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Abstract: We explicitly calculate the branching functions arising from the tensor product
decompositions between level 2 and principal admissible representations over ŝl2. In addition,
investigating the characters of the minimal series representations of super-Virasoro algebras,
we present the tensor product decompositions in terms of the minimal series representations of
super-Virasoro algebras for the case of principal admissible weights.
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1. Introduction

One of the basic problems in representation theory is to find the decomposition of a tensor
product between two irreducible representations. In fact, the study of tensor product decompositions
plays an important role in quantum mechanics and in string theory [1,2], and it has attracted much
attention from combinatorial representation theory [3]. In addition, recent studies reveal that tensor
product decompositions are also closely related to the representation theory of Virasoro algebra and
W-algebras [4–6].

In [6], the authors extensively study decompositions of tensor products between integrable
representations over affine Lie algebras. They also investigate relationships among tensor products,
branching functions and Virasoro algebra through integrable representations over affine Lie algebras.

In the present paper we shall follow the methodology appearing in [6]. However, we will focus
on admissible representations of affine Lie algebras. Admissible representations are not generally
integrable over affine Lie algebras, but integrable with respect to a subroot system of the root system
attached to a given affine Lie algebra. Kac and Wakimoto showed that admissible representations
satisfy several nice properties such as Weyl-Kac type character formula and modular invariance [5,7].
In their subsequent works, they also established connections between admissible representations of
affine Lie algebras and the representation theory of W-algebras [4,8]. In addition, Kac and Wakimoto
expressed in ([9], Theorem 3.1) the branching functions arising from the tensor product decompositions
between principal admissible and integrable representations as the q-series involving the associated
dominant integral weights and string functions.

One of the main results of this paper is the explicit calculations of the branching functions
appearing in ([9], Theorem 3.1). We are particularly interested in the calculations of the
branching functions obtained from certain tensor product decompositions of level 2 integrable and
principal admissible representations over ŝl2 (see Theorem 4). We shall see that these branching
functions connect the representation theory of affine Lie algebras with the representation theory of
super-Virasoro algebras.

We usually apply the theory of modular functions for calculations of string functions [10].
However, in the current work we shall not use the tools of modular functions for the calculations of the
string functions appearing in ([9], Theorem 3.1). Instead, we shall use both the invariance properties of
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string functions under the action of affine Weyl group and the character formula whose summation is
taken over maximal weights (see Theorem 5). It seems like that this approach provides a simpler way
for computations of the string functions in our cases.

We would like to point out that in ([5], Corollary 3(c)) the authors expressed the branching
functions in terms of theta functions. We shall show that our expressions for the branching functions
appearing in Theorem 4 are actually same as those of ([5], Corollary 3(c)) through the investigations
of the characters of the minimal series representations of super-Virasoro algebras. Comparing our
calculations of the branching functions over ŝl2 with the characters of the minimal series representations
of super-Virasoro algebras, we also present the tensor product decompositions between level 2
integrable and principal admissible representations in terms of the minimal series representations
of super-Virasoro algebras (see Theorem 6). This generalizes the decomposition formula appearing
in ([6], Section 4.1(a)) to the case of principal admissible weights.

2. Preliminaries

Let A =
(
aij
)

1≤i,j≤n be a symmetrizable generalized Cartan matrix and g the Kac-Moody Lie
algebra associated with A. Let h be a Cartan subalgebra of g. Fix the set of simple roots Π =

{α1, · · · , αn} of h and simple coroots Π∨ =
{

α∨1 , · · · , α∨n
}

of h∗, respectively. Assume that Π and
Π∨ satisfy the condition αj

(
α∨i
)
= aij. We denote by ( | ) the non-degenerate invariant symmetric

bilinear form on g. Write ∆, ∆+ and ∆− for the set of all roots, positive roots and negative roots of g,
respectively. Put ∆re = {α ∈ ∆ | (α|α) > 0} and ∆im = {α ∈ ∆ | (α|α) ≤ 0}. For each i = 1, · · · , n, we
define the fundamental reflection rαi of h∗ by

rαi (λ) = λ− λ
(
α∨i
)

αi (λ ∈ h∗) .

The subgroup W of GL (h∗) generated by all fundamental reflections is called the Weyl group of g.
Among symmetrizable Kac-Moody Lie algebras, the most important Lie algebras are affine Lie

algebras whose associated Cartan matrices are called affine Cartan matrices. It is known that every
affine Cartan matrix is a positive semidefinite of corank 1. Each affine Cartan matrix is in one-to-one
correspondence with the affine Dynkin diagram of type X(r)

n , where X = A, B, C, D, E, F or G and
r = 1, 2 or 3. The number r is called the tier number (see [11,12] for details). Given an affine Cartan
matrix A =

(
aij
)

0≤i,j≤l , two (l + 1)-tuples
(
a∨i
)

0≤i≤l and (ai)0≤i≤l of positive integers are uniquely
determined by the conditions

1.
(
a∨0 , a∨1 , · · · , a∨l

)
A = O,

2. A


a0

a1
...
al

 = O,

3. gcd
(
a∨0 , a∨1 , · · · , a∨l

)
= gcd (a0, a1, · · · , al) = 1,

where O is the zero vector. We call (ai)0≤i≤l (resp.
(
a∨i
)

0≤i≤l) the label (resp. colabel) of the affine matrix

A. The corresponding positive integer h = ∑l
i=0 ai (resp. h∨ = ∑l

i=0 a∨i ) is called the Coxeter number
(resp. dual Coxeter number). Notice that the element K = ∑l

i=0 a∨i α∨i satisfies αi(K) = 0 for 0 ≤ i ≤ l,
and we call this element the central element. Through the non-degenerate bilinear form ( | ) defined on
g, the central element K corresponds to δ = ∑l

i=0 aiαi in h∗.
Suppose that g is the affine Lie algebra associated to an affine Cartan matrix A =

(
aij
)

0≤i,j≤l ,

and let h be a Cartan subalgebra of g. The Cartan subalgebra h is (l + 2)-dimensional, and we can
decompose h and h∗ as follows:

h = h⊕CK⊕Cd,

h∗ = h
∗ ⊕Cδ⊕CΛ0,
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where h = ∑l
i=1 Cα∨i and h

∗
= ∑l

i=1 Cαi.
The lattice Q = ∑l

i=0 Zαi and Q∨ = ∑l
i=0 Zα∨i are called the root lattice and coroot lattice,

respectively. Set

M =

{
Q∨ if r = 1 or A = A(2)

2l ,

Q if r ≥ 2 and A 6= A(2)
2l .

For an element α ∈ Q, we define tα ∈ GL (h∗) by

tα (λ) = λ + (λ|δ) α−
{
|α|2

2
(λ|δ) + (λ|α)

}
δ (λ ∈ h∗) .

