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1. Introduction

Let (X, dist) be a compact metric space and denote by H(X) the space of homeomorphisms
f : X → X with the C0 distance

distC0( f , g) = sup{dist( f (x), g(x)), dist( f−1(x), g−1(x)) : x ∈ X}.

A property is said to be generic if it holds on a residual subset ofH(X). Recall that a set is Gδ if it
is a countable intersection of open sets and it is residual if it contains a dense Gδ subset. For instance,
it is known that the shadowing property is generic for X a compact manifold ([1], Theorem 1) or a
Cantor set ([2], Theorem 4.3). Recall that f ∈ H(X) has the shadowing property if for all ε > 0, there is
δ > 0 such that if {xi}i∈Z is a δ-pseudo orbit, then there is y ∈ X such that dist( f i(y), xi) < ε for all
i ∈ Z. We say that {xi}i∈Z is a δ-pseudo orbit if dist( f (xi), xi+1) < δ for all i ∈ Z.

A remarkable result, proved in [3,4], states that if X is a Cantor set, then there is a homeomorphism
of X whose conjugacy class is a dense Gδ subset of H(X). That is, a generic homeomorphism of a
Cantor set is conjugate to this special homeomorphism. We say that f , g ∈ H(X) are conjugate if there
is h ∈ H(X) such that f ◦ h = h ◦ g and the conjugacy class of f is the set of all the homeomorphisms
conjugate to f . This result gives rise to a natural question: besides the Cantor set,

which compact metric spaces have a Gδ dense conjugacy class?

On a space with a Gδ dense conjugacy class, the study of generic properties (invariant under
conjugacy, as the shadowing property) is reduced to determine whether a representative of this class
has the property or not.

In Theorem 2, we show that there are one-dimensional plane continua with a Gδ dense conjugacy
class whose members have the shadowing property. The proof of this result is based on Theorem 1,
where we show that for a compact interval I there is a Gδ conjugacy class inH(I) which is dense in the
subset of orientation preserving homeomorphisms of I. In addition, the proof of Theorem 2 depends
on Propositions 2 and 3, where we give sufficient conditions for the existence of a residual conjugacy
class and for a homeomorphism to have the shadowing property, respectively. The following open
question has an affirmative answer in the examples known by the authors:

if a homeomorphism has a Gδ dense conjugacy class, does it have the shadowing property?
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2. Generic Dynamics on a Closed Segment

Let I = [0, 1] and defineH+(I) = { f ∈ H(I) : f preserves orientation}. In this section, we show
the following result.

Theorem 1. There is f∗ ∈ H+(I) whose conjugacy class is a Gδ dense subset ofH+(I).

Remark 1. The generic dynamics of circle homeomorphisms is studied in detail in [5], Theorem 9.1. The proof
of Theorem 1 follows the same ideas. As we could not find this result in the literature, we include the details.

To prove Theorem 1, we start by defining the homeomorphism f∗. For this purpose, we introduce
some definitions. For f ∈ H+(I) let fix( f ) = {x ∈ X : f (x) = x}. A connected component of I \ fix( f )
will be called a wandering interval. Following [6], we say that a wandering interval (a, b) is an r-interval
if limn→+∞ f n(x) = b for all x ∈ (a, b). Analogously, it is an l-interval if limn→+∞ f n(x) = a for all
x ∈ (a, b). For each interval [a, b], fix a homeomorphism f [a,b]

r : [a, b] → [a, b] such that (a, b) is an
r-interval. Analogously, we consider f [a,b]

l with (a, b) an l-interval.
For n ≥ 0 and 0 ≤ k < 3n, define the closed interval

J(n, k) =
[

3k+1
3n+1 , 3k+2

3n+1

]
.

For x in the ternary Cantor set, define f∗(x) = x. In another case, there is a minimum integer
nx ≥ 0 such that x ∈ J(nx, k) for some 0 ≤ k < 3nx and define

f∗(x) =

{
f J(nx ,k)
l (x) if nx is odd,

f J(nx ,k)
r (x) if nx is even.

