

Article Generic Homeomorphisms with Shadowing of One-Dimensional Continua

Alfonso Artigue ¹,*¹ and Gonzalo Cousillas ²,*¹

- ¹ Departamento de Matemática y Estadística del Litoral, Universidad de la República, Salto 50000, Uruguay
- ² Instituto de Matemática y Estadística "Rafael Laguardia", Facultad de Ingeniería, Universidad de la República, Montevideo 11200, Uruguay
- * Correspondence: artigue@unorte.edu.uy (A.A.); gcousillas@fing.edu.uy (G.C.)

Received: 7 May 2019; Accepted: 24 May 2019; Published: 26 May 2019

Abstract: In this article, we show that there are homeomorphisms of plane continua whose conjugacy class is residual and have the shadowing property.

Keywords: shadowing property; generic dynamics; one-dimensional dynamics

MSC: 37E05; 37C50; 37C20

1. Introduction

Let (X, dist) be a compact metric space and denote by $\mathcal{H}(X)$ the space of homeomorphisms $f: X \to X$ with the C^0 distance

$$dist_{C^0}(f,g) = \sup\{dist(f(x),g(x)), dist(f^{-1}(x),g^{-1}(x)) : x \in X\}.$$

A property is said to be *generic* if it holds on a residual subset of $\mathcal{H}(X)$. Recall that a set is G_{δ} if it is a countable intersection of open sets and it is *residual* if it contains a dense G_{δ} subset. For instance, it is known that the shadowing property is generic for X a compact manifold ([1], Theorem 1) or a Cantor set ([2], Theorem 4.3). Recall that $f \in \mathcal{H}(X)$ has the *shadowing property* if for all $\varepsilon > 0$, there is $\delta > 0$ such that if $\{x_i\}_{i \in \mathbb{Z}}$ is a δ -pseudo orbit, then there is $y \in X$ such that $dist(f^i(y), x_i) < \varepsilon$ for all $i \in \mathbb{Z}$. We say that $\{x_i\}_{i \in \mathbb{Z}}$ is a δ -pseudo orbit if $dist(f(x_i), x_{i+1}) < \delta$ for all $i \in \mathbb{Z}$.

A remarkable result, proved in [3,4], states that if *X* is a Cantor set, then there is a homeomorphism of *X* whose conjugacy class is a dense G_{δ} subset of $\mathcal{H}(X)$. That is, a generic homeomorphism of a Cantor set is conjugate to this special homeomorphism. We say that $f, g \in \mathcal{H}(X)$ are *conjugate* if there is $h \in \mathcal{H}(X)$ such that $f \circ h = h \circ g$ and the *conjugacy class* of *f* is the set of all the homeomorphisms conjugate to *f*. This result gives rise to a natural question: besides the Cantor set,

which compact metric spaces have a G_{δ} dense conjugacy class?

On a space with a G_{δ} dense conjugacy class, the study of generic properties (invariant under conjugacy, as the shadowing property) is reduced to determine whether a representative of this class has the property or not.

In Theorem 2, we show that there are one-dimensional plane continua with a G_{δ} dense conjugacy class whose members have the shadowing property. The proof of this result is based on Theorem 1, where we show that for a compact interval *I* there is a G_{δ} conjugacy class in $\mathcal{H}(I)$ which is dense in the subset of orientation preserving homeomorphisms of *I*. In addition, the proof of Theorem 2 depends on Propositions 2 and 3, where we give sufficient conditions for the existence of a residual conjugacy class and for a homeomorphism to have the shadowing property, respectively. The following open question has an affirmative answer in the examples known by the authors:

if a homeomorphism has a G_{δ} *dense conjugacy class, does it have the shadowing property?*

2. Generic Dynamics on a Closed Segment

Let I = [0, 1] and define $\mathcal{H}^+(I) = \{f \in \mathcal{H}(I) : f \text{ preserves orientation}\}$. In this section, we show the following result.