We call tα (α ∈ Q) the translation operator. It is known that the Weyl group W of the affine Lie algebra g

is also given by W n tM, where W = 〈rαi |1 ≤ i ≤ l〉 and tM = {tα|α ∈ M} .
For a non-twisted affine Lie algebra (i.e., r = 1), recall that

∆im = {nδ|n ∈ Z− {0}}

and
∆re =

{
nδ + α|n ∈ Z, α ∈ ∆

}
,

where ∆ is the set of all roots of the finite-dimensional simple Lie algebra associated with the finite
Cartan matrix A =

(
aij
)

1≤i,j≤l .
Set

P =
{

λ ∈ h∗|λ
(
α∨i
)
∈ Z for 0 ≤ i ≤ l

}
,

Pm = {λ ∈ P|λ(K) = m} ,

P+ =
{

λ ∈ h∗|λ
(
α∨i
)
∈ Z≥0 for 0 ≤ i ≤ l

}
,

Pm
+ = Pm ∩ P+.

An element in P (reps. P+) is called an integral weight (resp. a dominant integral weight). Let ρ be the
dominant integral weight defined by ρ

(
α∨i
)
= 1 for 0 ≤ i ≤ l. The element ρ is called the Weyl vector

of g. It is sometimes convenient to choose the Weyl vector satisfying the additional condition ρ(d) = 0,
and we get ρ = ρ + h∨Λ0 in this case.

Define the fundamental weights Λi ∈ h∗ (0 ≤ i ≤ l) by Λi

(
α∨j

)
= δij (0 ≤ j ≤ l) and Λi (d) = 0.

Similarly, we define the fundamental coweights Λ∨i ∈ h (0 ≤ i ≤ l) by
(
Λ∨i |αj

)
= δij (0 ≤ j ≤ l) and(

Λ∨i |d
)
= 0. Let Λi and Λ∨i be the restrictions of Λi and Λ∨i to h

∗ and h, respectively. Put P = ∑l
i=1 ZΛi

and P∨ = ∑l
i=1 ZΛ∨i , and let us introduce a lattice

M̃ =

{
P∨ if r = 1 or A = A(2)

2l ,

P if r ≥ 2 and A 6= A(2)
2l .

Then, the group W̃ = W n tM̃ is called the extended affine Weyl group of g.

3. Branching functions for admissible weights

Let g be the Kac-Moody Lie algebra associated to a symmetrizable generalized Cartan matrix A,
and h a Cartan subalgebra of g. An element λ ∈ h∗ satisfying conditions

1. 〈λ + ρ, α∨〉 ∈ Q−Z≤0 for all α ∈ ∆re
+ := ∆re ∩ ∆+,

2. Q-span of
{

α ∈ ∆re
+| 〈λ + ρ, α∨〉 ∈ Z

}
= Q-span of ∆re

+
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is called an admissible weight. When λ is an admissible weight, the corresponding irreducible highest
weight g-module L (λ) is called an admissible g-module or admissible representation. Write

∆∨re
λ =

{
α∨|α ∈ ∆re and

〈
λ + ρ, α∨

〉
∈ Z≥1

}
.

Then, it is easy to see that ∆∨re
λ forms a subroot system of the coroot system ∆∨. We denote by Π∨λ a

base of ∆∨ re
λ , and put Wλ =

〈
rα|α ∈ Π∨λ

〉
.

An admissible weight λ is called a principal admissible weight if Π∨λ is isomorphic to Π∨. In general,
the level of a principal admissible weight is a rational number. In fact, it is known from [7] that a
rational number m = v

u (u ∈ Z≥1, v ∈ Z, gcd(u, v) = 1) is the level of principal admissible weights if
and only if it satisfies

1. gcd (u, r∨) = 1,
2. u (m + h∨) ≥ h∨,

where r∨ is the tier number of the transposed generalized Cartan matrix At and h∨ denotes the dual
Coxeter number of g.

Henceforth, we assume that g is an affine Lie algebra with a simple coroot system Π∨ ={
α∨0 , · · · , α∨l

}
.

Given u ∈ Z≥1, put γ0 = (u− 1)c + α∨0 and γi = α∨i (1 ≤ i ≤ l). Define S(u) = {γi | 0 ≤ i ≤ l}.
Then, S(u) becomes a simple coroot system of ∆∨ ∩

(
∑l

i=0 Zγi

)
if gcd (u, r∨) = 1 (see [13], Lemma 3.2.1).

Moreover, the following theorems are known.

Theorem 1. Let m = v
u with u ∈ Z≥1, v ∈ Z and gcd(u, v) = 1. Assume that y ∈ W̃ satisfies y

(
S(u)

)
⊂

∆∨+. Write Pm
u,y for the set of all principal admissible weights λ of level m with Π∨λ = y

(
S(u)

)
. Then, we have

Pm
u,y =

{
y
(

λ0 − (u− 1)
(
m + h∨

)
Λ0 + ρ

)
− ρ | λ0 ∈ Pu(m+h∨)−h∨

+

}
.

Proof. See ([7], Theorem 2.1) or ([9], Proposition 1.5).

Theorem 2. Let m = v
u with u ∈ Z≥1, v ∈ Z and gcd(u, v) = 1. Let Pm

+ be the set of all principal admissible
weights of level m (we use the same notation as the case of dominant integral weights). Then, Pm

+ =
⋃

y Pm
u,y,

where y runs over
{

y ∈ W̃|y
(

S(u)

)
⊂ ∆∨+

}
.

Proof. See ([9], Proposition 1.5).

Let us now review branching functions and their connections with the Virasoro algebra.
Recall the Virasoro algebra is an infinite dimensional Lie algebra Vir = (

⊕
n∈ZC`n) ⊕ Cc

with brackets
[`m, c] = 0 for all m ∈ Z

and

[`m, `n] = (m− n)`m+n +
m3 −m

12
δm+n,0 c for all m, n ∈ Z.

Let g be a finite dimensional simple Lie algebra, and g = C
[
t, t−1]⊗ g⊕CK⊕Cd the non-twisted

affine Lie algebra over g. Let V be the highest weight g-module of level m such that m + h∨ 6= 0.
Define the operators Lg

n (n ∈ Z) via

Lg(z) = ∑
n∈Z

Lg
nz−n−2 =

1
2 (m + h∨)

dimg

∑
i=1

: ui(z)ui(z) :, (1)
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where
{

ui} and {ui} are bases of g satisfying
(
ui|uj) = δij. It is well-known that V becomes a

Vir-module by letting

`n 7−→ Lg
n (n ∈ Z) and c 7−→ mdimg

m + h∨
. (2)

The Virasoro action (2) satisfies the following properties:[
`n, tj ⊗ X

]
= −jtj+n ⊗ X (X ∈ g, n ∈ Z− {0} , j ∈ Z) , (3)

`0 =
(Λ + 2ρ|Λ)

2 (m + h∨)
Id− d. (4)

Let p be a reductive subalgebra of g. Then, p is decomposed as p = p0 ⊕ p1 ⊕ · · · ⊕ ps, where p0 is
the center of p and each pi (i = 1, · · · , s) is a simple Lie algebra. Assume that

p0 ⊕
(

s

∑
i=1

hi

)
⊂ h

and
s

∑
i=1

pi+ ⊂ g+,

where hi (resp. h) is a Cartan subalgebra of pi (resp. g) and pi+ (resp. g+) is the sum of the positive
root spaces of pi (resp. g). Consider the affinization p =

(
C[t, t−1]⊗ p

)
⊕CK̇⊕Cd of p. Since V is the

highest weight g-module, V is also the highest weight p-module. However, the action of the central
element K̇ on V is somewhat complicated. We refer to ([11], Chapter 12) for the details of the action of
the central element K̇. Let ṁ be the level of V as a p-module, and write ( | )′ for the standard bilinear
form on p. Set

Lp = ∑
n∈Z

Lp
nz−n−2 =

1
2
(
ṁ + ḣ∨

) dimp

∑
i=1

: u̇i(z)u̇i(z) :, (5)

where
{

u̇i} and {u̇i} are bases of p satisfying
(
u̇i|u̇j

)′
= δij and ḣ∨ is the dual Coxeter number of p.