For example, ( 1
3 , 2

3 ) is an r-interval, while ( 1
32 , 2

32 ) and ( 7
32 , 8

32 ) are l-intervals. See Figure 1.

Figure 1. A sketch of the phase diagram of f∗.

Remark 2. From [7], Theorem 8, we know that f∗, and every homeomorphism conjugate to f∗, has the
shadowing property.

The next result gives a useful characterization of the conjugacy class of f∗. Given ε > 0, we say
that g ∈ H+(I) satisfies the property Pε if there are intervals Ji = (ai, bi), i = 1, . . . , n, such that:

1. 0 < a1 < b1 < a2 < b2 < a3 < · · · < bn < 1;
2. Ji is an r-interval for i odd and an l-interval for i even;
3. max{a1, 1− bn} < ε and max{ai+1 − bi : 1 ≤ i < n} < ε.

Proposition 1. A homeomorphism g ∈ H+(I) is conjugate to f∗ if and only if it satisfies Pε for all ε > 0.

Proof. The direct part of the proof is clear from the construction of f∗.
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To prove the converse, suppose that g satisfies Pε for all ε > 0. From Condition (3), we see that
fix(g) is totally disconnected. Suppose that p ∈ I is an isolated fixed point. If p = 0, then there
is a wandering interval (0, x). Taking ε ∈ (0, x), we have a contradiction with (3), because a1 < ε.
Analogously we show that p cannot be 1. If p ∈ (0, 1), then p is in the boundary of two wandering
intervals. Taking ε smaller than the length of these intervals, we contradict (1) and (3). Thus, fix(g)
has no isolated point and is a Cantor set. Condition (2) (applied for a suitable ε small) implies that
between two wandering intervals there is an r-interval and an l-interval.

Let R and L be the families of r-intervals and l-intervals of g, respectively. We define an order
inR∪L in the following way: Iα < Iβ if x < y for all x ∈ Iα, y ∈ Iβ. We will make the conjugacy by
induction. For the first step, name I1/2 ∈ R which satisfies diam(I1/2) ≥ diam(I) for every I ∈ R.
In the case that there exists more than one interval which verifies this condition, we choose any of
them. Let Jc be a wandering interval of f∗ such that c is the midpoint of Jc. By construction, J1/2
is an r-interval of f∗, thus we can consider a conjugacy h1/2 : I1/2 → J1/2 of g and f∗ restricted to
these intervals. Notice that 1/6 and 5/6 are the midpoints of (1/9, 2/9) and (7/9, 8/9), respectively.
Take I1/6 ∈ L satisfying I1/6 < I1/2 and diam(I1/6) ≥ diam(I) for every I ∈ L such that I < I1/2.
In addition, take I5/6 ∈ L satisfying I1/2 < I5/6 and diam(I5/6) ≥ diam(I) for every I ∈ L such that
I > I1/2. Then, consider h1/6 : I1/6 → J1/6 to be a conjugacy from g to f∗ restricted to the corresponding
intervals. Similarly, define h5/6. Then, we go on defining 2k−1 homeomorphisms on each step. If k− 1
is even, we choose r-intervals, otherwise we choose l-intervals. Notice that since in each step we
choose the largest interval of the r or l-intervals of g, every wandering interval of g is eventually
chosen. In this way, the conjugacies hj/k give rise to a conjugacy h of g and f∗ in the whole interval
[0, 1] and the proof ends.

Proof of Theorem 1. Given n ≥ 1, let Un be the set of increasing homeomorphisms of I satisfying P1/n.
Notice that Pε implies Pε′ for all ε′ > ε > 0. Thus, from Proposition 1 we have that the conjugacy class
of f∗ is the countable intersection

⋂
n≥1 Un. To finish the proof, applying Baire’s Theorem, we show

that each Un is open and dense inH+(I).
To prove that Un is open, consider f ∈ Un. It is clear that there is δ > 0 such that f ∈ Un−4δ.

