 = p

|γ|+2 . All these mixed norms are bounded. This follows from Lemma 27 and
Lemma 28. Hence, formulae (65)–(67) and a boundedness of a singular integral operator give uniform
boundedness of all norms with respect to t ∈ [0, T].

The solution P is represented by (57) with replacing v by u. A summability follows from Lemma 33
whenever r > 1 . Equalities (58) and (59) and a uniform boundedness derivatives norms of vector
field u prove a uniform boundedness of norms ‖DβP‖r where r > 1. From (1) and proved uniform
estimates from above, we have necessary statement for derivative Dtu. Theorem 2 is proved.

4. Basic Parameters and Extension of the Cauchy Problem Solutions

Now, we define two from three basic parameters. They have a key part for an extension of the
Cauchy problem solutions as solutions with initial data from the class C∞

6/5, 3/2. A functional l(ϕ) and
the first parameter λ we define by

l(ϕ) = ‖ϕ‖2 · ‖∇ϕ‖2, λ =
(4 4
√

3
3a1

)2 ν2

l(ϕ)
=

81ν2

8l(ϕ)
, (68)

where the constant a1 from Corollary A4. By Theorem 2, the solution of the Cauchy problem with
condition ϕ ∈ C∞

6/5, 3/2 can be extended as the solution in any time t. Moreover, extended solutions
keep uniform estimates of all norms from Theorem 2 on extended segments [0, T] ⊂ [0, T∗). In other
words, the class C∞

6/5, 3/2 is kept. If [0, T∗) is the maximal interval of solution existence, then the second
parameter is defined by:

µ =
T∗
T0

, (69)

where T0 from (5).
The third parameter ε is defined below by (87).

4.1. Solutions Extension in Global with Condition l(ϕ) < 81ν2

8

Lemma 36. Let u be a solution of problems (1) and (2) from Theorem 2. Then, functions

η1(t) = ‖∇u‖2, η2(t) = ‖4u‖2, η3(t) =
∫

R3
uiuk, i4ukdx, η4(t) = ‖u‖2

are continuous functions on the interval [0, T∗).

Proof. Let s ∈ (0, T∗). Fix t ∈ (s, τ1(s) where the function τ1 from Lemma 45. Choose a segment
[T, T1] ⊂ (s, τ1(s)) assuming t, t + h ∈ [T, T1]. Denote z = z(t, h, x) = u(t + h, x) − u(t, x). Take
equalities (1) with time argument t + h. Thereupon, we multiply them by4z getting the scalar product
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and integrate over R3. The derivative Dtu ∈ C∞
6/5, 3/2 for all t ∈ [0, T∗). It follows from Theorem 2.

Then, by Lemma 35 (the scalar product in L2 we write as ( f , g)), we have:

1
2

d
dh
‖∇z‖2

2 = −ν(4u(t + h, ·),4z) +
∫

R3
ui(t + h, x)uk, i(t + h, x)4zkdx.

Here, the right-hand side is bounded uniformly (see Theorem 2). Then, ‖∇z‖2
2 = O(h) as h → 0.

Triangle inequality implies the continuity of function η1.
We write equality (1) for time arguments t, t + h and subtract it. Thereupon, the difference we multiply
by 4Dtu(t + h, x) getting the scalar product and integrating over the whole space. As a result, we
have

(Dtz,4Dtu(t + h, ·))− ν(4z,4Dhz)+∫
R3
(ziuk, i(t + h, x) + ui(t, x)zk, i)4Dtuk(t + h, x)dx = 0.

Uniform estimates from Theorem 2 and an integrability for any exponent a.e. imply the equality:

ν

2
d

dh
‖4z‖2 = O(1).

Then, we have the continuity of function η2.
Function continuity of η3 follows also from uniform estimates of Theorem 2. Difference η3(t)− η3(t0)

is considered as the sum of three integrals with combinations:

ui(t, x)− ui(t0, x), uk, i(t, x)− uk, i(t0, x), 4uk(t, x)−4uk(t0, x).

Every integral we estimate by Hölder’s inequality so that there appear norms:

‖ui(t, ·)− ui(t0, ·)‖6, ‖uk, i(t, ·)− uk, i(t0, ·))‖2,

‖4uk(t, ·)−4uk(t0, ·))‖2.

The first of these norms is estimated through the second norm by the inequality from Lemma A1 with
application of the second representation in Lemma 34. Therefore, on every segment [0, T] with some
constants C1, C2, we have:

|η3(t)− η3(t0)| ≤ C1|η1(t)− η1(t0)|+ C2|η2(t)− η2(t0)|.

Hence, the first statement follows. Let us prove function continuity of η4. The estimate

‖u(t, ·)− u(t0, ·))‖6 ≤ A‖∇u(t, ·)−∇u(t0, ·))‖2

was called above. The logarithmic convex inequality ‖v‖2 ≤ ‖v‖1−θ
6/5 ‖v‖

θ
6 where 1

2 = 5
6 (1− θ) + θ

2 and
Theorem 2 (see item (2)) about uniform boundedness of norms) give the statement of the lemma. Here,
it is enough to take v = u(t, ·)− u(t0, ·).

Lemma 37. Let ϕ ∈ C∞
6/5, 3/2 and l(ϕ) <

(
v
a1

)2
, where l(ϕ) is defined by (68), the number a1 from

Corollary A4. Then, solution u of problems (1) and (2) from Theorem 1 satisfies inequality: ‖∇u‖2 ≤ ‖∇ϕ‖2.

Proof. Equality (1) we multiply by4u getting the scalar product and integrating over the whole space.
Then, from Theorem 2 and Lemma 35, we have:

1
2

d
dt
‖∇u‖2

2 = η3(t)− νη2
2(t),
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where ηi, i = 2, 3, from Lemma 32. Now, we show that the function η(t) = η3(t)− νη2
2(t) is negative.

Note η(0) < 0. Suppose the opposite. Then,

ν‖4ϕ‖2
2 ≤

∫
ϕi ϕk, i4ϕkdx.

From Corollary A4 (it is extended on the class C∞
6/5, 3/2 by Lemma 34), we have estimate:

ν‖4ϕ‖2
2 ≤ a1‖∇ϕ‖3/2

2 ‖4ϕ‖3/2
2 .

Since
‖∇ϕ‖2 ≤ ‖ϕ‖1/2

2 ‖4ϕ‖1/2
2

(it follows from Lemma 35), then the last two inequalities imply ν2 ≤ a2
1l(ϕ). We have a contradiction.

Let [0, t0) be a maximal interval where function η < 0. Suppose t0 < T0. Continuity condition
(see Lemma 32 and Theorem 2) gives η(t0) = 0.
Repeating arguments from above, we obtain estimate:

ν2 ≤ a2
1l(u(t0, ·)). (70)

With the other hand, function η1 from Lemma 32 is a decreasing function on interval [0, t0). Therefore,
‖∇u(t0, ·)‖2 < ‖∇ϕ‖2. Since ‖u‖2 ≤ ‖ϕ‖2, then l(u(t0, ·)) < l(ϕ). Compare this inequality with (70).
Then, we have a contradiction.