Using (1) and (5), define
Lg;p(z) = Lg − Lp = ∑

n∈Z
Lg;p

n z−n−2.

Due to (3), it follows that[
Lg;p

n , tj ⊗ X
]
= 0 for all X ∈ p, n ∈ Z− {0} and j ∈ Z. (6)

Applying the operator product expansions, we can verify that Lg;p(z) is, in fact, a Virasoro field with
the central charge cg;p = mdimg

m+h∨ −
ṁdimp
ṁ+ḣ∨

(see [13,14] for the details). We call the Virasoro field Lg;p(z)
the coset Virasoro field.

In the remaining part of this section, we assume that V = L (Λ) for a dominant integral weight Λ

of level m. Let ḣ be a Cartan subalgebra of p, and p+ the positive part of p. For ν ∈
(
ḣ⊕CK̇

)∗
, set

Vg;p
ν =

{
v ∈ L (Λ) |Xv = 0 (∀ X ∈ p+) , Hv = ν (H) v

(
∀ H ∈ ḣ⊕CK̇

)}
.

Due to (4) and (6), Vg;p
ν is stable under the actions of Lg;p

n (n ∈ Z). So, Vg;p
ν becomes a

Vir-module. We call this module the coset Virasoro module. Notice that L (Λ) is decomposed as a
Vir⊕ [p, p]-module into

L (Λ) =
⊕

ν∈ḣ
∗
⊕Cδ̇ mod Cδ̇

(
Vg;p

ν ⊗ L̇(ν)
)

, (7)
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where L̇(ν) is the irreducible [p, p]-module with highest weight ν and δ̇ is identified with K̇ via the
non-degenerate bilinear form on p. From (7), we define a function

cΛ
ν (q) = TrVg;p

ν
q−d = ∑

j∈Z≥0

multΛ
(
ν− jδ̇; p

)
qj
(

q = e−δ
)

, (8)

where the multiplicity is defined as in ([6], Section 1.6). The function (8) is called the string function.
Using the string function (8), the decomposition (7) yields the following formula for the character of
L (Λ):

chL (Λ) = ∑
ν∈ḣ

∗
⊕Cδ̇ mod Cδ̇

cΛ
ν (q)chL̇ (ν) . (9)

Let us now introduce the following numbers:

• mΛ = |Λ+ρ|2
2(m+h∨) −

|ρ|2
2h∨ ,

• ṁν = |ν+ρ̇|2

2(ṁ+ḣ∨)
− |ρ̇|

2

2ḣ∨
,

where ρ̇ is the Weyl vector associated with p.
Then, we define the branching function as bΛ

ν (τ) = qmΛ−ṁν cΛ
ν (q) for q = e2πiτ . By the strange

formula and (4), we see that the branching function also can be written as bΛ
ν (τ) = q−

1
24 cg;p

TrVg;p
ν

q`0

(see [11] (Chapter 12) for the strange formula).
Recall that the normalized character ch

′
L (Λ) is defined as

ch
′
L (Λ) = e−mΛδchL (Λ) .

Introducing the coordinate (τ, z, t) for h = 2πi (−τd + z + tK) ∈ h, we obtain that
ch
′
L(Λ) (τ, z, t) = qmΛ chL(Λ) (τ, z, t). So, the Formula (9) can be rewritten as

ch
′
L(Λ) (τ, z, t) = ∑

ν∈ḣ
∗
⊕Cδ̇ mod Cδ̇

bΛ
ν (τ) ch

′

L̇(ν) (τ, z, t) .

4. Tensor Product Decompositions

In this section, we fix an affine Lie algebra g =
(
C
[
t, t−1]⊗ g

)
⊕ CK ⊕ Cd over a finite

dimensional simple Lie algebra g. We also fix a Cartan subalgebra h of g. For λ, µ ∈ h∗, let L (λ) and
L (µ) be irreducible highest weight modules over g. We denote by πλ and πµ the representations
of g on L (λ) and L (µ), respectively. Put m = λ (K) and m

′
= µ (K). Assume that m + h∨ 6= 0,

m
′
+ h∨ 6= 0 and m + m

′
+ h∨ 6= 0. It follows from (2) that the Virasoro algebra Vir acts on L (λ) and

L (µ). The corresponding Virasoro fields are

Lλ(z) =
1

2 (m + h∨)

dimg

∑
i=1

: πλ (ui(z))πλ

(
ui(z)

)
:

and

Lµ(z) =
1

2
(
m′ + h∨

) dimg

∑
i=1

: πµ (ui(z))πµ

(
ui(z)

)
: .

Notice that the Virasoro algebra Vir acts on L (λ)⊗ L (µ) via the tensor product action

Lλ,µ(z) = Lλ(z)⊗ IdL(µ) + IdL(λ) ⊗ Lµ(z)

with the central charge mdimg
m+h∨ + m

′
dimg

m′+h∨
.
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On the other hand, we may consider the whole tensor product L (λ) ⊗ L (µ) as the highest
weight g-module. Applying (2) to the highest weight g-module L (λ)⊗ L (µ), we get the associated
Virasoro field

Lλ⊗µ(z) =
1

2
(
m + m′ + h∨

) dimg

∑
i=1

(
πλ ⊗ πµ

)
(ui(z))

(
πλ ⊗ πµ

) (
ui(z)

)

with the central charge

(
m+m

′)
dimg

m+m′+h∨
.

Using (3), we have[
Lλ,µ

m , tn ⊗ X
]
= −ntn+m ⊗ X (X ∈ g, m ∈ Z− {0} , n ∈ Z) ,[

Lλ⊗µ
m , tn ⊗ X

]
= −ntn+m ⊗ X (X ∈ g, m ∈ Z− {0} , n ∈ Z) . (10)

Set L̃(z) = Lλ,µ(z)− Lλ⊗µ(z) = ∑n∈Z L̃nz−n−2. According to ([15], Proposition 10.3), the field L̃(z)

yields the coset Virasoro field on L (λ)⊗ L (µ) with central charge mdimg
m+h∨ + m

′
dimg

m′+h∨
−
(

m+m
′)

dimg

m+m′+h∨
.

For µ ∈ h
∗ ⊕Cδ, we define

Vλ,µ
µ =

{
v ∈ L (λ)⊗ L (µ) |Xv = 0 (∀ x ∈ g+) , Hv = µ (H) v

(
∀ H ∈ h⊕CK

)}
.