Theorem 1. There is $f_* \in \mathcal{H}^+(I)$ whose conjugacy class is a G_{δ} dense subset of $\mathcal{H}^+(I)$.

Remark 1. The generic dynamics of circle homeomorphisms is studied in detail in [5], Theorem 9.1. The proof of Theorem 1 follows the same ideas. As we could not find this result in the literature, we include the details.

To prove Theorem 1, we start by defining the homeomorphism f_* . For this purpose, we introduce some definitions. For $f \in \mathcal{H}^+(I)$ let fix $(f) = \{x \in X : f(x) = x\}$. A connected component of $I \setminus \text{fix}(f)$ will be called a *wandering interval*. Following [6], we say that a wandering interval (a, b) is an *r-interval* if $\lim_{n\to+\infty} f^n(x) = b$ for all $x \in (a, b)$. Analogously, it is an *l-interval* if $\lim_{n\to+\infty} f^n(x) = a$ for all $x \in (a, b)$. For each interval [a, b], fix a homeomorphism $f_r^{[a,b]} : [a, b] \to [a, b]$ such that (a, b) is an *r*-interval. Analogously, we consider $f_l^{[a,b]}$ with (a, b) an *l*-interval.

For $n \ge 0$ and $0 \le k < 3^n$, define the closed interval

$$J(n,k) = \left[\frac{3k+1}{3^{n+1}}, \frac{3k+2}{3^{n+1}}\right]$$

For *x* in the ternary Cantor set, define $f_*(x) = x$. In another case, there is a minimum integer $n_x \ge 0$ such that $x \in J(n_x, k)$ for some $0 \le k < 3^{n_x}$ and define

$$f_*(x) = \begin{cases} f_l^{J(n_x,k)}(x) & \text{if } n_x \text{ is odd,} \\ f_r^{J(n_x,k)}(x) & \text{if } n_x \text{ is even.} \end{cases}$$

For example, $(\frac{1}{3}, \frac{2}{3})$ is an *r*-interval, while $(\frac{1}{3^2}, \frac{2}{3^2})$ and $(\frac{7}{3^2}, \frac{8}{3^2})$ are *l*-intervals. See Figure 1.

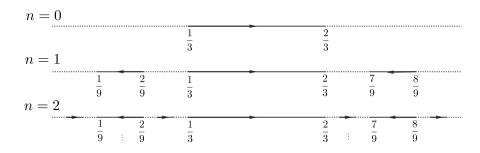


Figure 1. A sketch of the phase diagram of f_* .

Remark 2. From [7], Theorem 8, we know that f_* , and every homeomorphism conjugate to f_* , has the shadowing property.

The next result gives a useful characterization of the conjugacy class of f_* . Given $\varepsilon > 0$, we say that $g \in \mathcal{H}^+(I)$ satisfies the property P_{ε} if there are intervals $J_i = (a_i, b_i), i = 1, ..., n$, such that:

- 1. $0 < a_1 < b_1 < a_2 < b_2 < a_3 < \cdots < b_n < 1;$
- 2. J_i is an *r*-interval for *i* odd and an *l*-interval for *i* even;
- 3. $\max\{a_1, 1-b_n\} < \varepsilon \text{ and } \max\{a_{i+1}-b_i: 1 \le i < n\} < \varepsilon.$

Proposition 1. A homeomorphism $g \in \mathcal{H}^+(I)$ is conjugate to f_* if and only if it satisfies P_{ε} for all $\varepsilon > 0$.

Proof. The direct part of the proof is clear from the construction of f_* .