Consider the intervals (ai, bi) from the definition of property Pε, for ε = 1/n. For each odd i = 1, . . . , n,
take xi ∈ (ai, ai + δ) and for i even take yi ∈ (bi − δ, bi). Consider m ∈ N large such that f m(xi) ∈
(bi − δ, bi) and f m(yi) ∈ (ai, ai + δ) for all i. Take a neighborhood V of f such that distC0( f m, gm) < δ

for all g ∈ V and gm(xi) > xi, gm(yi) < yi for all i. This implies that (xi, gm(xi)) is contained in an
r-interval for g and (gm(yi), yi) is contained in an l-interval for g. For all g ∈ V and i odd, we have

|gm(xi)− gm(yi+1))| ≤ |gm(xi)− f m(xi)|+ | f m(xi)− f m(yi+1)|
+| f m(yi+1)− gm(yi+1)|

< δ + | f m(xi)− bi|+ |bi − ai+1|+ |ai+1 − f m(yi+1)|+ δ

< 2δ + (1/n− 4δ) + 2δ = 1/n.

Arguing analogously for i even, we conclude that g ∈ Un and Un is open.
To prove that Un is dense in H+(I), the following remark is sufficient. Given f ∈ H+(I),

p ∈ fix( f ) ∩ (0, 1) and δ > 0 small, we can define g ∈ H+(I) close to f such that:

• f |[0,p] and g|[0,p−δ] are conjugate;
• f |[p,1] and g|[p+δ,1] are conjugate; and
• g has an r or l-interval at [p− δ, p + δ].

That is, a fixed point can be exploded into a small wandering interval with an arbitrarily small
perturbation. By finitely performing many such explosions, the density of Un is obtained.

3. Genericity on a Plane One-Dimensional Continuum

In this section, we show that there are some particular one-dimensional plane continua with a
Gδ dense conjugacy class whose members have the shadowing property. We start with a sufficient
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condition for the existence of a Gδ dense conjugacy class. An open subset U ⊂ X is a free arc if it is
homeomorphic to R.

Proposition 2. If X is a compact metric space such that

1. X = ∪n≥1an, where each an is a compact arc with extreme points pn, qn ∈ X for all n ≥ 1;
2. an \ {pn, qn} is a free arc for all n ≥ 1; and
3. for all f ∈ H(X), it holds that f (an) = an and pn, qn ∈ fix( f ) for all n ≥ 1;

thenH(X) has a Gδ dense conjugacy class.

Proof. For each n ≥ 1, let Xn = clos(X \ an) and define

Hn = { f ∈ H(Xn) : pn, qn ∈ fix( f )},

and the map ϕn : H(X) → H+(an)×Hn as ϕn( f ) = f |an × f |Xn . In H+(an)×Hn, we consider the
product topology. It is clear that ϕn is a homeomorphism for each n ≥ 1. Let Rn be the Gδ dense
conjugacy class ofH+(an) given by Theorem 1 and define Sn = Rn ×Hn. Thus, ∩n≥1 ϕ−1

n (Sn) is a Gδ

dense conjugacy class inH(X).

Remark 3. Notice that a representative g∗ of the Gδ dense conjugacy of Proposition 2 is obtained by considering
a conjugate of f∗ on each arc an of X.

Now, we prove a sufficient condition for a homeomorphism to have the shadowing property.
For this purpose, we need some definitions and a lemma. Suppose that (X, dist) is a compact metric
space and take f ∈ H(X). A compact f -invariant subset A ⊂ X is a quasi-attractor if for every
open neighborhood U of A there is an open subset V ⊂ U such that A ⊂ V and clos( f (V)) ⊂ V.
If, in addition, f : A→ A has the shadowing property, we say that A is a quasi-attractor with shadowing.

Lemma 1. If A ⊂ X is a quasi-attractor with shadowing, then for all ε > 0 there is δ > 0 such that if {xn}n≥0

is a δ-pseudo-orbit with x0 ∈ Bδ(A), then there is y ∈ A that ε-shadows {xn}n≥0.