It follows from (10) that the space Vλ,µ
µ becomes a Vir-module via the coset Virasoro field L̃(z).

Notice that L (λ)⊗ L (µ) is decomposed as a Vir⊕ [g, g]-module into

L (λ)⊗ L (µ) = ∑
µ∈h∗⊕Cδ mod Cδ

Vλ,µ
µ ⊗ L (µ) . (11)

We obtain from (11) a string function

cλ⊗µ
ν (q) = Tr

Vλ,µ
µ

q−d = ∑
j∈Z≥0

multλ⊗µ (µ− jδ; g) qj. (12)

Using (11) and (12), we get

ch (λ) ch (µ) = ∑
µ∈h∗⊕Cδ mod Cδ

cλ⊗µ
ν (q)chL (ν) . (13)

If we define the normalized branching function by

bλ⊗µ
ν (τ) = qmλ+mµ−mν cλ⊗µ

ν (q) ,

then the Formula (13) yields

ch
′
L(λ) (τ, z, t) ch

′
L(µ) (τ, z, t) = ∑

ν

bλ⊗µ
ν (τ) ch

′
L(ν) (τ, z, t) . (14)

Let Λ be a dominant integral weight and µ a principal admissible weight of the affine Lie algebra
g. Then, the branching function of the tensor product L (Λ)⊗ L (µ) can be expressed in terms of the
string functions of L (Λ) as follows.

Theorem 3. Let g be any affine Lie algebra and m ∈ Z≥0. Let m
′
= v

u with u ∈ Z≥1, v ∈ Z and

gcd(u, v) = 1. Assume that Λ and µ0 are dominant integral weights of level m and u
(

m
′
+ h∨

)
− h∨,
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respectively. Write c̃Λ
ξ (q) for the modified string function qmΛ−

|ξ|2
2m cΛ

ξ,(g;g) (q) for ξ ∈ h
∗ ⊕ Cδ, where

cΛ
ξ,(g;g) (q) is the string function defined with respect to the pair (g; g) (i.e., p = g in (8)). Then, for a principal

admissible weight µ = y
(

µ0 − (u− 1)
(

m
′
+ h∨

)
Λ0 + ρ

)
− ρ ∈ Pm

′

u,y, the following formula holds:

ch
′
L(Λ) (τ, z, t) ch

′
L(µ) (τ, z, t) = ∑

ν∈Pm+m′
u,y s.t. ν≡Λ+µ mod Q

bΛ⊗µ
ν (τ) ch

′
L(ν) (τ, z, t) ,

where

bΛ⊗µ
ν (τ) = ∑

w∈W
ε(w)q

(
m
′
+h∨

)(
m+m

′
+h∨

)
2m

∣∣∣∣∣ w(ν0+ρ)
m+m′+h∨

− µ0+ρ

m′+h∨

∣∣∣∣∣
2

c̃Λ
y(w(ν0+ρ)−(µ0+ρ)−(u−1)mΛ0)

(q) .

Proof. See ([9], Theorem 3.1).

In the next section, we simply write c̃Λ
λ for c̃Λ

λ (q) if no confusion seems likely to arise, and will
calculate explicitly the branching functions for some specific cases.

5. Explicit Calculations of Branching Functions

Let Λ0 and Λ1 be the fundamental weights of ŝl2, and λ a principal admissible weight of ŝl2. In this
section, we explicitly calculate the branching functions arising from the tensor product decompositions
of (L (2Λ0)⊕ L (2Λ1))⊗ L (λ) and L (ρ)⊗ L (λ).

Let us write Π = {α} for the simple root system of sl2. Then it is easy to check

h∨ = 2, ρ = Λ0 + Λ1 = ρ + h∨Λ0 and Λ1 = Λ0 +
1
2

α (15)

for ŝl2. Let m = v
u (u ∈ 2Z≥1, v ∈ 2Z+ 1), and choose a principal admissible weight λ of level m

satisfying λ = λ0 − (u− 1)(m + 2)Λ0 ∈ Pm
u,1 for λ0 ∈ Pu(m+2)−2

+ (see Theorems 1 and 2).
Applying Theorem 3 to the tensor product representations L (2Λ0)⊗ L (λ) and L (2Λ1)⊗ L (λ),

we obtain

ch
′
L(2Λ0)

(τ, z, t) ch
′
L(λ) (τ, z, t)

= ∑
ν∈Pm+2

u,1 s.t. ν≡2Λ0+λ mod Q

b2Λ0⊗λ
ν (τ) ch

′
L(ν) (τ, z, t) , (16)

where

b2Λ0⊗λ
ν (τ) = ∑

w∈W
ε(w)q

(m+2)(m+4)
4

∣∣∣∣∣ w(ν0+ρ)
m+4 − λ0+ρ

m+2

∣∣∣∣∣
2

c̃2Λ0
w(ν0+ρ)−(λ0+ρ)−2(u−1)Λ0

and

ch
′
L(2Λ1)

(τ, z, t) ch
′
L(λ) (τ, z, t)

= ∑
ν̃∈Pm+2

u,1 s.t. ν̃≡2Λ1+λ mod Q

b2Λ1⊗λ
ν̃ (τ) ch

′
L(ν̃) (τ, z, t) , (17)

where

b2Λ1⊗λ
ν̃ (τ) = ∑

w∈W
ε(w)q

(m+2)(m+4)
4

∣∣∣∣∣ w(ν̃0+ρ)
m+4 − λ0+ρ

m+2

∣∣∣∣∣
2

c̃2Λ1
w(ν̃0+ρ)−(λ0+ρ)−2(u−1)Λ0

.
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Similarly, if we apply Theorem 3 to the tensor product representation L (ρ)⊗ L (λ) then we have

ch
′
L(ρ) (τ, z, t) ch

′
L(λ) (τ, z, t)

= ∑
ν∈Pm+2

u,1 s.t. ν≡ρ+λ mod Q

bρ⊗λ
ν (τ) ch

′
L(ν) (τ, z, t) , (18)

where

bρ⊗λ
ν (τ) = ∑

w∈W
ε(w)q

(m+2)(m+4)
4

∣∣∣∣∣ w(ν0+ρ)
m+4 − λ0+ρ

m+2

∣∣∣∣∣
2

c̃ρ

w(ν0+ρ)−(λ0+ρ)−2(u−1)Λ0
.

For λ0 ∈ Pu(m+2)−2
+ and ν0 ∈ Pu(m+4)−2

+ , let us write

λ0 = (u(m + 2)− 2− n)Λ0 + nΛ1,

ν0 =
(

u(m + 4)− 2− n
′)

Λ0 + n
′
Λ1 (19)

for some n ∈ Z and n
′ ∈ Z. Then, we can rewrite λ and ν in (16) as

λ = λ0 − (u− 1)(m + 2)Λ0 = (m− n)Λ0 + nΛ1

and
ν = ν0 − (u− 1)(m + 4)Λ0 =

(
m− n

′
+ 2
)

Λ0 + n
′
Λ1.