To prove the converse, suppose that g satisfies P_{ε} for all $\varepsilon > 0$. From Condition (3), we see that fix(g) is totally disconnected. Suppose that $p \in I$ is an isolated fixed point. If p = 0, then there is a wandering interval (0, x). Taking $\varepsilon \in (0, x)$, we have a contradiction with (3), because $a_1 < \varepsilon$. Analogously we show that *p* cannot be 1. If $p \in (0, 1)$, then *p* is in the boundary of two wandering intervals. Taking ε smaller than the length of these intervals, we contradict (1) and (3). Thus, fix(g) has no isolated point and is a Cantor set. Condition (2) (applied for a suitable ε small) implies that between two wandering intervals there is an *r*-interval and an *l*-interval.

Let \mathcal{R} and \mathcal{L} be the families of *r*-intervals and *l*-intervals of *g*, respectively. We define an order in $\mathcal{R} \cup \mathcal{L}$ in the following way: $I_{\alpha} < I_{\beta}$ if x < y for all $x \in I_{\alpha}$, $y \in I_{\beta}$. We will make the conjugacy by induction. For the first step, name $I_{1/2} \in \mathcal{R}$ which satisfies $diam(I_{1/2}) \geq diam(I)$ for every $I \in \mathcal{R}$. In the case that there exists more than one interval which verifies this condition, we choose any of them. Let J_c be a wandering interval of f_* such that c is the midpoint of J_c . By construction, $J_{1/2}$ is an *r*-interval of f_* , thus we can consider a conjugacy $h_{1/2}: I_{1/2} \to J_{1/2}$ of g and f_* restricted to these intervals. Notice that 1/6 and 5/6 are the midpoints of (1/9, 2/9) and (7/9, 8/9), respectively. Take $I_{1/6} \in \mathcal{L}$ satisfying $I_{1/6} < I_{1/2}$ and $\operatorname{diam}(I_{1/6}) \ge \operatorname{diam}(I)$ for every $I \in \mathcal{L}$ such that $I < I_{1/2}$. In addition, take $I_{5/6} \in \mathcal{L}$ satisfying $I_{1/2} < I_{5/6}$ and $diam(I_{5/6}) \ge diam(I)$ for every $I \in \mathcal{L}$ such that $I > I_{1/2}$. Then, consider $h_{1/6}$: $I_{1/6} \rightarrow J_{1/6}$ to be a conjugacy from g to f_* restricted to the corresponding intervals. Similarly, define $h_{5/6}$. Then, we go on defining 2^{k-1} homeomorphisms on each step. If k-1is even, we choose *r*-intervals, otherwise we choose *l*-intervals. Notice that since in each step we choose the largest interval of the r or l-intervals of g, every wandering interval of g is eventually chosen. In this way, the conjugacies $h_{i/k}$ give rise to a conjugacy h of g and f_* in the whole interval [0,1] and the proof ends. \Box

Proof of Theorem 1. Given $n \ge 1$, let \mathcal{U}_n be the set of increasing homeomorphisms of *I* satisfying $P_{1/n}$. Notice that P_{ε} implies $P_{\varepsilon'}$ for all $\varepsilon' > \varepsilon > 0$. Thus, from Proposition 1 we have that the conjugacy class of f_* is the countable intersection $\bigcap_{n>1} U_n$. To finish the proof, applying Baire's Theorem, we show that each \mathcal{U}_n is open and dense in $\mathcal{H}^+(I)$.

To prove that \mathcal{U}_n is open, consider $f \in \mathcal{U}_n$. It is clear that there is $\delta > 0$ such that $f \in \mathcal{U}_{n-4\delta}$. Consider the intervals (a_i, b_i) from the definition of property P_{ε} , for $\varepsilon = 1/n$. For each odd $i = 1, \ldots, n$, take $x_i \in (a_i, a_i + \delta)$ and for *i* even take $y_i \in (b_i - \delta, b_i)$. Consider $m \in \mathbb{N}$ large such that $f^m(x_i) \in \mathcal{N}$ $(b_i - \delta, b_i)$ and $f^m(y_i) \in (a_i, a_i + \delta)$ for all *i*. Take a neighborhood \mathcal{V} of *f* such that $\operatorname{dist}_{\mathcal{C}^0}(f^m, g^m) < \delta$ for all $g \in \mathcal{V}$ and $g^m(x_i) > x_i, g^m(y_i) < y_i$ for all *i*. This implies that $(x_i, g^m(x_i))$ is contained in an *r*-interval for *g* and $(g^m(y_i), y_i)$ is contained in an *l*-interval for *g*. For all $g \in \mathcal{V}$ and *i* odd, we have