Lemma 38. Let ϕ ∈ C∞
6/5, 3/2 and

qαm−1
( ν

a1

)2
≤ l(ϕ) < qαm

( ν

a1

)2
,

where l(ϕ) is defined by (68), numbers a1 from Corollary A4,

q =
4
3

4
√

3, α0 = 0, αm = 2− 1
2m−1 , m = 1, 2, . . . .

Then, for solution u of problems (1) and (2) from Theorem 1, there exists a number t0 ∈ (0, T0) such that

l(u(t0, ·)) < qαm−1
( ν

a1

)2
.

Proof. Suppose the opposite. Then, on interval [0, T0), the inequality holds:

q2αm−1
( ν

a1

)4
≤ l2(u).

Integrate it over this interval. Since

2ν‖∇u‖2
2 = − d

dt
‖u‖2

2,

then

q2αm−1
( ν

a1

)4
T0 ≤ −

1
4ν
‖u‖4

2

∣∣∣T0

0
.

Take out a nonpositive term on the right-hand side and input the mean T0 from (5). Then,

qαm
( ν

a1

)2
≤ l(ϕ).
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We have a contradiction with the condition.

Theorem 3. Let ϕ ∈ C∞
6/5, 3/2 and l(ϕ) <

(
ν
a1

)2
where l(ϕ) is defined by (68) and the number a1 from

Corollary A4. Then, problems (1) and (2) have unique solution u and solution P such that are defined on the set
[0, ∞)× R3. In addition, these solutions have properties (1)–(5) from Theorem 1 on every fixed segment [0, T]
and satisfy Theorem 2. Moreover, the norm ‖∇u‖2, as a function of argument t, is a decreasing function on the
set [0, ∞).

Proof. If T < T0, then the statement of theorem follows from Theorems 1, 2 and Lemma 37. A finiteness
of mixed norms ‖u‖p, q we get from a boundedness of the vector field u and estimates ‖u‖2 ≤ ‖ϕ‖2.
Solution uniqueness in the class Lp, q, 3

p + 2
q ≤ 1 is proved in [7,8,26] (see also [13]).

Norm monotonicity ‖∇u‖2 as a function on time argument t follows from condition η < 0 (see proof
of Lemma 37).
Let [0, T∗) be an interval of the maximal length such that there exist solutions with the estimates of
Theorem 2.
Suppose T∗ < ∞. Let t0 < T∗ and T∗ − t0 < 0, 5T∗ . By Theorem 2 mapping, u(t0,·) belongs to class
C∞

6/5, 3/2. Therefore, by Theorem 1 with this initial data, there is the unique solution w of the Cauchy
problem that can be built that can be considered as the extension of solution u (see Lemma 36 and
Theorem 1). Extension of u is the unique solution of problems (1) and (2) that satisfies the theorem, at
least, on the interval [0, t0 + T2), where

T2 =
(9

4

)4 ν3

‖∇u(t0, ·)‖4
2

.

We have T2 ≥ T0 from condition ‖∇u‖2 ≤ |∇ϕ‖2, w(t, x) = u(t0 + t, x) for means t < T∗ − t0. Hence,
the solution u is extended with the half-interval [0, T∗) on an interval of more length [0, T∗ + 0, 5T0).
We have a contradiction.

Theorem 4. Let ϕ ∈ C∞
6/5, 3/2 and

( ν

a1

)2
≤ l(ϕ) <

(4 4
√

3ν

3a1

)2
=

81ν2

8
,

where l(ϕ) is defined by (68), number a1 from Corollary A4. Then, problems (1) and (2) have a unique solution
u and a solution P that are defined on the set [0, ∞)× R3. In addition, these solutions have properties (1)–(5)
from Theorem 1 on every fix segment [0, T] and satisfy Theorem 2. The norm ‖∇u‖2, as a function of t, is not
decreasing function on the set [T0, ∞), where constant T0 from (5).

Proof. Let u and P be solutions of problems (1) and (2) from Theorem 2. The proof proceeds from
induction with respect to number m from Lemma 38. Let m = 1. By Lemma 38, there exists a number
t0 ∈ (0, T0) such that

l(u(t0, ·)) <
( ν

a1

)2
.

By Theorems 1–3, there exists a global solution w of problems (1) and (2) with changed initial
data w(0, x) = u(t0, x). This is the unique smooth extension of solution u that satisfies the proving
theorem. Assume the theorem is true for a some natural number m. That is, every solution u has a
global extension with properties of the theorem if, for this u, there exists a number t0 ∈ (0, T0) such that

l(u(t0, ·)) < qαm
( ν

a1

)2
.
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Now, we take initial data ϕ such that

qαm
( ν

a1

)2
≤ l(ϕ) < qαm+1

( ν

a1

)2
.

By Lemma 38, there exists t0 ∈ (0, T0) satisfying

l(u(t0, ·)) < qαm
( ν

a1

)2
.

By Theorem 2 and the induction hypothesis, there exists a global solution w of problems (1) and (2)
with a new initial data w(0, x) = u(t0, x). By a uniqueness theorem, it is the unique smooth extension
of solution u that satisfies the proving theorem. By the induction principle, the theorem is proved
because

qαm a−2
1 → 16

√
3

9
a−2

1

as m→ ∞.

4.2. Critical λ Parameter Mean and the First Hypothetical Turbulent Solution

Furthermore, it is important in principle an invariant form of a priori estimate for the Cauchy
problem solution. An invariance follows from Lemmas 1, 6, 20 and 25, Remark 2, norm semicontinuity
of ‖∇u‖2 and Theorem 1.

Lemma 39. The solution u of problems (1) and (2) from Theorem 1 satisfies estimate:

‖∇u‖2
2 ≤ ‖∇ϕ‖2

2(1− t/T0)
−1/2. (71)

Lemma 40. Let ϕ ∈ C∞
6/5, 3/2 and λ ≥ 1 i.e.,

l(ϕ) ≥
(4 4
√

3ν

3a1

)2
.

Let u be a solution of problems (1) and (2) from Theorem 1 If

l(u(t0, ·)) <
(4 4
√

3ν

3a1

)2

for a some number t0 ∈ [0, T0), then solution u can be extended by a global solution with properties (1)–(5) from
Theorem 1 and estimates from Theorem 2.

Proof. We construct the extension in the same way as in the proof of Theorem 4.

Lemma 41. Let ϕ ∈ C∞
6/5, 3/2 and parameter λ ≤ 1 (see (68)). If u is the solution of problems (1) and (2) from

Theorem 1, then on interval [0, T0), the inequality holds:

‖ϕ‖2
2

(
1− λ2 + λ2

√
1− t/T0

)
≤ ‖u‖2

2.

Proof. We integrate the inequality of Lemma 39 over the segment [0, t]. Since

1
2

d
dt
‖u‖2

2 + ν‖∇u‖2
2 = 0, (72)

then, applying Newton–Leibnitz’s formula, we obtain the statement.
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Lemma 42. Let ϕ ∈ C∞
6/5, 3/2 and parameter λ = 1 (see (68)). Let u be a solution of problems (1) and (2) from

Theorem 1. Suppose, on the interval [0, T0), there is fulfilled estimate:

l(u(t, ·)) ≥
(4 4
√

3ν

3a1

)2
.