Since 2Λ0 − (ν− λ) ∈ Q and 2Λ1 − 2Λ0 = α, we should have n ≡ n
′
(mod 2).

Similarly, for ν̃0 =
(

u(m + 4)− 2− n
′′
)

Λ0 + n
′′
Λ1 ∈ Pu(m+4)−2

+ , we obtain ν̃ =(
m− n

′′
+ 2
)

Λ0 + n
′′
Λ1

(
n
′′ ∈ Z

)
. From the condition 2Λ1 − (ν̃− λ) ∈ Zα, we have the same

condition n ≡ n
′′
(mod 2) as the case of ν. For this reason, we shall identify ν̃ with ν in the following

Theorem 4. The same argument yields that the condition ν ≡ ρ + λ mod Q in (18) is equivalent to the
condition n

′ ≡ n + 1 (mod 2) in (19).

Theorem 4. Let m = v
u for u ∈ 2Z≥1 and v ∈ 2Z+ 1, and let p = u(m + 4) and p

′
= u(m + 2).

1. Suppose that
λ0 = (u(m + 2)− 2− n)Λ0 + nΛ1

and
ν0 =

(
u(m + 2)− 2− n

′)
Λ0 + n

′
Λ1

for some n ∈ 4Z and n
′ ∈ Z satisfying n ≡ n

′
(mod 2). Then, the branching functions in (16) and (17)

are explicitly given by

b2Λ0⊗λ
ν (τ) = ∑

j∈Z
q

1
8pp′

(
2pp

′
j+
(

n
′
+1
)

p
′−(n+1)p

)2

A

−∑
j∈Z

q
1

8pp′
(

2pp
′
j−
(

n
′
+1
)

p
′−(n+1)p

)2

B (20)
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and

b2Λ1⊗λ
ν (τ) = ∑

j∈Z
q

1
8pp′

(
2pp

′
j+
(

n
′
+1
)

p
′−(n+1)p

)2

B

−∑
j∈Z

q
1

8pp′
(

2pp
′
j−
(

n
′
+1
)

p
′−(n+1)p

)2

A, (21)

where

{
A = c̃2Λ0

2Λ0
, B = c̃2Λ0

2Λ1
if n

′ ≡ 0 (mod 4)

A = c̃2Λ0
2Λ1

, B = c̃2Λ0
2Λ0

if n
′ ≡ 2 (mod 4) .

2. Assume that
λ0 = (u(m + 2)− 2− n)Λ0 + nΛ1

and
ν0 =

(
u(m + 2)− 2− n

′)
Λ0 + n

′
Λ1

for some n ∈ 4Z and n
′ ∈ 4Z+ 1. Then, the branching function in (18) is explicitly given by

bρ⊗λ
ν (τ)

= ∑
j∈Z

(
q

1
8pp′

(
2pp

′
j+
(

n
′
+1
)

p
′−(n+1)p

)2

− q
1

8pp′
(

2pp
′
j−
(

n
′
+1
)

p
′−(n+1)p

)2)
c̃ρ

ρ. (22)

Proof. We first prove (20) and (21).
Recall that the Weyl group W of ŝl2 is given by

{
tjα, tjαrα|j ∈ Z

}
.

By (15) and (19), we have

ν0 + ρ = u(m + 4)Λ0 +
n
′
+ 1
2

α

and
λ0 + ρ = u(m + 2)Λ0 +

n + 1
2

α.

So, we get

tjα

(
ν0 + ρ

)
−
(

λ0 + ρ
)
− 2(u− 1)Λ0

= 2Λ0 +

(
u(m + 4)j +

n
′ − n
2

)
α−

(
u(m + 4)j2 +

(
n
′
+ 1
)

j
)

δ (23)

and

tjαrα

(
ν0 + ρ

)
−
(

λ0 + ρ
)
− 2(u− 1)Λ0

= 2Λ0 +

(
u(m + 4)j− n

′
+ n + 2

2

)
α +

(
u(m + 4)j2 −

(
n
′
+ 1
)

j
)

δ. (24)

Notice from ([11], (12.7.9)) that we have

c̃2Λ0
w(λ

′)+2γ+aδ
= c̃2Λ0

λ
′ (25)

for λ
′ ∈ h∗, w ∈W, γ ∈ Zα and a ∈ C. Since W = {1, rα}, we see from (25) that

c̃2Λ0
λ+(2n+1)α+aδ

= c̃2Λ0
(λ+α)+2nα+aδ

= c̃2Λ0
λ+α
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and
c̃2Λ0

rα(λ)+(2n+1)α+aδ
= c̃2Λ0

rα(λ+α)+(2n+2)α+aδ
= c̃2Λ0

λ+α.

Hence, in any case we obtain
c̃2Λ0

w(λ)+(2n+1)α+aδ
= c̃2Λ0

λ+α (26)

for w ∈W. Since u is even, we have

u(m + 4)j +
n
′ − n
2
≡ n

′ − n
2

(mod2)

and

u(m + 4)j− n
′
+ n + 2

2
≡ −n

′
+ n + 2

2
(mod 2) .

Since n ∈ 4Z and n ≡ n
′
(mod 2), we obtain n

′ ≡ 0 (mod 4) or n
′ ≡ 2 (mod 4). If n

′ ≡ 0 (mod 4),

then n
′−n
2 ≡ 0 (mod 2) and − n

′
+n+2

2 ≡ 1 (mod 2). Thus, by (23), (24), (25) and (26) we get

c̃2Λ0
tjα(ν0+ρ)−(λ0+ρ)−2(u−1)Λ0

= c̃2Λ0
2Λ0

(27)

and
c̃2Λ0

tjαrα(ν0+ρ)−(λ0+ρ)−2(u−1)Λ0
= c̃2Λ0

2Λ0+α = c̃2Λ0
2Λ1

. (28)

Similarly, if n
′ ≡ 2 (mod 4), then n

′−n
2 ≡ 1 (mod 2) and − n

′
+n+2

2 ≡ 0 (mod 2). So, in this case
we have

c̃2Λ0
tjα(λ0+ρ)−(µ0+ρ)−2(u−1)Λ0

= c̃2Λ0
2Λ0+α = c̃2Λ0

2Λ1
(29)

and
c̃2Λ0

tjαrα(λ0+ρ)−(µ0+ρ)−2(u−1)Λ0
= c̃2Λ0

2Λ0
. (30)

We now compute the exponent (m+2)(m+4)
4

∣∣∣∣w(ν0+ρ)
m+4 − λ0+ρ

m+2

∣∣∣∣2 of q in (16) and (17).