$$\begin{aligned} |g^{m}(x_{i}) - g^{m}(y_{i+1}))| &\leq |g^{m}(x_{i}) - f^{m}(x_{i})| + |f^{m}(x_{i}) - f^{m}(y_{i+1})| \\ &+ |f^{m}(y_{i+1}) - g^{m}(y_{i+1})| \\ &< \delta + |f^{m}(x_{i}) - b_{i}| + |b_{i} - a_{i+1}| + |a_{i+1} - f^{m}(y_{i+1})| + \delta \\ &< 2\delta + (1/n - 4\delta) + 2\delta = 1/n. \end{aligned}$$

Arguing analogously for *i* even, we conclude that $g \in U_n$ and U_n is open.

To prove that \mathcal{U}_n is dense in $\mathcal{H}^+(I)$, the following remark is sufficient. Given $f \in \mathcal{H}^+(I)$, $p \in \text{fix}(f) \cap (0,1)$ and $\delta > 0$ small, we can define $g \in \mathcal{H}^+(I)$ close to f such that:

- $f|_{[0,p]}$ and $g|_{[0,p-\delta]}$ are conjugate; $f|_{[p,1]}$ and $g|_{[p+\delta,1]}$ are conjugate; and g has an r or l-interval at $[p \delta, p + \delta]$.

That is, a fixed point can be *exploded* into a small wandering interval with an arbitrarily small perturbation. By finitely performing many such explosions, the density of U_n is obtained. \Box

3. Genericity on a Plane One-Dimensional Continuum

In this section, we show that there are some particular one-dimensional plane continua with a G_{δ} dense conjugacy class whose members have the shadowing property. We start with a sufficient condition for the existence of a G_{δ} dense conjugacy class. An open subset $U \subset X$ is a *free arc* if it is homeomorphic to \mathbb{R} .

Proposition 2. If X is a compact metric space such that

- 1. $X = \bigcup_{n \ge 1} a_n$, where each a_n is a compact arc with extreme points $p_n, q_n \in X$ for all $n \ge 1$;
- 2. $a_n \setminus \{p_n, q_n\}$ is a free arc for all $n \ge 1$; and
- 3. *for all* $f \in \mathcal{H}(X)$ *, it holds that* $f(a_n) = a_n$ *and* $p_n, q_n \in \text{fix}(f)$ *for all* $n \ge 1$ *;*

then $\mathcal{H}(X)$ has a G_{δ} dense conjugacy class.

Proof. For each $n \ge 1$, let $X_n = clos(X \setminus a_n)$ and define

$$\mathcal{H}_n = \{ f \in \mathcal{H}(X_n) : p_n, q_n \in \operatorname{fix}(f) \},\$$

and the map $\varphi_n \colon \mathcal{H}(X) \to \mathcal{H}^+(a_n) \times \mathcal{H}_n$ as $\varphi_n(f) = f|_{a_n} \times f|_{X_n}$. In $\mathcal{H}^+(a_n) \times \mathcal{H}_n$, we consider the product topology. It is clear that φ_n is a homeomorphism for each $n \ge 1$. Let \mathcal{R}_n be the G_{δ} dense conjugacy class of $\mathcal{H}^+(a_n)$ given by Theorem 1 and define $\mathcal{S}_n = \mathcal{R}_n \times \mathcal{H}_n$. Thus, $\bigcap_{n \ge 1} \varphi_n^{-1}(\mathcal{S}_n)$ is a G_{δ} dense conjugacy class in $\mathcal{H}(X)$. \Box

Remark 3. Notice that a representative g_* of the G_δ dense conjugacy of Proposition 2 is obtained by considering a conjugate of f_* on each arc a_n of X.