Then,

‖u‖2
2 = ‖ϕ‖2

2

(
1− t/T0

)1/2
, ‖∇u‖2

2 = ‖∇ϕ‖2
2

(
1− t/T0

)−1/2
. (73)

If limt↑T0 ‖u‖2 > 0, then there exists a number t0 ∈ (0, T0) such that

l(u(t0, ·)) <
(4 4
√

3ν

3a1

)2
.

Proof. Both parts we raise to the second power and integrate over the interval [0, T0). From (72), we
get: (4 4

√
3ν

3a1

)4
T0 ≤

∫ T0

0
‖u‖2

2‖∇u‖2
2dt =

1
4ν

(
‖ϕ‖4

2 − lim
t→T0
‖u‖4

2

)
, (74)

where the number T0 from Theorem 1. Since λ = 1, then

(4 4
√

3ν

3a1

)4
T0 =

‖ϕ‖4
2

4ν
.

Therefore, the limit in (74) is equal to zero because, in (74), it must be equalities. This is possible only
if, on the interval [0, T0) (see Lemma 36), it is fulfilled:

l2(u(t, ·)) =
(4 4
√

3ν

3a1

)4
T0. (75)

Integrate (72) over the interval [0, T0). As the result, we have:

2ν
∫ T0

0
‖∇u‖2

2dt = ‖ϕ‖2
2

(we take into consideration in formula (74) the limit vanishes ). Apply the estimate of Lemma 39. Then,

4νT0‖∇ϕ‖2
2 ≥ ‖ϕ‖2

2.

Hence, we have the inequality λ ≥ 1. Since λ = 1, then the inequality from Lemma (71) must be as the
equality. The second formula of lemma is proved. The first follows from (75) and condition λ = 1. The
last statement of lemma we prove from the opposite in the same way.

Lemma 43. Let initial data ϕ ∈ C∞
6/5, 3/2, ϕ 6= 0, and parameter λ = 1. There doesn’t exist solution u of

problems (1) and (2) satisfying (73). It is always true inequality limt↑T0 ‖u‖2 > 0.

Proof. If such solution exists, then, from (73), we obtain

1
2

d
dt
‖∇u‖2

2 =
( 8

81

)2 ‖∇u‖6
2

ν3 .

Here, the identical equality is impossible because, for any solution u, the inequality (see (7)) is fulfilled:

1
2

d
dt
‖∇u‖2

2 + ν‖4u‖2
2 ≤ a1‖∇u‖3/2

2 ‖4u‖3/2
2 .
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Apply estimates from the proof of Lemma 1. Then, we obtain:

1
2

d
dt
‖∇u‖2

2 ≤
( 8

81

)2 ‖∇u‖6
2

ν3 .

Compare this inequality with the identity above. Therefore, we must have the equalities for
intermediate estimates of Corollary A4 and Lemma 1. Since we used Cauchy–Bunyakovskii’s inequality
in the Hilbert space L2(R3), then there exists a constant c such that

ui, j = c
(

uk, iuk, j −
δij

3
|∇u|22

)
for any i, j = 1, 2, 3. Hence, we have ui, j = uj, i for each pair i, j and 4u ≡ 0, respectively. From
Lemma A6, it follows u ≡ 0—a contradiction. The lemma is proved.

Lemma 44. Let initial data ϕ ∈ C∞
6/5, 3/2, ϕ 6= 0, and parameter λ < 1. If u is the solution of problems (1)

and (2), then
lim

t→T0
‖u‖2

2 > ‖ϕ‖2
2(1− λ2).

Proof. Suppose the opposite. Then, we have the equality in Lemma 41. It implies the second equality
from (73). Repeating the proof of Lemma 43, we obtain a contradiction.

Lemma 45. Let u be a solution of problems (1) and (2) with initial data ϕ ∈ C∞
6/5, 3/2, ϕ 6= 0. Then, a function

τ1(t) = t +
(9

4

)4 ν3

‖∇u‖4
2

and a function

λ(t) =
(4 4
√

3ν

3a1

)2/
‖u‖2‖∇u‖2

with condition λ(0) = λ ≥ 1 are not decreasing functions on the interval [0, T∗) where constant a1 from
Corollary A4.

Proof. From Theorem 2, we have safety of class C∞
6/5, 3/2 for every t ∈ [0, T∗) if u satisfies lemma

conditions. The both functions are continuous (see Lemma 36 and Theorem 2). Inequality (84)
(see below) is true for any mean λ(0) = λ. Rewrite its in another form:

1
‖∇u‖4

2

d
dt
‖∇u‖2

2 ≤
27a4

1
128ν3 ‖∇u‖2

2 (76)

and integrate its over the segment [t, s]. Simple transformations give:

‖u(t, ·)‖2
2(λ

2(t)− 1) ≤ ‖u(s, ·)‖2
2(λ

2(s)− 1). (77)

Hence, and from lemma condition, it follows λ(s) ≥ 1 for all s ∈ [0, T∗). Furthermore, we use inequality
‖u(s, ·)‖2 ≤ ‖u(t, ·)‖2 and get the monotonicity of the second function. For the monotonicity, the first
function follows from inequality (84) because, in this case, τ

′
1 ≥ 0.
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4.3. Solutions Extension in Global with Condition l(ϕ) ≥ 81ν2

8 : Necessary Conditions For Hypothetical
Turbulence Solutions

Lemma 46. Let ϕ ∈ C∞
6/5, 3/2. Suppose that l(ϕ) ≥ 81ν2

8 and parameter λ from (68). If λ = 1 or λ < 1 and
the solution u of problems (1) and (2) from Theorem 2 satisfies

lim
t→T0
‖u‖2

2 ≥ ‖ϕ‖2
2

√
1− λ4.

Then, there exists a number t0 ∈ (0, T0) such that inequality is fulfilled:

l(u(t0, ·)) <
(4 4
√

3ν

3a1

)2
,

where constant a1 from Corollary A4.

Proof. Assume λ = 1. Then, the statement follows from Lemmas 42 and 43. Let λ < 1. Suppose the
opposite. Then, we have: (4 4

√
3ν

3a1

)2
≤ l(u(t, ·)).

Hence, and from (72), we get

(4 4
√

3ν

3a1

)4
≤ ‖u‖2

2‖∇u‖2
2 = − 1

4ν

d
dt
‖u‖4

2. (78)

Let

α =
(4 4
√

3
3a1

)4 ν5

‖ϕ‖4
2

. (79)

Integrate (78) over segment [0, t]. Then, we obtain:

‖u‖2
4
√

1− 4αt
≤ ‖ϕ‖2. (80)

Make the passage to the limit in (80) as t ↑ T0 and compare the new estimate with the inequality
from lemma condition. Taking (5), (68) and (80), we conclude limt→T0 ‖u‖2

2 = ‖ϕ‖2
2

√
1− λ4. Consider

a function β(t) = ‖u‖2
2 −
√

1− 4αt‖ϕ‖2
2. It vanishes at boundary points of [0, T0]; moreover, β ≤ 0

(see (80)). Let I ⊂ (0, T0) be an interval, where the function β vanishes at boundary points and β < 0
on its interior. Then, there exists a point t0 ∈ I, where β′(t0) = 0. Hence, from (72), we get:

ν‖∇u(t0, ·)‖2
2 =

α‖ϕ‖2
2√

1− 4αt0
.