Since p = u(m + 4) in assumption, we see that

tjα

(
ν0 + ρ

)
= pΛ0 +

(
pj +

n
′
+ 1
2

)
α−

(
pj2 +

(
n
′
+ 1
)

j
)

δ. (31)

and

tjαrα

(
ν0 + ρ

)
= pΛ0 +

(
pj− n

′
+ 1
2

)
α−

(
pj2 −

(
n
′
+ 1
)

j
)

δ. (32)

It also follows from the assumption p
′
= u(m + 2) that

(m + 2)(m + 4)
4

∣∣∣∣∣w
(
ν0 + ρ

)
m + 4

− λ0 + ρ

m + 2

∣∣∣∣∣
2

=
u2(m + 2)(m + 4)

4

∣∣∣∣∣w
(
ν0 + ρ

)
u(m + 4)

− λ0 + ρ

u(m + 2)

∣∣∣∣∣
2

(33)

=
pp
′

4

∣∣∣∣∣w
(
ν0 + ρ

)
p

− λ0 + ρ

p′

∣∣∣∣∣
2

.
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Notice from (31) and (32) that

tjα
(
ν0 + ρ

)
p

− λ0 + ρ

p′

=

(
Λ0 +

(
j +

n
′
+ 1

2p

)
α

)
− 1

p′

(
p
′
Λ0 +

n + 1
2

α

)
mod Cδ

=

(
j +

n
′
+ 1

2p
− n + 1

2p′

)
α mod Cδ

and

tjαrα

(
ν0 + ρ

)
p

− λ0 + ρ

p′

=

(
Λ0 +

(
j− n

′
+ 1

2p

)
α

)
− 1

p′

(
p
′
Λ0 +

n + 1
2

α

)
mod Cδ

=

(
j− n

′
+ 1

2p
− n + 1

2p′

)
α mod Cδ.

Thus, we obtain∣∣∣∣∣ tjα
(
ν0 + ρ

)
p

− λ0 + ρ

p′

∣∣∣∣∣
2

=
1

2
(

pp′
)2

(
2pp

′
j +
(

n
′
+ 1
)

p
′ − (n + 1)p

)2
,

∣∣∣∣∣ tjαrα

(
ν0 + ρ

)
p

− λ0 + ρ

p′

∣∣∣∣∣
2

=
1

2
(

pp′
)2

(
2pp

′
j−
(

n
′
+ 1
)

p
′ − (n + 1)p

)2
. (34)

Hence, if n
′ ≡ 0 (mod 4), then we obtain from (27), (28), (33) and (34) that

b2Λ0⊗λ
ν (τ) = ∑

j∈Z
q

1
8pp′

(
2pp

′
j+
(

n
′
+1
)

p
′−(n+1)p

)2

c̃2Λ0
2Λ0

−∑
j∈Z

q
1

8pp′
(

2pp
′
j−
(

n
′
+1
)

p
′−(n+1)p

)2

c̃2Λ0
2Λ1

.

If n
′ ≡ 2 (mod 4) then we also obtain from (29), (30), (33) and (34)

b2Λ0⊗λ
ν (τ) = ∑

j∈Z
q

1
8pp′

(
2pp

′
j+
(

n
′
+1
)

p
′−(n+1)p

)2

c̃2Λ0
2Λ1

−∑
j∈Z

q
1

8pp′
(

2pp
′
j−
(

n
′
+1
)

p
′−(n+1)p

)2

c̃2Λ0
2Λ0

.

The Formula (20) now follows.
Applying the same argument as above to the case of b2Λ1⊗λ

ν (τ), we obtainc̃2Λ1
tjα(ν0+ρ)−(λ0+ρ)−2(u−1)Λ0

= c̃2Λ1
2Λ0

if n
′ ≡ 0 (mod 4)

c̃2Λ1
tjαrα(ν0+ρ)−(λ0+ρ)−2(u−1)Λ0

= c̃2Λ1
2Λ1

if n
′ ≡ 0 (mod 4) .

(35)
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and c̃2Λ1
tjα(ν0+ρ)−(λ0+ρ)−2(u−1)Λ0

= c̃2Λ1
2Λ1

if n
′ ≡ 2 (mod 4)

c̃2Λ1
tjαrα(ν0+ρ)−(λ0+ρ)−2(u−1)Λ0

= c̃2Λ1
2Λ0

if n
′ ≡ 2 (mod 4) .

(36)

Notice that we have c̃MΛ0+NΛ1
mΛ0+nΛ1

= c̃NΛ0+MΛ1
nΛ0+mΛ1

due to the outer automorphism of ŝl2.
Hence, we obtain that

c̃2Λ1
2Λ0

= c̃2Λ0
2Λ1

and c̃2Λ1
2Λ1

= c̃2Λ0
2Λ0

(37)

Therefore, if n
′ ≡ 0 (mod 4) then we get from (35), (36), (33), (34) and (37) that

b2Λ1⊗λ
ν (τ) = ∑

j∈Z
q

1
8pp′

(
2pp

′
j+
(

n
′
+1
)

p
′−(n+1)p

)2

c̃2Λ0
2Λ1

−∑
j∈Z

q
1

8pp′
(

2pp
′
j−
(

n
′
+1
)

p
′−(n+1)p

)2

c̃2Λ0
2Λ0

.

Similarly, if n
′ ≡ 2 (mod 4) then we obtain that

b2Λ1⊗λ
ν (τ) = ∑

j∈Z
q

1
8pp′

(
2pp

′
j+
(

n
′
+1
)

p
′−(n+1)p

)2

c̃2Λ0
2Λ0

−∑
j∈Z

q
1

8pp′
(

2pp
′
j−
(

n
′
+1
)

p
′−(n+1)p

)2

c̃2Λ0
2Λ1

.

The Formula (21) now follows.
Let us now prove (22).
The proof is exactly the same as those of (20) and (21) except for calculations of the string function

c̃ρ

w(ν0+ρ)−(λ0+ρ)−2(u−1)Λ0
. Recall from the assumption that n ∈ 4Z and n

′ ∈ 4Z+ 1. Then, by (23)–(25)
we obtain

c̃ρ

tjα(ν0+ρ)−(λ0+ρ)−2(u−1)Λ0
= c̃ρ

2Λ0+
n′ −n

2 α
= c̃ρ

2Λ0+
1
2 α

= c̃ρ
ρ

and
c̃ρ

tjαrα(ν0+ρ)−(λ0+ρ)−2(u−1)Λ0
= c̃ρ

2Λ0− n′+n+2
2 α

= c̃ρ

2Λ0−2α+ 1
2 α

= c̃ρ
ρ.

The result now follows.

It is immediate from Theorem 4 that the branching function of (L (2Λ0)⊕ L (2Λ1))⊗ L (λ) for ŝl2
is given by

b2Λ0⊗λ
ν (τ) + b2Λ1⊗λ

ν (τ)

= ∑
j∈Z

q
1

8pp′
(

2pp
′
j+
(

n
′
+1
)

p
′−(n+1)p

)2 (
c̃2Λ0

2Λ0
+ c̃2Λ0

2Λ1

)

−∑
j∈Z

q
1

8pp′
(

2pp
′
j−
(

n
′
+1
)

p
′−(n+1)p

)2 (
c̃2Λ0

2Λ0
+ c̃2Λ0

2Λ1

)
.

In the following theorem, we explicitly calculate c̃2Λ0
2Λ0

+ c̃2Λ0
2Λ1

and c̃ρ
ρ in terms of the Dedekind

eta function.