Now, we prove a sufficient condition for a homeomorphism to have the shadowing property. For this purpose, we need some definitions and a lemma. Suppose that (X, dist) is a compact metric space and take $f \in \mathcal{H}(X)$. A compact *f*-invariant subset $A \subset X$ is a *quasi-attractor* if for every open neighborhood *U* of *A* there is an open subset $V \subset U$ such that $A \subset V$ and $\operatorname{clos}(f(V)) \subset V$. If, in addition, $f : A \to A$ has the shadowing property, we say that *A* is a *quasi-attractor with shadowing*.

Lemma 1. If $A \subset X$ is a quasi-attractor with shadowing, then for all $\varepsilon > 0$ there is $\delta > 0$ such that if $\{x_n\}_{n \ge 0}$ is a δ -pseudo-orbit with $x_0 \in B_{\delta}(A)$, then there is $y \in A$ that ε -shadows $\{x_n\}_{n \ge 0}$.

Proof. Given $\varepsilon > 0$, take $\delta_1 > 0$ such that every δ_1 -pseudo-orbit in A is $\varepsilon/2$ -shadowed by a point in A. Consider $0 < \alpha < \min\{\varepsilon/2, \delta_1/3\}$ such that dist $(a, b) < \alpha$ implies dist $(f(a), f(b)) < \delta_1/3$. Since A is a quasi-attractor, for $U = B_{\alpha}(A)$ there exists an open set V such that $A \subset V \subset U$ and $\operatorname{clos}(f(V)) \subset V$. Take $\delta \in (0, \delta_1/3)$ such that $B_{\delta}(\operatorname{clos}(f(V))) \subset V$.

Suppose that $\{x_n\}_{n\geq 0}$ is a δ -pseudo-orbit with $x_0 \in B_{\delta}(A)$. Since $f(x_0) \in f(V)$, we have that $x_1 \in B_{\delta}(f(V))$ and $x_1 \in V$. In this way, we prove that $x_n \in V$ for all $n \geq 0$. For each $n \geq 0$, take $y_n \in A$ such that $dist(y_n, x_n) < \alpha$. We have that

$$dist(f(y_n), y_{n+1}) \leq dist(f(y_n), f(x_n)) + dist(f(x_n), x_{n+1}) + dist(x_{n+1}, y_{n+1}) \leq \delta_1/3 + \delta + \alpha < 3\delta_1/3 = \delta_1.$$

This proves that $\{y_n\}_{n\geq 0}$ is a δ_1 -pseudo-orbit contained in A. There exists $z \in A$ that $\varepsilon/2$ -shadows $\{y_n\}_{n\geq 0}$. Thus,

$$\operatorname{dist}(f^n(z), x_n) \leq \operatorname{dist}(f^n(z), y_n) + \operatorname{dist}(y_n, x_n) < \varepsilon/2 + \alpha \leq \varepsilon.$$

Therefore, the proof ends. \Box

Proposition 3. If every point of X belongs to a quasi-attractor with shadowing, then f has shadowing.

Proof. Suppose that $\varepsilon > 0$ is given. For each $x \in X$, let $A_x \subset X$ be a quasi-attractor with shadowing containing x. Let $\delta_x > 0$ be given by Lemma 1 such that for every δ_x -pseudo-orbit $\{x_n\}_{n\geq 0}$ with $x_0 \in B_{\delta_x}(A_x)$ there is a point in A_x that ε -shadows $\{x_n\}_{n\geq 0}$. As X is compact, there is a finite sequence