From (80), we have:

ν‖u(t0, ·)‖2
2‖∇u(t0,·‖2

2 =
α‖ϕ‖2

2‖u(t0, ·)‖2
2‖√

1− 4αt0
≤ α‖ϕ‖4

2. (81)

Compare the left and right sides of this formula and, after we apply (79). Then,

l(u(t0, ·)) ≤
(4 4
√

3ν

3a1

)2
.
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The hypothesis from proof beginning gives the equality:

l(u(t0, ·)) =
(4 4
√

3ν

3a1

)2
.

Therefore, in (81), the inequality must be by the equality. Hence, we get β(t0) = 0. This goes to
a contradiction with the choice of the interval I. It implies β = 0. Hence, ‖u‖2

2 = ‖ϕ‖2
2
√

1− 4αt.
Respectively, from (72), we have

ν‖∇u(t, ·)‖2
2 =

α‖ϕ‖2
2√

1− 4αt
.

Multiply these equalities. From (78), we obtain:

l(u(t, ·)) =
(4 4
√

3ν

3a1

)2
.

In particular, by Lemma 36, l(ϕ) ≥ 81ν2

8 . This is impossible with the considering lemma condition.
This contradiction proves the lemma.

Now, we shall study properties of unextended solutions of problems (1) and (2) if such solutions
exist. Let [0, T∗) be an interval of the maximal length, where solutions u and P of problems (1) and (2)
have properties from Theorem 2. Then, T∗ ≥ T0 and T∗ = µT0 (see (69)). Hence, µ ≥ 1. Therefore,
J. Leray’s estimate from [3] can be given in invariant form in the following statement.

Lemma 47. Let ϕ ∈ C∞
6/5, 3/2 and l(ϕ) > 81ν2

8 . Suppose that [0, T∗) is the maximal interval where solutions
u and P of problems (1) and (2) have solution properties from Theorem 2. If this interval is a finite, then the
following estimate holds:

‖∇u‖2
2 ≥

√
1
µ
‖∇ϕ‖2

2

(
1− t/T∗

)−1/2
. (82)

Proof. A function η1(t) = ‖∇u‖2 is unbounded in some left neighborhood of the point T∗. Suppose
the opposite. Then, for every point t0, there exists solution v of problems (1) and (2) with initial data
v(0, x) = u(t0, x) which satisfy Theorems 1 and 2.

This solution gives the unique extension u on the interval [t0, t0 + l), where l ≥ 94ν3/(4M
)4

and
M is the supremum of η1. A point t0 is an arbitrary, therefore, solutions u and P can be extended on
the interval [0, T∗ + l). In addition, they have solutions’ properties from Theorem 2 on this interval.
This contradicts the choice of interval with the maximal length.

Now, we prove estimate (82). For solution u, we have:

1
2

d
dt
‖∇u‖2

2 + ν‖4u‖2
2 =

∫
uiuk, i4ukdx, (83)

which follows from (1). It is true for every mean t ∈ [0, T∗) by Theorem 2 and Lemma 35 because the
solution u ∈ C∞

6/5, 3/2. The integral representation from Lemma 34 permits to apply Corollary A4 and
estimate of the right-hand side in the last equality. Repeating the proof of Lemma 1, we obtain

1
‖∇u‖6

2

d
dt
‖∇u‖2

2 ≤
27a4

1
128ν3 . (84)

Integrate (84) over segment [t, s]. Then,

1
‖∇u(t, ·)‖4

2
− 1
‖∇u(s, ·)‖4

2
≤

27a4
1

128ν3 (s− t). (85)
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Replace in (84) s on sm, where sm ↑ T∗ and η1(sm) → ∞ as m → ∞. The passage to the limit in (85)
gives estimate (82).

Lemma 48. Let ϕ ∈ C∞
6/5, 3/2 and l(ϕ) > 81ν2

8 . For finite interval [0, T∗) of the maximal length, the parameter
µ is not greater than the number λ−4, where λ is defined by (68).

Proof. In the inequality

2ν
∫ T∗

0
‖∇u‖2

2dt ≤ ‖∇ϕ, ‖2
2

we apply Lemma (79). From (5) and (68), we get the statement.

Lemma 49. Let ϕ ∈ C∞
6/5, 3/2, l(ϕ) >

(
4 4√3ν

3a1

)2
= 81ν2

8 and λ be a parameter from (68). If the interval

[0, T∗) has the maximal finite length and solutions u, P of problems (1) and (2) have properties from Theorem 2
on this interval, then unextended solutions satisfy conditions:

‖ϕ‖2
2λ2
√

µ− t/T0 + ‖u(T∗, ·)‖2
2 ≤ ‖u‖2

2 ≤ (86)

‖ϕ‖2
2

(
1−√µλ2 + λ2

√
µ− t/T0

)
.

Proof. Consider a function
ω(t) = ‖u‖2

2 − ‖ϕ‖2
2λ2
√

µ− t/T0.

From (5) and (68), (72), we have:

ω′(t) = 2ν
(
−‖∇u‖2

2 + ‖∇ϕ‖2
2

(
µ− t/T0

)−1/2)
, ω′(t) ≤ 0.

Therefore, ω(0) ≥ ω(t) ≥ ω(T∗ − 0). Hence, it follows the first inequality from (86).
Integrate over [0, t] the inequality of Lemma (79). From (72), we obtain:

‖ϕ‖2
2 − ‖u‖2

2 ≥ 4T∗ν
‖∇ϕ‖2

2√
µ

(
1−

√
1− t/T∗

)
.

Applying (5), (68) and (69), we get:

1−
‖u‖2

2
‖ϕ‖2

2
≥ √µλ2

(
1−

√
1− t/T∗

)
.

Therefore, we have the second inequality in (86).

Theorem 5. Set ϕ ∈ C∞
6/5, 3/2 and l(ϕ) >

(
4 4√3ν

3a1

)2
with a constant a1 from A4. Let u be a solution of

problems (1) and (2) from Theorem 2. If u satisfies condition

lim
t→T0
‖u(t, ·)‖2

2 ≥ ‖ϕ‖2
2

√
1− λ4,

then problems (1) and (2) have global solutions u and P. Moreover, they have properties (1)–(5) from Theorem 1
on every segment [0, T], T > 0 and satisfy conditions of Theorem 2 there. As a function of argument t, the
product ‖u‖2‖∇u‖2 is a decreasing function on the set [T0, ∞), where constant T0 from (5).

Proof. Let t0 a number from Lemma 46. Without norm monotonicity, the statement of theorem follows
from Theorem 2 and Lemma 40. The product ‖u‖2‖∇u‖2 is a decreasing function on the set [t0, ∞).
It follows from Theorem 4. Therefore, the theorem is proved.
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Now, we give one result that is connected with a local solutions’ extension. If λ < 1, then we
introduce the third parameter ε, which gives a dissipation quantity of a kinetic energy. It is defined
by formula:

lim
t→T0
‖u(t, ·)‖2

2 = ‖ϕ‖2
2(1− ελ2). (87)

We observe from Lemmas 43 and 44 that the parameter ε satisfies strong inequalities: 0 < ε < 1. This is
very important for the furthest. The usefulness of this parameter is explained by the following result.