Theorem 5. c̃2Λ0
2Λ0

+ c̃2Λ0
2Λ1

= η(τ)

η( τ
2 )η(2τ)

and c̃ρ
ρ = η(2τ)

η(τ)2 , where η (τ) = q
1
24 Π∞

n=1 (1− qn).
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Proof. It follows from the Weyl-Kac character formula that

chL (2Λ0) =
1

eρR ∑
w∈W

ε(w)ew(2Λ0+ρ), (38)

where
W =

{
tjα, tjαrα|j ∈ Z

}
and

R = Π∞
n=1 (1− qn)

(
1− e−αqn−1

)
(1− eαqn) .

Calculating w (2Λ0 + ρ) for w ∈W, we obtain from (38)

chL (2Λ0) =
1

eρR

(
∑
j∈Z

e2Λ0+ρ+4jα− (4j)2+4j
4 δ − ∑

j∈Z
e2Λ0+ρ+(−4j−1)α− (−4j−1)2+(−4j−1)

4 δ

)
. (39)

Similarly, we can evaluate chL (2Λ1) as follows:

1
eρR

q−
1
2

(
∑
j∈Z

e2Λ0+ρ+(4j+1)α− (4j+1)2+(4j+1)
4 δ − ∑

j∈Z
e2Λ0+ρ+(−4j−2)α− (−4j−2)2+(−4j−2)

4 δ

)
. (40)

Using (39), (40) and the Jacobi triple product identity, we have

chL (2Λ0)− q
1
2 chL (2Λ1)

=
1

eρR ∑
j∈Z

(−1)je2Λ0+ρ+jα− j2+j
4 δ

=
e2Λ0

R ∑
j∈Z

(−1)jejαq
j2+j

4

=
e2Λ0

R

∞

∏
n=1

(
1− q

n
2

) (
1− eαq

n
2

) (
1− e−αq

n−1
2

)
(41)

= e2Λ0
∞

∏
n=1

(
1− q

2n−1
2

) (
1− eαq

2n−1
2

) (
1− e−αq

2n−1
2

)
= e2Λ0

∞

∏
n=1

1− qn− 1
2

1− qn

∞

∏
n=1

(1− qn)
(

1− eαq
2n−1

2

) (
1− e−αq

2n−1
2

)
= e2Λ0

∞

∏
n=1

1− qn− 1
2

1− qn ∑
j∈Z

(−1)jejαq
j2
2 .

Recall from ([11], (12.7.1)) that

chL (2Λ0) = ∑
λ∈max(2Λ0)

c2Λ0
λ eλ. (42)

and
chL (2Λ1) = ∑

λ∈max(2Λ1)

c2Λ1
λ eλ. (43)

From (42) and (43), the coefficient of e2Λ0 in chL (2Λ0)− q
1
2 chL (2Λ1) should be equal to

c2Λ0
2Λ0
− q

1
2 c2Λ1

2Λ0
. (44)
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Comparing (44) with the coefficient of e2Λ0 in (41), we obtain

c2Λ0
2Λ0
− q

1
2 c2Λ1

2Λ0
=

∞

∏
n=1

1− qn− 1
2

1− qn . (45)

By substituting x = q
1
2 , we obtain from (45)

c2Λ0
2Λ0
− xc2Λ1

2Λ0
=

∞

∏
n=1

1− x2n−1

1− x2n .

By letting x 7−→ −x, we get

c2Λ0
2Λ0

+ xc2Λ1
2Λ0

=
∞

∏
n=1

1 + x2n−1

1− x2n ,

and this implies

c2Λ0
2Λ0

+ q
1
2 c2Λ1

2Λ0
=

∞

∏
n=1

1 + qn− 1
2

1− qn . (46)

On the other hand, it is easy to check that m2Λ0 −
|2Λ0|2

4 = − 1
16 and m2Λ1 −

|2Λ0|2
4 = 7

16 , and these

yield that c̃2Λ0
2Λ0

= q−
1

16 c2Λ0
2Λ0

and c̃2Λ1
2Λ0

= q
7

16 c2Λ1
2Λ0

. So, (46) gives rise to

q
1
16

(
c̃2Λ0

2Λ0
+ c̃2Λ1

2Λ0

)
=

∞

∏
n=1

1 + qn− 1
2

1− qn . (47)

Thus,

η (τ)

η
(

τ
2
)

η (2τ)

=
q−

1
16

∏∞
n=1

(
1− q

n
2

)
∏∞

n=1 (1 + qn)

=
q−

1
16 ∏∞

n=1

(
1 + q

n
2

)
∏∞

n=1 (1− qn)∏∞
n=1 (1 + qn)

=
q−

1
16 ∏∞

n=1

(
1 + qn− 1

2

)
∏∞

n=1 (1− qn)

= c̃2Λ0
2Λ0

+ c̃2Λ1
2Λ0

(see (47)) .

Next, we compute c̃ρ
ρ.

Replacing all positive roots α by kα (k ∈ Z≥1), we obtain from the denominator identity that

ekρ ∏
α∈∆+

(
1− e−kα

)mult(α)
= ∑

w∈W
ε(w)ew(kρ).
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Thus, it follows from the Jacobi triple identity that

chL (ρ)

=
1

eρR ∑
w∈W

ε(w)ew(2ρ)

=
1

eρR
e2ρ ∏

α∈∆+

(
1− e−2α

)mult(α)

= eρ
∞

∏
j=1

(
1− q2j) (1− e−2αq2(j−1)

) (
1− e2αq2j)(

1− qj
) (

1− e−αq(j−1)
) (

1− eαqj
) (

q = e−δ
)

(48)

= eρ
∞

∏
j=1

(
1 + qj)(
1− qj

) ∞

∏
j=1

(
1− qj

) (
1 + e−αq(j−1)

) (
1 + eαqj

)
=

∞

∏
j=1

(
1 + qj)(
1− qj

) ∑
j∈Z

eρ−jαq
j2−j

2

=
∞

∏
j=1

(
1 + qj)(
1− qj

) ∑
j∈Z

eρ−jα− j2−j
2 δ.

On the other hand, we get from ([11], (12.7.1)) that

chL (ρ) = ∑
λ∈max(ρ)

cρ
λeλ. (49)

Comparing the coefficients of eρ in (48) and (49), we have

cρ
ρ =

∞

∏
j=1

1 + qj

1− qj .

Moreover, it is easy to check mρ − |ρ|
2

4 = 0 which implies c̃ρ
ρ = cρ

ρ.
The result now follows.

6. Super-Virasoro algebras

In this section, we shall investigate relationships between our results on branching functions and
the representation theory of super-Virasoro algebras. As by-products, we generalize the tensor product
decomposition formulas ([6], (4.1.2a) and (4.1.2b)) to the case of principal admissible weights.