Proof. Given ε > 0, take δ1 > 0 such that every δ1-pseudo-orbit in A is ε/2-shadowed by a point in A.
Consider 0 < α < min{ε/2, δ1/3} such that dist(a, b) < α implies dist( f (a), f (b)) < δ1/3. Since A is
a quasi-attractor, for U = Bα(A) there exists an open set V such that A ⊂ V ⊂ U and clos( f (V)) ⊂ V.
Take δ ∈ (0, δ1/3) such that Bδ(clos( f (V))) ⊂ V.

Suppose that {xn}n≥0 is a δ-pseudo-orbit with x0 ∈ Bδ(A). Since f (x0) ∈ f (V), we have that
x1 ∈ Bδ( f (V)) and x1 ∈ V. In this way, we prove that xn ∈ V for all n ≥ 0. For each n ≥ 0, take
yn ∈ A such that dist(yn, xn) < α. We have that

dist( f (yn), yn+1) ≤ dist( f (yn), f (xn)) + dist( f (xn), xn+1) + dist(xn+1, yn+1)

≤ δ1/3 + δ + α < 3δ1/3 = δ1.

This proves that {yn}n≥0 is a δ1-pseudo-orbit contained in A. There exists z ∈ A that ε/2-shadows
{yn}n≥0. Thus,

dist( f n(z), xn) ≤ dist( f n(z), yn) + dist(yn, xn) < ε/2 + α ≤ ε.

Therefore, the proof ends.

Proposition 3. If every point of X belongs to a quasi-attractor with shadowing, then f has shadowing.

Proof. Suppose that ε > 0 is given. For each x ∈ X, let Ax ⊂ X be a quasi-attractor with shadowing
containing x. Let δx > 0 be given by Lemma 1 such that for every δx-pseudo-orbit {xn}n≥0 with
x0 ∈ Bδx (Ax) there is a point in Ax that ε-shadows {xn}n≥0. As X is compact, there is a finite sequence
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x1, . . . , xk ∈ X such that ∪k
i=1Bδi (Ai) = X, where Ai = Axi and δi = δxi . If we take δ = min{δ1, . . . , δk},

we have that for every δ-pseudo-orbit {xn}n≥0 in X, there is j such that x0 ∈ Bδj(Aj). Then, there is a
point in Aj that ε-shadows {xn}n≥0 and the proof ends.

Let Y ⊂ R2 be the union of

• the circle arc x2 + y2 = 1, y ≤ 0;
• the horizontal segment [−1, 1]× {0}; and
• the vertical segments {−1 + 2

n} × [0, 1/n], for n ≥ 1.

See Figure 2.

Figure 2. The continuum Y can be decomposed as a union of arcs as in Proposition 2.

Theorem 2. For the continuum Y, there is a Gδ conjugacy class which is dense inH(Y) and whose members
have the shadowing property. In particular, the shadowing property is generic inH(Y).

Proof. The continuum Y satisfies the hypothesis of Proposition 2. Indeed, the conditions (1) and (2)
are directly from the construction of Y. Consider the points pn, p̃ indicated in Figure 2. It is clear that
p̃ ∈ fix( f ) for all f ∈ H(Y). This implies that a1 is invariant and p2 ∈ fix( f ). In turn, this implies that
a2 is invariant under each f ∈ H(Y). In this way, it is shown that condition (3) of Proposition 2 holds.
Therefore,H(Y) contains a Gδ dense conjugacy class.

As explained in Remark 3, a representative g∗ ∈ H(Y) of this conjugacy class is obtained by
taking a conjugate of f∗ on each arc an. It only remains to prove that g∗ has the shadowing property.
By Remark 2, we know that g∗ : an → an has the shadowing property. By construction, each an is a
quasi-attractor for g∗. Since the arcs an cover Y, we can apply Proposition 3 to conclude that g∗ has the
shadowing property.
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