Theorem 6. Suppose initial data ϕ ∈ C∞
6/5, 3/2 and

l(ϕ) >
(4 4
√

3ν

3a1

)2
=

81ν2

8
,

where l(ϕ) is defined by (68). If solution u of problems (1) and (2) from Theorem 2 satisfies (87), then this
solution has an extension on the set ST3 where

T3 =
T0

4

(
ε +

1
ε

)2
.

This extension has properties (1)–(5) from Theorem 1 on every segment [0, T] ⊂ [0, T3).

Proof. Now, we consider only that solutions which don’t have any global and smooth extension.
Take t = T0. From theorem condition and the second inequality of Lemma 49, we obtain: −ε ≤

−√µ +
√

µ− 1. Hence, we get: µ ≥ 1
4

(
ε + 1

ε

)2
. Then, the statement of the theorem follows from the

definition of parameter µ. The theorem is proved.

Lemma 50. Suppose λ < 1. A finite mean of parameter µ satisfies inequalities:

1
4

(
ε +

1
ε

)2
< µ ≤ λ−4.

Proof. In the first inequality of Lemma 49, we take t = T∗. Then, we get the necessary upper estimate.
The strong lower estimate doesn’t follow from (71) yet. Let

τ(ε) =
1
2

(
ε +

1
ε

)
.

Consider a function

$(t) = ‖u‖2
2 − ‖ϕ‖2

2

(
1− τ(ε)λ2 + λ2

√
τ2(ε)− t/T0

)
.

We observe $(0) = $(T0) = 0 (see formula (87)). Hence, there exists a number ξ ∈ (0, T0) such that
$′(ξ) = 0. Then,

‖∇u(ξ, ·)‖2
2 =

‖∇ϕ‖2
2√

τ2(ε)− ξ
T0

or

T0τ2(ε) = ξ +
(9

4

)4 ν3

‖∇u(ξ, ·)‖4
2
= τ1(ξ),

where function τ1 from Lemma 45. Since this function does not decrease then for every t, ξ < t <
T0τ2(ε), we have T0τ2(ε) ≤ τ1(t). Therefore,

‖∇u‖2
2 ≤ ‖∇ϕ‖2

2

(
τ2(ε)− t/T0

)−1/2
,
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which holds for every t, ξ < t < T0τ2(ε). Integrating this inequality over interval [T0, τ2(ε)T0) from
formula (87), we gather:

‖u(T0τ2(ε)), ·)‖2
2 ≥ ‖ϕ‖2

2(1− τ(ε)λ2). (88)

If µ = τ2(ε), then, in formula (86), we must have identical equalities (see (88)). It implies the identity

‖∇u‖2
2 =

√
1
µ
‖∇ϕ‖2

2

(
1− t/T∗

)−1/2
.

Take t = 0. Hence, we get µ = 1. This contradicts Theorem 6, from which we obtain µ ≥ τ2(ε) > 1
because 0 < ε < 1. The last proves the strong lower estimate for µ.

5. Main Results, Existence of Global Regular Solutions, and Sufficient Conditions

Now, we prove the basic result which is described by Theorem 7.

Theorem 7. Let ϕ ∈ C∞
6/5, 3/2 be initial data, the parameter λ from (68) and the number T0 from (5), the vector

field u from Theorem 1. If parameter λ ≥ 1 or in opposite case

lim
t↑T0
‖u(t, ·)‖2

2 ≥ ‖ϕ‖2
2

√
1− λ4, (89)

then the Cauchy problems (1) and (2) have global solutions u(t, x) = (u1(t, x), u2(t, x), u3(t, x)) and P =

P(t, x) with the following properties:

(1) mappings u and P are uniformly continuous and bounded on a set ST for every number T, T > 0;
(2) for every numbers T > 0, p ≥ 6/5, q ≥ 3/2, r > 1 and multi-indices |α| ≥ 2, |β| ≥ 0 all norms

‖u‖p, ‖∇u‖q, ‖Dαu‖p, ‖DβP‖2, ‖DβDtu‖r

are uniformly bounded on the segment [0, T], moreover ‖u‖2 ≤ ‖ϕ‖2;
(3) gradients ∇ui, i = 1, 2, 3, ∇P are bounded on the set ST for every T > 0;
(4) solution u has a finite mixed norm ‖u‖p, q on the set ST for every T > 0 and every pair of exponents

p, q ≥ 2;
(5) solutions u, P belong to class C∞((0, T)× R3)

⋂
C(ST) i.e., these solutions are classical.

If parameter λ ≥ 1, then the function l(t) = ‖u‖2‖∇u‖2 is a decreasing function on the interval [0, ∞) . If
λ < 1 and condition (89) is fulfilled then the function l = l(t) is a decreasing function on the interval [T0, ∞).

Proof. Let λ > 1. Then, the statement follows from Theorem 4.
Let λ = 1. In this case, the theorem arises from Lemmas 42, Lemma 43 and Theorem 4. The
monotonicity of the function l follows from Lemma 45.
Let λ < 1 and condition (89) is fulfilled. Then, the statement of the theorem arises from Lemmas 45
and 46, Theorem 5. The theorem is proved.

Theorem 8. Let ϕ ∈ C∞
6/5, 3/2 be initial data, the parameter λ < 1 (see (68)) a vector field u is a weak solution

from the Cauchy problems (1) and (2). If on an interval [0, T) an inequality

‖u(t, ·)‖2
2 ≥ ‖ϕ‖2

2

(
1− λ2

√
t

T0

)
(90)

is fulfilled, then the weak solutions u(t, x) = (u1(t, x), u2(t, x), u3(t, x)) and P = P(t, x) are regular on
interval [0, T) and satisfy Theorem 5.
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Proof. Let be [0, T∗) ⊆ [0, T) a maximal interval where the weak solution u is regular. Suppose T∗ < T.
Then, from (86) and (90), we have

‖u(t, ·)‖2
2 = ‖ϕ‖2

2

(
1−√µλ2 + λ2

√
µ− t

T0

)
.

Since solution u is regular on the interval [0, T0), then, by differentiation of the previous identity at
point t = 0, we obtain µ = 1. From Lemma 50, we have a contradiction. Therefore, T∗ = T.

Does there exist weak solution u satisfying opposite inequality (90) if t > T0? It is unknown.

6. The Cauchy Problem with Less Smoothness of Initial Data

In addition, the invariant class C∞
6/5, 3/2 Sobolev space

◦
W3

2 (R3) as the closure of infinitely smooth
vector fields is another important invariant class, which satisfy existence condition of global solutions.

Different exceptions for solenoidal vector fields from Sobolev classes
◦

W3
2 (R3) and W3

2 (R3) were shown
in [31]. Therefore, we consider the first space from them.