Let us first review the theta functions associated to an affine Lie algebra g = C
[
t, t−1]⊗ g⊕CK⊕

Cd and its Cartan subalgebra h.
For λ ∈ Pm (m ∈ Z≥0), the theta function θλ is defined as

θλ = e−
|λ|2
2m δ ∑

α∈Q

etαλ,

where Q is the root lattice of g. Using the coordinate (τ, z, t) for the Cartan subalgebra h, we get

θλ (τ, z, t) = e2πimt ∑
γ∈Q+ λ

m

q
m
2 |γ|

2
e2πim(γ|z),

where λ is the projection of λ onto h.
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In particular, if we take λ = md + 1
2 nα + rK ∈ Pm for g = ŝl2 then the corresponding theta

function is
θλ (τ, z, t) = e2πimt ∑

k∈Z+ n
m

qmk2
e2πim(kα|z). (50)

Evaluating (50) at (τ, 0, 0), we have

θ (τ, 0, 0) = ∑
j∈Z

qm(j+ n
2m )

2 (
q = e2πiτ

)
. (51)

For convenience, we shall simply write θn,m for (51) in the remaining part of this section.

Next, we review the super-Virasoro algebras Virε

(
ε = 0, 1

2

)
. (For ε = 0 or 1

2 , Virε is called the
Ramond and Neveu-Schwarz superalgebra, respectively.)

The super-Virasoro algebra Virε is the complex superalgebra with a basis{
c, `j, gm|j ∈ Z and m ∈ ε +Z

}
, and it satisfies commutation relations

1.
[
`i, `j

]
= (i− j)`i+j +

1
12
(
i3 − i

)
δi+j,0c,

2.
[
c, `j

]
= 0,

3. [gm, `n] =
(
m− n

2
)

gm+n,
4. [gm, c] = 0,
5. {gm, gn} = 2`m+n +

1
3

(
m2 − 1

4

)
δm+n,0c,

where { , } denotes an anti-commutator bracket between two odd elements.
Recall that every minimal series irreducible module of Virε corresponds to the pair of numbers(

z
(

p,p
′)

, h

(
p,p
′)

r,s;ε

)
. Here, z

(
p,p
′)

is the central charge equals z
(

p,p
′)

= 3
2

(
1−

2
(

p−p
′)2

pp′

)
, and h

(
p,p
′)

r,s;ε

is the minimal eigenvalue of `0 equals h

(
p,p
′)

r,s;ε =

(
pr−p

′
s
)2
−
(

p−p
′)2

8pp′
+ 1

16 (1− 2ε) for p, p
′
, r, s ∈ Z,

2 ≤ p
′
< p, p− p

′ ∈ 2Z, gcd
(

p−p
′

2 , p
′
)

= 1, 1 ≤ r ≤ p
′ − 1, 1 ≤ s ≤ p− 1 and r− s ∈ 2Z (we refer

to ([16], Theorem 5.2) for the details).

Write Vε

(
z
(

p,p
′)

, h

(
p,p
′)

r,s;ε

)
for the minimal series module over Virε corresponding to(

z
(

p,p
′)

, h

(
p,p
′)

r,s;ε

)
. According to [17,18], it follows that

chVε

(
z
(

p,p
′)

, h

(
p,p
′)

r,s;ε

)
= q

1
24 z

(
p,p
′)

ηε (τ)

(
θ pr−p′ s

2 , pp′
2

− θ pr+p′ s
2 , pp′

2

)
,

where ηε (τ) =


η(2τ)

η(τ)2 if ε = 0
η(τ)

η( τ
2 )η(2τ)

if ε = 1
2 .

By (51), we see that

θ pr−p′ s
2 , pp′

2

= ∑
j∈Z

q
1

8pp′
(

2pp
′
j+pr−p

′
s
)2

,

θ pr+p′ s
2 , pp′

2

= ∑
j∈Z

q
1

8pp′
(

2pp
′
j+pr+p

′
s
)2

.
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So, the normalized character of Vε

(
z
(

p,p
′)

, h

(
p,p
′)

r,s;ε

)
is

χ

(
p,p
′)

r,s;ε (τ)

= ηε (τ)

(
∑
j∈Z

q
1

8pp′
(

2pp
′
j+pr−p

′
s
)2

− ∑
j∈Z

q
1

8pp′
(

2pp
′
j+pr+p

′
s
)2)

, (52)

where χ

(
p,p
′)

r,s;ε (τ) = q−
1
24 z

(
p,p
′)

chVε

(
z
(

p,p
′)

, h

(
p,p
′)

r,s;ε

)
.

Let r = −(n + 1) and s =
(

n
′
+ 1
)

in (52). Then, by Theorem 4, Theorem 5 and (52), we obtain
the following result.

Proposition 1. Let m = v
u (u ∈ 2Z≥1, v ∈ 2Z+ 1). Suppose that λ is a principal admissible weight of

ŝl2 such that λ = λ0 − (u − 1)(m + 2)Λ0 ∈ Pm
u,1 for λ0 ∈ Pu(m+2)−2

+ . Then, the branching function

b2Λ0⊗λ
ν (τ) + b2Λ1⊗λ

ν (τ) (resp. bρ
ν (τ)) of (L (2Λ0)⊕ L (2Λ1))⊗ L (λ) (resp. L (ρ)⊗ L (λ)) is the same as

the normalized character χ

(
p,p
′)

−(n+1),n′+1; 1
2
(τ) (resp. χ

(
p,p
′)

−(n+1),n′+1;0
(τ)) of the Neveu-Schwarz (resp. Ramond)

superalgebra.

It follows from Section 4 that

(L (2Λ0)⊕ L (2Λ1))⊗ L (λ) = ∑
ν

(
V2Λ0,λ

ν ⊕V2Λ1,λ
ν

)
⊗ L (ν) (53)

and
L (ρ)⊗ L (λ) = ∑

ν
′

Vρ,λ
ν
′ ⊗ L

(
ν
′)

, (54)

where ν and ν
′

are taken over Pm+2
u,1 such that ν ≡ 2Λ0 + λ mod Q and ν

′ ≡ ρ + λ mod Q, respectively.
According to [17] the coset Virasoro action introduced in Section 4 can be extended to the action of

super-Virasoro algebras, and (53) and (54) can be considered as decompositions of Vε ⊕ [g, g]-module.
Thus, (14) and Proposition 1 imply that V2Λ0

ν ⊕ V2Λ1
ν (resp. Vρ

ν ) should be isomorphic to the

minimal series module V1
2

(
zp,p

′
, hp,p

′

−(n+1),n′+1; 1
2

)
(resp. V0

(
zp,p

′
, hp,p

′

−(n+1),n′+1;0

)
) as Vir 1

2
-modules

(resp. Vir0-modules). Hence, we obtain the following theorem.

Theorem 6. Let m and λ be the same as Proposition 1. Then, we have

(L (2Λ0)⊕ L (2Λ1))⊗ L (λ) = ∑
ν

V1
2

(
zp,p

′
, hp,p

′

−(n+1),n′+1; 1
2

)
⊗ L (ν)

and

L (ρ)⊗ L (λ) = ∑
ν
′

V0

(
zp,p

′
, hp,p

′

−(n+1),n′+1;0

)
⊗ L

(
ν
′)

,

where ν and ν
′

are taken over Pm+2
u,1 such that ν ≡ 2Λ0 + λ mod Q and ν

′ ≡ ρ + λ mod Q, respectively.
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