 $x_1, \ldots, x_k \in X$ such that $\bigcup_{i=1}^k B_{\delta_i}(A_i) = X$, where $A_i = A_{x_i}$ and $\delta_i = \delta_{x_i}$. If we take $\delta = \min\{\delta_1, \ldots, \delta_k\}$, we have that for every δ -pseudo-orbit $\{x_n\}_{n\geq 0}$ in X, there is j such that $x_0 \in B_{\delta_j}(A_j)$. Then, there is a point in A_j that ε -shadows $\{x_n\}_{n\geq 0}$ and the proof ends. \Box

Let $Y \subset \mathbb{R}^2$ be the union of

- the circle arc $x^2 + y^2 = 1, y \le 0;$
- the horizontal segment $[-1,1] \times \{0\}$; and
- the vertical segments $\{-1+\frac{2}{n}\} \times [0, 1/n]$, for $n \ge 1$.

See Figure 2.

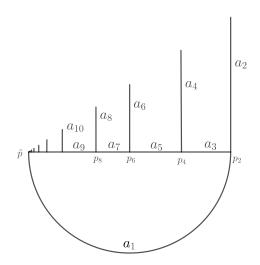


Figure 2. The continuum Y can be decomposed as a union of arcs as in Proposition 2.

Theorem 2. For the continuum Y, there is a G_{δ} conjugacy class which is dense in $\mathcal{H}(Y)$ and whose members have the shadowing property. In particular, the shadowing property is generic in $\mathcal{H}(Y)$.

Proof. The continuum *Y* satisfies the hypothesis of Proposition 2. Indeed, the conditions (1) and (2) are directly from the construction of *Y*. Consider the points p_n , \tilde{p} indicated in Figure 2. It is clear that $\tilde{p} \in \text{fix}(f)$ for all $f \in \mathcal{H}(Y)$. This implies that a_1 is invariant and $p_2 \in \text{fix}(f)$. In turn, this implies that a_2 is invariant under each $f \in \mathcal{H}(Y)$. In this way, it is shown that condition (3) of Proposition 2 holds. Therefore, $\mathcal{H}(Y)$ contains a G_{δ} dense conjugacy class.

As explained in Remark 3, a representative $g_* \in \mathcal{H}(Y)$ of this conjugacy class is obtained by taking a conjugate of f_* on each arc a_n . It only remains to prove that g_* has the shadowing property. By Remark 2, we know that $g_*: a_n \to a_n$ has the shadowing property. By construction, each a_n is a quasi-attractor for g_* . Since the arcs a_n cover Y, we can apply Proposition 3 to conclude that g_* has the shadowing property. \Box

Author Contributions: Both authors contributed equally to this work.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Pilyugin, S.Y.; Plamenevskaya, O.B. Shadowing is generic. Topol. Appl. 1999, 97, 253–266. [CrossRef]
- 2. Bernardes, N.C., Jr.; Darji, U.B. Graph theoretic structure of maps of the Cantor space. *Adv. Math.* **2012**, *231*, 1655–1680. [CrossRef]
- 3. Akin, E.; Glasner, E.; Weiss, B. Generically there is but one self homeomorphism of the Cantor set. *Trans. Am. Math. Soc.* **2008**, *360*, 3613–3630. [CrossRef]

- 4. Kechris, A.S.; Rosendal, C. Turbulence, amalgamation, and generic automorphisms of homogeneous structures. *Proc. Lond. Math. Soc.* 2007, *94*, 302–350. [CrossRef]
- 5. Akin, E.; Hurley, M.; Kennedy, J.A. *Dynamics of Topologically Generic Homeomorphisms*; American Mathematical Society: Providence, RI, USA, 2003.
- 6. Yu, S. Pilyugin. *Shadowing in Dynamical Systems;* In *Lecture Notes in Mathematics;* Springer: Berlin, Germany, 1999; Volume 1706.
- 7. Pennings, T.; Eeuwen, J.V. Pseudo-orbit shadowing on the unit interval. *Real Anal. Exchang.* **1990**, *16*, 238–244.

 \odot 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).