Let ϕ ∈
◦

W3
2 (R3) be a solenoidal vector field. Set (ϕm)m=1,... a sequence of of finite, solenoidal

and infinitely smooth vector fields, which converges to the field ϕ in the space
◦

W3
2 (R3). We observe

that ϕm ∈ C∞
6/5, 3/2. Let (um)m=1,..., (Pm)m=1,... be sequences of solutions in the Cauchy problem for

Navier–Stokes equations with the initial dates ϕm. Then, all pairs um, Pm satisfy all uniform estimates
of Lemma 21 on any compact set of the interval [0, Tm

0 ) where Tm
0 = 94ν3/44‖∇ϕm‖4

2 since upper
bounds in these inequalities depend on a set and ν, ‖∇ϕm‖2, ‖ϕm‖2. Therefore, on every fixed
segment [0, T] ⊂ [0, T0], we can take these constants as common for all um, Pm because ϕm → ϕ in the

space
◦

W3
2 (R3). Then, without loss of generality, we assume that the sequence (um)m=1,... converges

weakly in the space W1
6 (ST) to a field u0. In addition, we suppose that (4um)m=1,..., (∇Dtum)m=1,...

and (∇Pm)m=1,... converge weakly in L1
2(ST) to4u0, ∇Dtu0 and ∇P0. More generally, weak limits

u0, P0 satisfy all conclusions of Lemma 21 and they are weak solutions of problems (1) and (2).
From the equality (1) for couple u0, P0 and items (2), (4), (5), (8) differentiating (1), we obtain that
distributions4u0

, j, j = 1, 2, 3, belong to the space L2(R3) for almost everywhere t. Thus, the class
◦

W3
2 (R3) is invariant similar to the class C∞

6/5, 3/2. For this case, in the same way, we can define the basic
parameters λ, µ, ε. After that, one should note that the statement of Lemma 36 will be true when

initial data ϕ ∈
◦

W3
2 (R3). Repeating the proof of Theorem 7, we obtain the following result.

Theorem 9. Let ϕ ∈
◦

W3
2 (R3) be initial data, the parameter λ from (68) and the number T0 from (5). Let be a

vector field u is a weak solution of the Cauchy problems (1) and (2). If parameter λ ≥ 1 or in opposite case

lim
t↑T0
‖u(t, ·)‖2

2 ≥ ‖ϕ‖2
2

√
1− λ4,

then the Cauchy problems (1) and (2) have global solutions u(t, x) = (u1(t, x), u2(t, x), u3(t, x)) and P =

P(t, x) with the following properties:

(1) mappings u and P are uniformly continuous and bounded on a set ST for every number T, T > 0;
(2) for every numbers T > 0, p ≥ 2, q ≥ 2, all norms

‖u‖2, ‖∇u‖2, ‖4u‖2, ‖∇Dtu‖2, ‖∇P‖2

are uniformly bounded and mixed norms ‖u‖p, q, ‖Dt4u‖2, 2 are finite on segment [0, T];
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(3) solutions u, P belong to class C∞((0, T)× R3)
⋂

C(ST) i.e., these solutions are classical.
If parameter λ ≥ 1, then the function l(t) = ‖u‖2‖∇u‖2 is a decreasing function on the interval [0, ∞) .
If λ < 1 and

lim
t↑T0
‖u(t, ·)‖2

2 ≥ ‖ϕ‖2
2

√
1− λ4,

then the function l = l(t) is a decreasing function on the interval [T0, ∞).

Theorem 10. Let ϕ ∈W3
2 (R3) be initial data in problems (1) and (2). If parameter λ > 1, then the solution u

from Theorem 9 satisfies:

(1) a power of norm ‖u‖4
2 is a convex function;

(2) there is fulfilled:

‖∇u‖2
2 ≤ ‖∇ϕ‖2

2
λ2

λ2 − 1
.

Proof. It follows from Lemma 45 because this lemma is true for solution u from Theorem 9.

7. Integral Identities for Solenoidal Vector Fields: Dimensions Comparison

Some review and results about integral identities for solenoidal vector fields are given by authors
in [32,33]. Here, we reduce one from these identities, which shows the essential distinction for the
Navier–Stokes equations between space and plane.

Let u, v, w : Rn → Rn be any triple of solenoidal vector fields from the class C2
0(Rn). Denote

cki(u) = uk, i − uk, i, k, i = 1, 2, . . . , n.

Lemma 51. (see [32]) For every triple u, v, w : Rn → Rn of solenoidal vector fields from the class C2
0(Rn),

the identity holds: ∫
(wi, j + wj, i)cki(v)ckj(u)dx = −

∫
wi(cki(u)4vk + cki(v)4uk)dx.

Hence, it follows (one should take u = v = w):∫
ui, jcki(u)ckj(u)dx = −

∫
uicki(u)4ukdx.

Corollary 1. (see [33].) If dimension n = 2, then every solenoidal vector u ∈ C2
0(R2) satisfies the

integral identity: ∫
uiuk, i4ukdx = 0. (91)

Obviously, it implies some interesting applications to the 2D Navier–Stokes and Euler equations
(see [32]).

(1) We deduce a priori estimate for a solution u, which is not independent of a viscosity:

‖∇u‖2 ≤ ‖∇ϕ‖2 +
∫ t

0
‖∇ f ‖2dt, (92)

where f is an outer force. This improves essentially Ladyzhenskaya’s estimate (see [34]).
(2) In the case f = 0, we have formula (83) and, therefore, the norm ‖∇u‖2 is a decreasing function.
(3) We give the new proof of the existence of a global weak solution for the Euler equations in plane

in the case when an outer force f = 0. In addition, the estimate ‖∇u‖2 ≤ ‖∇ϕ‖2 is exact and it
does not follows from Judovich’s results [35]. This explains "the simplicity" of a motion of an
ideal fluid on plane.
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Remark 6. Let n = 2, f = 0. Then, the product ‖∇u‖2‖u‖2 is a decreasing function in any case.

Remark 7. If dimension n = 3, then integral from (91) may be not equal to null.

For a simple example, there is the vector field with the following coordinates:

ui(x) = λ2
i (li, x)e

− 1
2

(
x2

1
λ2

1
+

x2
2

λ2
2
+

x2
3

λ2
3

)
, i = 1, 2, 3,

where li is the i –th vector row of the skew-symmetric matrix. Since

∫
Rn

n

∑
i, k=1

uiuk, i4ukdx = −
∫

Rn

n

∑
i, k, j=1

ui, juk, iuk, jdx,

then simple calculations show

∫
R3

3

∑
i, j=1

uiuj, i4ujdx = c ∑
i 6=k

λ2
i λ4

k

3

∑
j

lkilijlkj

with a constant c 6= 0. A coefficient ∑j lkilijlkj may be not equal to zero for fixed different means k and i
because there is the linear independence of polynomials λ2

i λ4
k − λ2

kλ4
i , i < k, i, k = 1, 2, 3. It gives a

distinct from zero of the integral when we choose a suitable skew-symmetric matrix. Respectively,
the right side (see (83)) for dimensions n ≥ 3 can be taken with a large value implying a positive mean
of the difference ∫

Rn

n

∑
i, j=1

uiuj, i4ujdx− ν‖4u‖2
2

for t ' 0. It is possible because we can take a factor for initial data αϕ or diminish viscosity coefficient
ν. This implies a growth of the norm ‖∇u‖2 for space. Obviously, on the plane, this phenomena does
not appear.

8. Conclusions

Briefly, the main achievements (see Theorems 7–10) have an obvious physical interpretation and,
therefore, it may be interesting for applications. Nevertheless, they are connected with monitoring of
blow up.

First of all, no phenomena blow up if parameter λ ≥ 1 or kinetic energy satisfies inequality:

lim
t↑T0
‖u(t, ·)‖2

2 ≥ ‖ϕ‖2
2

√
1− λ4

for λ < 1.
No phenomena blow up on the time interval [0, T) if kinetic energy satisfies inequality:

‖u(t, ·)‖2
2 ≥ ‖ϕ‖2

2

(
1− λ2

√
t

T0

)
with condition λ < 1.

Finally, we have the importance of the exact lower estimates for kinetic energy of a fluid flow. It is
possible that this is one of the new ways where the interesting problem will be studied.
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Appendix A

Appendix A.1. About the Riesz Potentials and Integral Representations

Some technical results are given.

Lemma A1. (Hardy–Littlewood–Sobolev’s inequality ([24], p. 141). Let Iα( f ) be Riesz’s potential defined
by (4). Set 0 < α < n. Then, there exists a constant A = A(p, q) where 1

q = 1
p −

α
n , 1 < p < q, such that the

following inequality holds:
‖Iα( f )‖q ≤ A‖ f ‖p.

In a special case, we give an estimate for operator norm.

Corollary A1. The inequality A(6, 2) ≤ 3
√

4
π is true, i.e., ‖u‖6 ≤ 3

√
4
π ‖∇u‖2.

Proof. It is sufficient to verify this inequality for smooth and finite mappings. From Riesz’s formula,
we have:

|u(x)|4 =
1
π

∫
R3

|u(y)|2ui(y)ui, j(y)(xj − yj)dy
|x− y|3 .

Multiply it by |u(x)|2. Then, we make a simple estimate and integrate over space. Hence,

‖u‖6
6 ≤

1
π

∫
|u(y)|3|∇u(y)|

∫ |u(x)|2
|x− y|2 dxdy.

The interior integral we estimate applying Leray’s inequality

∫ |u(x)|2
|x− y|2 dx ≤ 4‖∇u‖2

2

(see [4], also [7], p. 24), thereupon we use Hölder’s inequality. Then,

‖u‖6
6 ≤

4
π
‖u‖3

6‖∇u‖3
2.

It gives the required estimate.

Let us make more precise well-known integral representations as Poisson’s formula and Riesz’s
formula for smooth functions with compact support.

Lemma A2. Let w ∈ C2(R3)
⋂

Lp(R3), p ≥ 1, be a mapping and its Laplacian4w has a compact support.
Then, the equalities hold:

w(x) = − 1
4π

∫
R3

4w(y)dy
|x− y| , w, j(x) =

1
4π

∫
R3

4w(y)(xj − yj)dy
|x− y|3 , (A1)

w(x) =
1

4π

∫
R3

w, j(y)(xj − yj)dy
|x− y|3 , (A2)

(In (A2), repeated indices give summation.)

Proof. To integral ∫
ε≤|x−y|≤r

4w(y)dy
|x− y| ,
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we apply twice the Stokes formula removing integrals over spherical layer and derivatives of the
mapping w. As the result, we have two integrals over sphere | x− y |= ε and two integrals over sphere
| x− y |= r. They are: ∫

|x−y|=ε

w(y)dS
ε2 ,

∫
|x−y|=r

w(y)dS
r2 , (A3)

∫
|x−y|=ε

w, j(y)(xj − yj)dS
ε2 ,

∫
|x−y|=r

w, j(y)(xj − yj)dS
r2 .

The third and the fourth integrals we transform again applying the Stokes formula and getting integrals
over balls | x− y |≤ ε, and | x− y |≤ r, respectively. Every integral must contain Laplacian. Since
support of4w is a compact set, then these integrals tend to zero as ε→ 0, r → ∞.

The second integral in (A3) we denote by a symbol I. Then,

I = r−3
∫
|x−y|=r

w(y)(xj − yj)
(xj − yj)

r
dS.

The Stokes formula application gives the equality:

I = r−3
∫
|x−y|≤r

(3w(y) + w, j(y)(xj − yj))dy. (A4)

The second term in (A4) we integrate by parts. Therefore,∫
|x−y|≤r

(w, j(y)(xj − yj))dy =
1
2

∫
|x−y|≤r

(4w(y)(|x− y|2 − r2)dy.

The integral from the first term in (A4) we estimate applying the Hölder’s inequality. Then,

|I| ≤ 3r−3‖w‖p(σ3r3)1−1/p +
1
2r

∫
|x−y|≤r

|4w(y)|dy,

where σ3—is the volume of a unit ball. From compactness of Laplacian support and lemma condition,
we obtain that integral I → 0 as r → ∞. The first integral in (A3) tends to the mean 4πw(x) as ε→ 0.
formula (A2) we prove by the same way.

Corollary A2. A mapping w from Lemma A2 satisfies inequalities: |∇w(x)| ≤ C1x−2, |w(x)| ≤ C2x−1 with
some constants C1 and C2 .

Proof. The first inequality follows from the second representation of Lemma A2 and compactness of
Laplacian support. The second estimate follows from the third representation of Lemma A2 because
the first estimate from the corollary gives:

|w(x)| ≤ C1

4π

∫
R3

dy
|y|2|x− y|2 .

A change of variables y = |x|z proves the second estimate.

Corollary A3. Let v,w : R3 → R3 be mappings which satisfy conditions from Lemma A2. Then,∫
R3

vk4wkdy = −
∫

vk, jwk, jdy.

Proof. We apply the Stokes formula to the integral from the left side of this equality. From Corollary A2
on a sphere |y| = r, we get the following formula: vkwk, j = O(r−3). A passage to the limit as r → ∞
gives the required equality.
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Lemma A3. Let P : R3 → R be a function and P ∈ Lr(R3) with some exponent r > 1 and distributions
P, ij ∈ L1((R3)

⋂
Ls(R3) for some exponent s ∈ (1, 3/2). Then, for function P, Poisson’s formula (the first

equality from (A2)) is true.

Proof. For any smooth function P, we verify the integral identity the same way as in Lemma A2
with application of Lemma A4 (see below). A density of smooth functions and Lemma A1 prove the
statement in a general case because there is continuity of the Riesz potentials in spaces Lq.

Lemma A4. Suppose that a continuous mapping w : Rn → Rn belongs to the class W1
p(Rn), p > 1. Then, for

any point x, an exponent α, where α > (n− 1)(1− 1/p),

r−α
∫
|x−y|=r

w(y)dS→ 0

as r→ ∞.

Proof. Hölder’s inequality implies an estimate:

|
∫
|x−y|=r

w(y)dS| ≤ (ωn−1rn−1)1/q
(∫
|x−y|=r

|w(y)|pdS
)1/p

. (A5)

Here, ωn−1 – is the surface measure of an unit sphere, q = p
p−1 . Let

J =
∫
|x−y|=r |w(y)|pdS. Then,

J =
∫
|x−y|=r

|w(y)|p
yj − xj

r
yj − xj

r
dS =

=
n
r

∫
|x−y|≤r

|w(y)|pdy + p
∫
|x−y|≤r

|w(y)|p−2wk(y)wk, j(y)
yj − xj

r
dy.

The second integral on the right-hand side is estimated by application of Hölder’s inequality.
Furthermore, we replace the integration over a ball by the integration over the whole space. Hence,

J ≤ n
r
‖w(y)‖p

p + p‖w(y)‖p−1
p ‖∇w‖p

and J = O(1) as r → ∞. Therefore, from (A5), we have the statement.

Appendix A.2. Logarithmic Convexity Inequalities and Its Corollaries

Lemma A5. ([36], p. 21). A function β(p) = ‖w‖p is a logarithmic convex function. That is, for exponents
r ≥ 1, s ≥ 1 with condition 1

p = 1−t
r + t

s , where t ∈ [0, 1] , the inequality ‖w‖p ≤ ‖w‖1−t
r ‖w‖t

s is fulfilled.

Corollary A4. Let u, v, w : R3 → R3 be a triple of mappings satisfying conditions of Lemma A2. Then, the
inequality holds:

|
∫

R3
uivk, i4wkdy| ≤ a‖∇u‖2‖∇v‖1/2

2 ‖4v‖1/2
2 ‖4w‖2

with a constant a =
√

4
π . In addition, for a solenoidal vector field u, there is a more exact estimate:

|
∫

R3
uiuk, i4ukdy| ≤ a1‖∇u‖3/2

2 ‖4u‖3/2
2 , k, i = 1, 2, 3,

where a1 = 8 4√12
27 .
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Proof. We have estimates:

|uivk, i4wk| ≤ |u| · |∇vk| · |4wk| ≤ |u| · |∇v| · |4w|,

which follow from the Cauchy–Bunyakovskii’s inequality. Apply Hölder’s inequality for three factors.
Then,

|
∫

R3
uivk, i4wkdy| ≤ ‖∇u‖6‖∇v‖3‖4w‖2. (A6)

For each coordinate ui ∈ C∞
0 , we have ‖ui‖6 ≤ A‖∇ui‖2 where A = 3

√
4
π (see Corollary A1).

A density of smooth functions and Lemma A1 give the required estimate in a general case.
Since ‖u‖2

6 ≤ ∑i ‖ui‖2
6 (we apply the Minkovskii’s inequality with exponent 3), then ‖u‖6 ≤

A‖∇u‖2. Respectively, we have ‖∇v‖2
6 ≤ ∑i ‖v, i‖2

6 and ‖v, i‖2
6 ≤ ‖∇v, i‖2

2, ∑i ‖∇v, i‖2
2 = ∑i ‖4v‖2

2.
From Lemma A5 with exponents p = 3, r = 2, s = 6 and number t = 0, 5, we obtain: ‖∇v‖3 ≤

‖∇v‖1/2
2 |∇v‖1/2

6 . Then, from inequalities above and formula (A6), we prove the estimate with a
constant a = A3/2.

Now, we verify the other inequality. For solenoidal vector fields, we get (see Corollary A2):∫
R3

uiuk, i4ukdy = −
∫

R3
ui, juk, iuk, jdy = −

∫
R3

ui, j

(
uk, iuk, j −

1
3

δij|∇u|22
)

dy,

where δij is Kronecker’s delta. Applying Hölder’s inequality to a pair

ui, j, uk, iuk, j −
1
3

δij|∇u|22,

we obtain:

|
∫

R3
uiuk, i4ukdy| ≤

√
2
3
‖∇u‖2‖∇u‖2

4.

Since (∫
R3

(
∑

i
|u, i|2

)2
dy
)1/2

≤∑
i

(∫
R3
|u, i|4dy

)1/2
,

then, from the inequality

‖ f ‖2
4 ≤

( 4
3
√

3

)3/2
‖ f ‖1/2

2 ‖∇ f ‖3/2
2

for vector fields (see [23], Chapter 2 and [27]), we get the second part of the lemma comparing all
estimates from above.

Appendix A.3. Vanishing of Harmonic and Biharmonic Functions

Lemma A6. If a harmonic function h : R3 → R is represented by sum h = hs + h3 + h6 where functions
hp ∈ Lp(R3), p = s, 3, 6, 1 < s ≤ 2, then h ≡ 0.

Proof. Without loss of generality, we assume that functions hp are smooth. Otherwise, we take its
average defined by a formula

hτ(x) =
∫

h(x + τy)ω(y)dy

with a kernel ω ∈ C∞
0 (R3). In the equality,

0 =
∫
|y−x|≤r

4h(y)|x− y|βdy = I,
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−1 < β < −0, 5, we transform the integral applying the Stokes theorem. Let x = 0. Then,

I = −β
∫
|y|≤r

h, j(y)yj|y|β−2dy +
∫
|y|=r

h, j(y)|y|β
yj

r
dS = βJ1 + J2.

The integral over surface J2 = 0 since J2 = rβ
∫
|y|≤r4h(y)dy = 0. Hence, J1 = 0. This integral is

transformed in the same way as the integral I. From the equality,

J1 =
∫
|y|≤r

h(y)
∂

∂yj

(
yj|y|β−2

)
dy− rβ−1

∫
|y|=r

h(y)dS,

by application of the theorem on the mean value of a harmonic function, we conclude the formula:

h(0) =
β + 1

4πrβ+1

(∫
|y|≤r

hs(y)
|y|2−β

dy +
∫
|y|≤r

h3(y)
|y|2−β

dy +
∫
|y|≤r

h6(y)
|y|2−β

dy
)

. (A7)

For chosen means β, each potential Iβ+1(hq)(0), q = s, 3, 6 is finite (see Lemma A1). The passage to the
limit in (A7) as r → ∞ yields the equality: h(0) = 0.

Lemma A7. If a biharmonic function h : R3 → R has a decomposition h = hs + h3 + h6 where functions
hp ∈ Lp(R3), p = s, 3, 6, 1 < s ≤ 2, then h ≡ 0.

Proof. Without loss of the generality, we can replace functions hp by its averages (see above). Then,
every average hτ

p ∈W1
p(R3). Now, we fix the averaging parameter τ. Let x = 0 and 1 < β < 1, 5. Let

us show that function h is a harmonic function. It is sufficient to apply the theorem about the mean
value of a harmonic function to4h and use the spherical coordinates. Then, for the average, we have:

4hτ(0) =
β + 1

4πrβ+1

∫
|y|≤r
4hτ(y)|y|β−2dy =

β + 1
4πrβ+1 J3. (A8)

The integral J3 is transformed by applying three times of the Stokes theorem: twice to the integrals
over volume and once to the integral over surface. As a result, we obtain:

J3 = (β2 − 3β + 2)
∫
|y|≤r

hτ(y)|y|β−4dy− (β− 2)rβ−3
∫
|y|=r

hτ(y)dS + rβ−2
∫
|y|≤r
4hτ(y)dy.

Furthermore, we apply again the theorem about a mean value for a harmonic function to the third
integral. After that, we input the mean of integral J3 in (A8). Then, we conclude:

4hτ(0)
3

=
1− β2

4πrβ+1

∫
|y|≤r

hτ(y)|y|β−4dy +
β + 1
4πr4

∫
|y|=r

hτ(y)dS.

Here, the integral over the volume set tends to a finite mean as r → ∞. The finiteness of this mean is
proved in the same way as in Lemma A6. This implies

4h(0)
3

= lim
r→∞

β + 1
4πrβ+1

∫
|y|=r

h(y)dS.

An exponent mean β belongs to the interval (1, 3/2). Hence, and from Lemma A4, we obtain4hτ(0) =
0. Taking assumption about a ball center, we obtain that the function hτ is a harmonic function. Then,
from Lemma A6, hτ ≡ 0. Let τ → 0. Then, h ≡ 0.
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